|
Appuhn A, Joergensen R G. 2006. Microbial colonisation of roots as a function of plant species. Soil Biology and Biochemistry, 38, 1040–1051.
Bach C E, Warnock D D, Van Horn D J, Weintraub M N, Sinsabaugh R L, Allison S D, German D P. 2013. Measuring phenol oxidase and peroxidase activities with pyrogallol, l-DOPA, and ABTS: Effect of assay conditions and soil type. Soil Biology and Biochemistry, 67, 183–191.
Bao S D. 2000. Soil and Agricultural Chemistry Analysis. China Agriculture Press, Beijing. (in Chinese)
Barberán A, Bates S T, Casamayor E O, Fierer N. 2012. Using network analysis to explore co-occurrence patterns in soil microbial communities. The ISME Journal, 6, 343–351.
Bossio D A, Scow K M. 1998. Impacts of carbon and flooding on soil microbial communities: Phospholipid fatty acid profiles and substrate utilization patterns. Microbial Ecology, 35, 265–278.
Buckeridge K M, Creamer C, Whitaker J. 2022. Deconstructing the microbial necromass continuum to inform soil carbon sequestration. Functional Ecology, 36, 1396–1410.
Buckeridge K M, La Rosa A F, Mason K E, Whitaker J, McNamara N P, Grant H K, Ostle N J. 2020a. Sticky dead microbes: Rapid abiotic retention of microbial necromass in soil. Soil Biology and Biochemistry, 149, 107929.
Buckeridge K M, Mason K E, McNamara N P, Ostle N, Puissant J, Goodall T, Griffiths R I, Stott A W, Whitaker J. 2020b. Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization. Communications Earth & Environment, 1, 36.
Cai M K, Zhao G, Zhao B, Cong N, Zheng Z T, Zhu J T, Duan X Q, Zhang Y J. 2023. Climate warming alters the relative importance of plant root and microbial community in regulating the accumulation of soil microbial necromass carbon in a Tibetan alpine meadow. Global Change Biology, 29, 3193–3204.
Cao D, Wang X X, Miao Y, Wu C F, Zhang H Q, Wang S, Wang F, Chen L, Liang C, Kuzyakov Y, Chen J P, Ge T D, Zhu Z K. 2025. Microbial strategies regulate organic carbon accumulation in saline paddy soils: A millennium chronosequence. Catena, 252, 108869.
Chen R R, Senbayram M, Blagodatsky S, Myachina O, Dittert K, Lin X G, Blagodatskaya E, Kuzyakov Y. 2014. Soil C and N availability determine the priming effect: Microbial N mining and stoichiometric decomposition theories. Global Change Biology, 20, 2356–2367.
Chen X B, Hu Y J, Xia Y H, Zheng S M, Ma C, Rui Y C, He H B, Huang D Y, Zhang Z H, Ge T D, Wu J S, Guggenberger G, Kuzyakov Y, Su Y R. 2021. Contrasting pathways of carbon sequestration in paddy and upland soils. Global Change Biology, 27, 2478–2490.
Chen Y L, Du Z L, Weng Z, Sun K, Zhang Y Q, Liu Q, Yang Y, Li Y, Wang Z B, Luo Y, Gao B, Chen B, Pan Z Z, Van Zwieten L. 2023a. Formation of soil organic carbon pool is regulated by the structure of dissolved organic matter and microbial carbon pump efficacy: A decadal study comparing different carbon management strategies. Global Change Biology, 29, 5445–5459.
Chen Y L, Sun K, Yang Y, Gao B, Zheng H. 2023b. Effects of biochar on the accumulation of necromass-derived carbon, the physical protection and microbial mineralization of soil organic carbon. Critical Reviews in Environmental Science and Technology, 5, 39-67.
Chen Z, Jin P H, Wang H, Hu T L, Lin X W, Xie Z B. 2022. Ecoenzymatic stoichiometry reveals stronger microbial carbon and nitrogen limitation in biochar amendment soils: A meta-analysis. Science of the Total Environment, 838, 156532.
