Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Genomic surveillance highlights key VP4/VP7 regions, dominant genotypes, and reassortment in bovine rotaviruses among diarrheic calves in China

Min Sun1, 3, 4, 5*, Xinru Sun1, 2*Li Mao1, 3, 5, Jinzhu Zhou1, 3, 5, Xuehan Zhang1, 3, 5, Xuejiao Zhu1, 3, 5, Ran Tao1, 3, 5, Baochao Fan1, 3, 4, 5, Zihao Pan4, Sizhu Suolang2#, Bin Li1, 3, 4, 5#

1 Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture/Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China

2 Animal Science College, Xizang Agricultural and Animal Husbandry University, Nyingchi 860000, China

3 GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China

4 College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China

5 Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225000, China

 Highlights 

1. A 21.46% detection rate of bovine RVs in diarrheic calves across 15 provinces in China during 2022-2023 shows clear seasonality and geographic patterns.

2. Key genomic regions in VP4/VP7 genes were identified for precise genotyping, and the genotypes of G6, G10, P[1], P[5], and P[11] are widely distributed in China.

3. A novel G10P[11] strain provides evidence of complex reassortment and ongoing evolution of bovine RVs.

 

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

牛轮状病毒是引起犊牛腹泻的重要病原之一,且在特定情况下对公共卫生安全构成潜在威胁。已知该病毒至少包含13P基因型与15G基因型,其高度的遗传多样性为建立精准检测技术、获取可靠临床数据带来了巨大挑战。因此,深入解析牛轮状病毒的流行病学特征与基因组进化规律,对于制定科学有效的疫情防控策略具有至关重要的意义。本研究以2022-2023年间中国腹泻犊牛为研究对象,系统探究牛轮状病毒的流行规律、基因特征及进化机制。我们通过对全国15个省份的犊牛腹泻病料进行监测分析,结果显示牛轮状病毒总体阳性率达21.46%,且在流行过程中呈现出明显的季节特征与地理分布差异。为进一步明确病毒进化规律,我们对来源于不同国家和地区的VP4基因(决定P基因型)和VP7基因(决定G基因型)序列展开全面比对分析,鉴定出VP4基因的310-595 bp区域及VP7基因的260-631 bp区域,在不同基因型毒株中具有高度的序列特异性与进化关联性,可作为评估牛轮状病毒进化机制的精准靶标。系统进化分析结果表明,我国当前流行毒株以G6型与P[1]型为优势基因型,同时G10型、P[5]型和P[11]型等基因型分布广泛,反映出病毒基因型的丰富性与流行的广泛性。为深入探究病毒进化动态,我们进一步对CHN/HLJ/N3/2023/G10P [11] 毒株进行全基因组分析,发现了该毒株基因组存在属间重配,提示牛轮状病毒在基因组水平上持续进化,为理解病毒进化机制提供了依据。综上所述,本研究通过基因组监测与系统进化分析,揭示了2022-2023年我国牛轮状病毒的流行规律,明确了VP4及VP7基因中用于进化分析的精确靶标,鉴定出的具有重配特征的G10P[11]型毒株,为后续开展牛轮状病毒快速基因分型研究与病毒进化机制探索奠定了坚实的理论基础,为制定针对性防控策略提供重要的科学依据。



Abstract  
Bovine rotaviruses (RVs) have been confirmed as the important pathogen responsible for calf diarrhea, and in some instances posing a significant threat to public health. The genetic diversity of bovine RVs with at least thirteen P and fifteen G genotypes poses challenges to establish accurate detection methods and collect convincing clinical data, emphasizing the importance of understanding the epidemiological and genomic characteristics for combatting outbreaks. In the present study, the prevalence of bovine RVs in diarrheic calves across 15 provinces in China during 2022-2023 was monitored at a rate of 21.46%, and exhibits certain levels of seasonality and geographic specificity. By a comprehensive analysis based on 62 entire VP4 (determining P genotype) and 84 entire VP7 (determining G genotype) genes, two specific regions within the VP4 and VP7 genes, ranging from 310 to 595 bp and 260 to 631 bp, respectively, were identified as more accurate targets for assessing the evolutionary mechanisms of bovine RVs. Genotyping and phylogenetic analysis based on these genomic segments revealed the complexity of bovine RVs epidemics in China, with the dominant genotypes being G6 and P[1], and other genotypes such as G10, P[5], and P[11] being widely distributed. Further analysis in strain CHN/HLJ/N3/2023/G10P[11] provided evidence of multiple-genera reassortant and ongoing evolution of rotaviruses at the whole genome level. This comprehensive research brings valuable insights into the genetic patterns of bovine RVs, and such understanding is essential for addressing the challenges posed by the diverse genotypes of bovine RVs, which can significantly contribute to effective control measures against outbreaks in bovine populations.
Keywords:  Bovine rotavirus       prevalence              genotyping              molecular characteristics              whole-genome analysis  
Online: 01 October 2025  
Fund: 

This work was supported by the National Key Research and Development Program of China (2023YFD1801302), the Jiangsu Provincial Natural Science Fund for Excellent Young (BK20230077), the Jiangsu Agriculture Science and Technology Innovation Fund (CX(23)1029), Jiangsu Provincial Key Research and Development Program (Modern Agriculture, BE2023317), National Natural Science Foundation of China (32102568 and 32302892), S&T Program of Hebei, China (21322401D).

About author:  #Correspondence Bin Li, E-mail: libinana@126.com; Sizhu Suolang, E-mail: xzslsz@163.com *These authors contribute equally to this work.

Cite this article: 

Min Sun, Xinru Sun, Li Mao, Jinzhu Zhou, Xuehan Zhang, Xuejiao Zhu, Ran Tao, Baochao Fan, Zihao Pan, Sizhu Suolang, Bin Li. 2025. Genomic surveillance highlights key VP4/VP7 regions, dominant genotypes, and reassortment in bovine rotaviruses among diarrheic calves in China. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.10.003

Aksoy E, Azkur A K. 2023. Genome characterization of a Turkish bovine rotavirus field isolate by shotgun metagenomics. Archives of Virology168, 159.

Aoki S T, Settembre E C, Trask S D, Greenberg H B, Harrison S C, Dormitzer P R. 2009. Structure of Rotavirus Outer-Layer Protein VP7 Bound with a Neutralizing Fab. Science324, 1444-1447.

Badaracco A, Garaicoechea L, Rodriguez D, Uriarte E L, Odeon A, Bilbao G, Galarza R, Abdala A, Fernandez F, Parreno V. 2012. Bovine rotavirus strains circulating in beef and dairy herds in Argentina from 2004 to 2010. Veterinary Microbiology158, 394-399.

Cashman O, Lennon G, Sleator R D, Power E, Fanning S, O'Shea H. 2010. Changing profile of the bovine rotavirus G6 population in the south of Ireland from 2002 to 2009. Veterinary Microbiology, 146, 238-244.

Chen S, Zhang W, Zhai J, Chen X, Qi Y. 2022. Prevalence of bovine rotavirus among cattle in mainland China: A meta-analysis. Microbial Pathogenesis170, 105727.

Cho H C, Kim E M, Shin S U, Park J, Choi K S. 2022. Molecular surveillance of rotavirus A associated with diarrheic calves from the Republic of Korea and full genomic characterization of bovine-porcine reassortant G5P[7] strain. Infection Genetics and Evolution100, 105266.

Clark H F, Hoshino Y, Bell L M, Groff J, Hess G, Bachman P, Offit P A. 1987. Rotavirus isolate WI61 representing a presumptive new human serotype. Journal of Clinical Microbiology25, 1757-1762.

Doan Y H, Nakagomi T, Aboudy Y, Silberstein I, Behar-Novat E, Nakagomi O, Shulman L M. 2013. Identification by full-genome analysis of a bovine rotavirus transmitted directly to and causing diarrhea in a human child. Journal of Clinical Microbiology51, 182-189.

Elkady G, Zhu J, Peng Q, Chen M, Liu X, Chen Y, Hu C, Chen H, Guo A. 2021. Isolation and whole protein characterization of species A and B bovine rotaviruses from Chinese calves. Infection Genetics and Evolution89, 104715.