Cheng Z R, Guo J Y, Jin W, Liu Z T, Wang Q, Zha L, Zhou Z G, Meng Y L. 2024. Responses of SOC, labile SOC fractions, and amino sugars to different organic amendments in a coastal saline-alkali soil. Soil and Tillage Research, 239, 106051.
Cui J, Zhu Z K, Xu X L, Liu S L, Jones D L, Kuzyakov Y, Shibistova O, Wu J S, Ge T D. 2020. Carbon and nitrogen recycling from microbial necromass to cope with C:N stoichiometric imbalance by priming. Soil Biology and Biochemistry, 142, 107720.
Daims H, Wagner M. 2018. Nitrospira. Trends in Microbiology, 26, 462–463.
Dunbar J, Gallegos-Graves L V, Steven B, Mueller R, Hesse C, Zak D R, Kuske C R. 2014. Surface soil fungal and bacterial communities in aspen stands are resilient to eleven years of elevated CO2 and O3. Soil Biology and Biochemistry, 76, 227–234.
Fan K K, Delgado-Baquerizo M, Guo X S, Wang D Z, Wu Y Y, Zhu M, Yu W, Yao H Y, Zhu Y G, Chu H Y. 2019. Suppressed N fixation and diazotrophs after four decades of fertilization. Microbiome, 7, 143.
Feng X, Xia X, Chen S T, Lin Q M, Zhang X H, Cheng K, Liu X Y, Bian R J, Zheng J F, Li L Q, Joseph S, Drosos M, Pan G X. 2022. Amendment of crop residue in different forms shifted micro-pore system structure and potential functionality of macroaggregates while changed their mass proportion and carbon storage of paddy topsoil. Geoderma, 409, 115643.
Fierer N, Bradford M A, Jackson R B. 2007. Toward an ecological classification of soil bacteria. Ecology, 88, 1354–1364.
Gai X P, Wang H Y, Liu J, Zhai L M, Liu S, Ren T Z, Liu H B. 2014. Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. PLoS ONE, 9, e113888.
Gao S, DeLuca T H, Cleveland C C. 2019. Biochar additions alter phosphorus and nitrogen availability in agricultural ecosystems: A meta-analysis. Science of the Total Environment, 654, 463–472.
German D P, Weintraub M N, Grandy A S, Lauber C L, Rinkes Z L, Allison S D. 2011. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biology and Biochemistry, 43, 1387–1397.
Gong Z T. 1999. Chinese Soil Taxonomy: Theory Approaches and Application. Science Press, Beijing, China. pp. 160–165. (in Chinese)
Han Z Q, Xu P S, Li Z T, Guo S M, Li S Q, Liu S W, Wu S, Wang J Y, Zou J W. 2023. Divergent effects of biochar amendment and replacing mineral fertilizer with manure on soil respiration in a subtropical tea plantation. Biochar, 5, 73.
He M, Fang K, Chen L Y, Feng X H, Qin S Q, Kou D, He H B, Liang C, Yang Y H. 2022. Depth-dependent drivers of soil microbial necromass carbon across Tibetan alpine grasslands. Global Change Biology, 28, 936–949.
Heuck C, Weig A, Spohn M. 2015. Soil microbial biomass C:N:P stoichiometry and microbial use of organic phosphorus. Soil Biology and Biochemistry, 85, 119–129.
Hill P W, Jones D L. 2019. Plant–microbe competition: Does injection of isotopes of C and N into the rhizosphere effectively characterise plant use of soil N? New Phytologist, 221, 796–806.
Hu P L, Zhang W, Kuzyakov Y, Xiao L M, Xiao D, Xu L, Chen H S, Zhao J, Wang K L. 2023. Linking bacterial life strategies with soil organic matter accrual by karst vegetation restoration. Soil Biology and Biochemistry, 177, 108925.
Hu Y, Zheng Q, Zhang S S, Noll L, Wanek W. 2018. Significant release and microbial utilization of amino sugars and D-amino acid enantiomers from microbial cell wall decomposition in soils. Soil Biology and Biochemistry, 123, 115–125.
Hu Y T, Zheng Q, Noll L, Zhang S S, Wanek W. 2020. Direct measurement of the in situ decomposition of microbial-derived soil organic matter. Soil Biology and Biochemistry, 141, 107660.