Ghosh S, Taniguchi K, Aida S, Ganesh B, Kobayashi N. 2013. Whole genomic analyses of equine group A rotaviruses from Japan: evidence for bovine-to-equine interspecies transmission and reassortment events. Veterinary Microbiology166, 474-485.

Gomara M I, Cubitt D, Desselberger U, Gray J. 2001. Amino acid substitution within the VP7 protein of G2 rotavirus strains associated with failure to serotype. Journal of Clinical Microbiology39, 3796-3798.

Jiang H J, Zhang Y, Xu X Y, Li X H, Sun Y, Fan X, Xu Y, Su T, Zhang G Q, Dian Z. 2023. Clinical, epidemiological, and genotypic characteristics of rotavirus infection in hospitalized infants and young children in Yunnan Province. Archives of Virology168, 229.

Komoto S, Adah M I, Ide T, Yoshikawa T, Taniguchi K. 2016a. Whole genomic analysis of human and bovine G8P[1] rotavirus strains isolated in Nigeria provides evidence for direct bovine-to-human interspecies transmission. Infection Genetics and Evolution43, 424-433.

Komoto S, Pongsuwanna Y, Ide T, Wakuda M, Guntapong R, Dennis F E, Haga K, Fujii Y, Katayama K, Taniguchi K. 2014. Whole genomic analysis of porcine G10P[5] rotavirus strain P343 provides evidence for bovine-to-porcine interspecies transmission. Veterinary Microbiology, 174, 577-583.

Komoto S, Pongsuwanna Y, Tacharoenmuang R, Guntapong R, Ide T, Higo-Moriguchi K, Tsuji T, Yoshikawa T, Taniguchi K. 2016b. Whole genomic analysis of bovine group A rotavirus strains A5-10 and A5-13 provides evidence for close evolutionary relationship with human rotaviruses. Veterinary Microbiology195, 37-57.

Lagan P, Mooney M H, Lemon K. 2023. Genome analyses of species A rotavirus isolated from various mammalian hosts in Northern Ireland during 2013-2016. Virus Evolution9, vead039.

Li Y, Wang S, Liang F, Teng S, Wang F. 2024. Prevalence and genetic diversity of rotavirus among children under 5 years of age in China: a meta-analysis. Frontiers in Immunology15, 1364429.

Li Y J, Xue M G, Yu L Q, Luo G X, Yang H, Jia L Z, Zeng Y J, Li T D, Ge S X, Xia N S. 2018. Expression and characterization of a novel truncated rotavirus VP4 for the development of a recombinant rotavirus vaccine. Vaccine36, 2086-2092.

Liu X, Yan N, Yue H, Wang Y, Zhang B, Tang C. 2021. Detection and molecular characteristics of bovine rotavirus A in dairy calves in China. Journal of Veterinary Science22, e69.

Louge Uriarte E L, Badaracco A, Spetter M J, Mino S, Armendano J I, Zeller M, Heylen E, Spath E, Leunda M R, Moreira A R, Matthijnssens J, Parreno V, Odeon A C. 2023. Molecular Epidemiology of Rotavirus A in Calves: Evolutionary Analysis of a Bovine G8P[11] Strain and Spatio-Temporal Dynamics of G6 Lineages in the Americas. Viruses15, 2115.

Malik Y S, Kumar N, Sharma K, Saurabh S, Dhama K, Prasad M, Ghosh S, Banyai K, Kobayashi N, Singh R K. 2016. Multispecies reassortant bovine rotavirus strain carries a novel simian G3-like VP7 genotype. Infection Genetics and Evolution41, 63-72.

Matthijnssens J, Ciarlet M, Heiman E, Arijs I, Delbeke T, McDonald S M, Palombo E A, Iturriza-Gomara M, Maes P, Patton J T, Rahman M, Van Ranst M. 2008a. Full genome-based classification of rotaviruses reveals a common origin between human Wa-Like and porcine rotavirus strains and human DS-1-like and bovine rotavirus strains. Journal of Virology82, 3204-3219.

Matthijnssens J, Ciarlet M, Rahman M, Attoui H, Banyai K, Estes M K, Gentsch J R, Iturriza-Gomara M, Kirkwood C D, Martella V, Mertens P P, Nakagomi O, Patton J T, Ruggeri F M, Saif L J, Santos N, Steyer A, Taniguchi K, Desselberger U, Van Ranst M. 2008b. Recommendations for the classification of group A rotaviruses using all 11 genomic RNA segments. Archives of Virology153, 1621-1629.

Moutelikova R, Sauer P, Dvorakova Heroldova M, Hola V, Prodelalova J. 2019. Emergence of Rare Bovine-Human Reassortant DS-1-Like Rotavirus A Strains with G8P[8] Genotype in Human Patients in the Czech Republic. Viruses11, 1015.

Okada N, Matsumoto Y. 2002. Bovine rotavirus G and P types and sequence analysis of the VP7 gene of two G8 bovine rotaviruses from Japan. Veterinary Microbiology84, 297-305.

Papp H, Laszlo B, Jakab F, Ganesh B, De Grazia S, Matthijnssens J, Ciarlet M, Martella V, Banyai K. 2013. Review of group A rotavirus strains reported in swine and cattle. Veterinary Microbiology165, 190-199.

Qin Y F, Gong Q L, Zhang M, Sun Z Y, Wang W, Wei X Y, Chen Y, Zhang Y, Zhao Q, Jiang J. 2022. Prevalence of bovine rotavirus among Bovidae in China during 1984-2021: A systematic review and meta-analysis. Microbial Pathogenesis169, 105661.

Rojas M, Dias H G, Goncalves J L S, Manchego A, Rosadio R, Pezo D, Santos N. 2019. Genetic diversity and zoonotic potential of rotavirus A strains in the southern Andean highlands, Peru. Transboundary and Emerging Diseases66, 1718-1726.

Sadiq A, Bostan N, Yinda K C, Naseem S, Sattar S. 2018. Rotavirus: Genetics, pathogenesis and vaccine advances. Reviews in Medical Virology28, e2003.

Simmonds M K, Armah G, Asmah R, Banerjee I, Damanka S, Esona M, Gentsch J R, Gray J J, Kirkwood C, Page N, Iturriza-Gomara M. 2008. New oligonucleotide primers for P-typing of rotavirus strains: Strategies for typing previously untypeable strains. Journal of Clinical Virology42, 368-373.

Singh S, Singh R, Singh K P, Singh V, Malik Y P S, Kamdi B, Singh R, Kashyap G. 2020. Immunohistochemical and molecular detection of natural cases of bovine rotavirus and coronavirus infection causing enteritis in dairy calves. Microbial Pathogenesis138, 103814.

Singh V K, Neira V, Brito B, Ariyama N, Sturos M, Mor S K. 2022. Genetic Characterization of a Novel Bovine Rotavirus A G37P[52] Closely Related to Human Strains. Frontiers in Veterinary Science9, 931477.

Swiatek D L, Palombo E A, Lee A, Coventry M J, Britz M L, Kirkwood C D. 2010. Detection and analysis of bovine rotavirus strains circulating in Australian calves during 2004 and 2005. Veterinary Microbiology140, 56-62.

Tacharoenmuang R, Komoto S, Guntapong R, Ide T, Singchai P, Upachai S, Fukuda S, Yoshida Y, Murata T, Yoshikawa T, Ruchusatsawat K, Motomura K, Takeda N, Sangkitporn S, Taniguchi K. 2018. Characterization of a G10P[14] rotavirus strain from a diarrheic child in Thailand: Evidence for bovine-to-human zoonotic transmission. Infection Genetics and Evolution63, 43-57.

Tang X C, Li S F, Zhou J Z, Bian X Y, Wang J X, Han N, Zhu X J, Tao R, Wang W, Sun M, Li P, Zhang X H, Li B. 2024. Recombinant bivalent subunit vaccine combining truncated VP4 from P[7] and P[23] induces protective immunity against prevalent porcine rotaviruses. Journal of Virology98, e0021224.