Huang W G, Kuzyakov Y, Niu S L, Luo Y, Sun B, Zhang J B, Liang Y T. 2023. Drivers of microbially and plant-derived carbon in topsoil and subsoil. Global Change Biology, 29, 6188–6200.
Jia X Y, Ma H Z, Yan W M, Shangguan Z, Zhong Y. 2024. Effects of co-application of biochar and nitrogen fertilizer on soil profile carbon and nitrogen stocks and their fractions in wheat field. Journal of Environmental Management, 368, 122140.
Jiang B N, Lu M B, Zhang Z Y, Xie B L, Song H L. 2023. Quantifying biochar-induced greenhouse gases emission reduction effects in constructed wetlands and its heterogeneity: A multi-level meta-analysis. Science of the Total Environment, 855, 158688.
Joergensen R G. 2018. Amino sugars as specific indices for fungal and bacterial residues in soil. Biology and Fertility of Soils, 54, 559–568.
Ju F, Xia Y, Guo F, Wang Z P, Zhang T. 2014. Taxonomic relatedness shapes bacterial assembly in activated sludge of globally distributed wastewater treatment plants. Environmental Microbiology, 16, 2421–2432.
Kerner P, Struhs E, Mirkouei A, Aho K, Lohse K, Dungan R, You Y Q. 2023. Microbial responses to biochar soil amendment and influential factors: A three-level meta-analysis. Environmental Science & Technology, 57, 19838–19848.
Koele N, Bird M, Haig J, Marimon-Junior B H, Marimon B S, Phillips O L, de Oliveira E A, Quesada C A, Feldpausch T R. 2017. Amazon Basin forest pyrogenic carbon stocks: First estimate of deep storage. Geoderma, 306, 237–243.
Kong F X, Jiu A M, Kan Z R, Zhou J, Yang H S, Li F M. 2024. Deep tillage combined with straw biochar return increases rice yield by improving nitrogen availability and root distribution in the subsoil. Field Crops Research, 315, 109481.
Lehmann J, Cowie A, Masiello C A, Kammann C, Woolf D, Amonette J E, Cayuela M L, Camps-Arbestain M, Whitman T. 2021. Biochar in climate change mitigation. Nature Geoscience, 14, 883–892.
Lehmann J, Rillig M C, Thies J, Masiello C A, Hockaday W C, Crowley D. 2011. Biochar effects on soil biota – A review. Soil Biology and Biochemistry, 43, 1812–1836.
Lei C T, Lu T, Qian H F, Liu Y X. 2023. Machine learning models reveal how biochar amendment affects soil microbial communities. Biochar, 5, 89.
Li H, Yang S, Semenov M V, Yao F, Ye J, Bu R C, Ma R A, Lin J J, Kurganova I, Wang X G, Deng Y, Kravchenko I, Jiang Y, Kuzyakov Y. 2021. Temperature sensitivity of SOM decomposition is linked with a K-selected microbial community. Global Change Biology, 27, 2763–2779.
Li M R, Zhang X F, Xin X L, Yang W L, Zhong X Y, Liu Y C, Zhu A N. 2024. Characteristics of organic amendments induce diverse microbial metabolisms for exogenous C turnover in Mollisols. Applied Soil Ecology, 203, 105681.
Li P H, Hur J. 2017. Utilization of UV-Vis spectroscopy and related data analyses for dissolved organic matter (DOM) studies: A review. Critical Reviews in Environmental Science and Technology, 47, 131–154.
Li T T, Yuan Y, Mou Z J, Li Y, Kuang L H, Zhang J, Wu W J, Wang F M, Wang J, Lambers H, Sardans J, Peñuelas J, Ren H, Liu Z F. 2023. Faster accumulation and greater contribution of glomalin to the soil organic carbon pool than amino sugars do under tropical coastal forest restoration. Global Change Biology, 29, 533–546.
Li Z, Duan X, Guo X B, Gao W, Li Y, Zhou P, Zhu Q H, O’Donnell A G, Dai K, Wu J S. 2024. Microbial metabolic capacity regulates the accrual of mineral-associated organic carbon in subtropical paddy soils. Soil Biology and Biochemistry, 195, 109457.