Uddin Ahmed N, Khair A, Hassan J, Khan M, Rahman A, Hoque W, Rahman M, Kobayashi N, Ward M P, Alam M M. 2022. Risk factors for bovine rotavirus infection and genotyping of bovine rotavirus in diarrheic calves in Bangladesh. PLoS One17, e0264577.

Wang C, Wang F, Chang J, Jiang Z, Han Y, Wang M, Jing B, Zhao A, Yin X. 2024a. Development and application of one-step multiplex Real-Time PCR for detection of three main pathogens associated with bovine neonatal diarrhea. Frontiers in Cellular and Infection Microbiology14, 1367385.

Wang D, Gao H, Zhao L, Lv C, Dou W, Zhang X, Liu Y, Kang X, Guo K. 2023. Detection of the dominant pathogens in diarrheal calves of Ningxia, China in 2021-2022. Frontiers in Veterinary Science10, 1155061.

Wang J X, Zhou J Z, Zhu X J, Bian X Y, Han N, Fan B C, Gu L Q, Cheng X, Li S F, Tao R, Li J Z, Zhang X H, Li B. 2024b. Isolation and characterization of a G9P[23] porcine rotavirus strain AHFY2022 in China. Microbial Pathogenesis190, 106612.

Wang M, Yan Y, Wang R, Wang L, Zhou H, Li Y, Tang L, Xu Y, Jiang Y, Cui W, Qiao X. 2019. Simultaneous Detection of Bovine Rotavirus, Bovine Parvovirus, and Bovine Viral Diarrhea Virus Using a Gold Nanoparticle-Assisted PCR Assay With a Dual-Priming Oligonucleotide System. Frontiers in Microbiology10, 2884.

Wei S, Gong Z, Che T, Guli A, Tian F. 2013. Genotyping of calves rotavirus in China by reverse transcription polymerase chain reaction. Journal of Virological Methods, 189, 36-40.

Wu F T, Liu L T, Jiang B, Kuo T Y, Wu C Y, Liao M H. 2022. Prevalence and diversity of rotavirus A in pigs: Evidence for a possible reservoir in human infection. Infection Genetics and Evolution98, 105198.

Yan N, Li R, Wang Y, Zhang B, Yue H, Tang C. 2020. High prevalence and genomic characteristics of G6P[1] Bovine Rotavirus A in yak in China. Journal of General Virology101, 701-711.

Zhang Z, Su D, Meng X, Liang R, Wang W, Li N, Guo Y, Guo A, Li S, Zhao Z, Xiao L, Feng Y. 2022. Cryptosporidiosis outbreak caused by Cryptosporidium parvum subtype IIdA20G1 in neonatal calves. Transboundary and Emerging Diseases69, 278-285.

Zhu J, Qi M, Jiang C, Peng Y, Peng Q, Chen Y, Hu C, Chen J, Chen X, Chen H, Guo A. 2021. Prevalence of bovine astroviruses and their genotypes in sampled Chinese calves with and without diarrhoea. Journal of General Virology102, 001640.

 

[1] Niu Wang, Weidong Zhang, Zhenyu Zhong, Xiongbo Zhou, Xinran Shi, Xin Wang. FGF7 secreted from dermal papillae cell regulates the proliferation and differentiation of hair follicle stem cell[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3583-3597.
[2] Lichao Zhai, Shijia Song, Lihua Zhang, Jinan Huang, Lihua Lv, Zhiqiang Dong, Yongzeng Cui, Mengjing Zheng, Wanbin Hou, Jingting Zhang, Yanrong Yao, Yanhong Cui, Xiuling Jia. Subsoiling before winter wheat alleviates the kernel position effect of densely grown summer maize by delaying post-silking root–shoot senescence[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3384-3402.
[3] Tiantian Chen, Lei Li, Dan Liu, Yubing Tian, Lingli Li, Jianqi Zeng, Awais Rasheed, Shuanghe Cao, Xianchun Xia, Zhonghu He, Jindong Liu, Yong Zhang. Genome wide linkage mapping for black point resistance in a recombinant inbred line population of Zhongmai 578 and Jimai 22[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3311-3321.
[4] Zuxian Chen, Bingbing Zhao, Yingying Wang, Yuqing Du, Siyu Feng, Junsheng Zhang, Luxiang Zhao, Weiqiang Li, Yangbao Ding, Peirong Jiao. H5N1 avian influenza virus PB2 antagonizes duck IFN-β signaling pathway by targeting mitochondrial antiviral signaling protein[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3614-3625.
[5] Yang Sun, Yu Liu, Li Zhou, Xinyan Liu, Kun Wang, Xing Chen, Chuanqing Zhang, Yu Chen. Activity of fungicide cyclobutrifluram against Fusarium fujikuroi and mechanism of the pathogen resistance associated with point mutations in FfSdhB, FfSdhC2 and FfSdhD[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3511-3528.
[6] Yufeng Xiao, Meiqi Dong, Xian Wu, Shuang Liang, Ranhong Li, Hongyu Pan, Hao Zhang. Enrichment, domestication, degradation, adaptive mechanism, and nicosulfuron bioremediation of bacteria consortium YM2[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3529-3545.
[7] Yuxin He, Fei Deng, Chi Zhang, Qiuping Li, Xiaofan Huang, Chenyan He, Xiaofeng Ai, Yujie Yuan, Li Wang, Hong Cheng, Tao Wang, Youfeng Tao. Wei Zhou, Xiaolong Lei, Yong Chen, Wanjun Ren. Can a delayed sowing date improve the eating and cooking quality of mechanically transplanted rice in the Sichuan Basin, China?[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3368-3383.
[8] Dili Lai, Md. Nurul Huda, Yawen Xiao, Tanzim Jahan, Wei Li, Yuqi He, Kaixuan Zhang, Jianping Cheng, Jingjun Ruan, Meiliang Zhou. Evolutionary and expression analysis of sugar transporters from Tartary buckwheat revealed the potential function of FtERD23 in drought stress[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3334-3350.
[9] Zishuai Wang, Wangchang Li, Zhonglin Tang. Enhancing the genomic prediction accuracy of swine agricultural economic traits using an expanded one-hot encoding in CNN models[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3574-3582.
[10] Yunji Xu, Xuelian Weng, Shupeng Tang, Weiyang Zhang, Kuanyu Zhu, Guanglong Zhu, Hao Zhang, Zhiqin Wang, Jianchang Yang. Untargeted lipidomic analysis of milled rice under different alternate wetting and soil drying irrigation regimes[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3351-3367.
[11] Minghui Li, Yilan Chen, Siqiao Wang, Xueke Sun, Yongkun Du, Siyuan Liu, Ruiqi Li, Zejie Chang, Peiyang Ding, Gaiping Zhang. Plug-and-display nanoparticle immunization of the core epitope domain induces potent neutralizing antibody and cellular immune responses against PEDV[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3598-3613.
[12] Jing Zhou, Bingshuai Du, Yibo Cao, Kui Liu, Zhihua Ye, Yiming Huang, Lingyun Zhang. Genome-wide identification of sucrose transporter genes in Camellia oleifera and characterization of CoSUT4[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3494-3510.
[13] Yuheng Wang, Furong Kang, Bo Yu, Quan Long, Huaye Xiong, Jiawei Xie, Dong Li, Xiaojun Shi, Prakash Lakshmanan, Yueqiang Zhang, Fusuo Zhang. Magnesium supply is vital for improving fruit yield, fruit quality and magnesium balance in citrus orchards with increasingly acidic soil[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3641-3655.
[14] Mingxin Feng, Ying Hu, Xin Yang, Jingwen Li, Haochen Wang, Yujia Liu, Haijun Ma, Kai Li, Jiayin Shang, Yulin Fang, Jiangfei Meng. Uncovering the miRNA-mediated regulatory network involved in postharvest senescence of grape berries[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3465-3483.
[15] Li Liu, Yifeng Feng, Ziqi Han, Yaxiao Song, Jianhua Guo, Jing Yu, Zidun Wang, Hui Wang, Hua Gao, Yazhou Yang, Yuanji Wang, Zhengyang Zhao. Functional analysis of the xyloglucan endotransglycosylase/hydrolase gene MdXTH2 in apple fruit firmness formation[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3418-3434.
No Suggested Reading articles found!