Liang C, Amelung W, Lehmann J, Kästner M. 2019. Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biology, 25, 3578–3590.
Liang C, Schimel J P, Jastrow J D. 2017. The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2, 17105.
Liu H Y, Mi Z R, Lin L, Wang Y H, Zhang Z H, Zhang F W, Wang H, Liu L L, Zhu B, Cao G M, Zhao X Q, Sanders N J, Classen A T, Reich P B, He J S. 2018. Shifting plant species composition in response to climate change stabilizes grassland primary production. Proceedings of the National Academy of Sciences of the United States of America, 115, 4051–4056.
Liu Y L, Ge T D, van Groenigen K J, Yang Y H, Wang P, Cheng K, Zhu Z K, Wang J K, Li Y, Guggenberger G, Sardans J, Penuelas J, Wu J S, Kuzyakov Y. 2021. Rice paddy soils are a quantitatively important carbon store according to a global synthesis. Communications Earth & Environment, 2, 154.
Liu Y L, Ge T D, Zhu Z K, Liu S L, Luo Y, Li Y, Wang P, Gavrichkova O, Xu X L, Wang J K, Wu J S, Guggenberger G, Kuzyakov Y. 2019. Carbon input and allocation by rice into paddy soils: A review. Soil Biology and Biochemistry, 133, 97–107.
Liu Z W, Wu X L, Li S X, Liu W, Bian R J, Zhang X H, Zheng J F, Drosos M, Li L Q, Pan G X. 2021. Quantitative assessment of the effects of biochar amendment on photosynthetic carbon assimilation and dynamics in a rice–soil system. New Phytologist, 232, 1250–1258.
Liu Z W, Wu X L, Liu W, Bian R J, Ge T D, Zhang W, Zheng J F, Drosos M, Liu X Y, Zhang X H, Cheng K, Li L Q, Pan G X. 2020. Greater microbial carbon use efficiency and carbon sequestration in soils: Amendment of biochar versus crop straws. GCB Bioenergy, 12, 1092–1103.
Liu Z W, Zhu M T, Wang J M, Liu X X, Guo W J, Zheng J F, Bian R J, Wang G M, Zhang X H, Cheng K, Liu X Y, Li L Q, Pan G X. 2019. The responses of soil organic carbon mineralization and microbial communities to fresh and aged biochar soil amendments. GCB Bioenergy, 11, 1408–1420.
Ma R L, Wu X L, Liu Z W, Yi Q, Xu M, Zheng J F, Bian R J, Zhang X H, Pan G X. 2023. Biochar improves soil organic carbon stability by shaping the microbial community structures at different soil depths four years after an incorporation in a farmland soil. Current Research in Environmental Sustainability, 5, 100214.
Ma Y Q, Woolf D, Fan M S, Qiao L, Li R, Lehmann J. 2023. Global crop production increase by soil organic carbon. Nature Geoscience, 16, 1159–1165.
Major J, Lehmann J, Rondon M, Goodale C. 2010. Fate of soil-applied black carbon: Downward migration, leaching and soil respiration. Global Change Biology, 16, 1366–1379.
Malik A A, Martiny J B H, Brodie E L, Martiny A C, Treseder K K, Allison S D. 2020. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. The ISME Journal, 14, 1–9.
Nan Q, Tang L P, Chi W C, Waqas M, Wu W X. 2023. The implication from six years of field experiment: The aging process induced lower rice production even with a high amount of biochar application. Biochar, 5, 27.
Novak J, Busscher W, Watts D W, Amonette J, Ippolito J, Lima I, Gaskin J, Das K C, Steiner C, Ahmedna M, Rehrah D, Schomberg H. 2012. Biochars impact on soil-moisture storage in an Ultisol and two Aridisols. Soil Science, 177, 310–320.
Parks D H, Tyson G W, Hugenholtz P, Beiko R G. 2014. STAMP: Statistical analysis of taxonomic and functional profiles. Bioinformatics, 30, 3123–3124.
Qin S Q, Chen L Y, Fang K, Zhang Q W, Wang J, Liu F T, Yu J C, Yang Y H. 2019. Temperature sensitivity of SOM decomposition governed by aggregate protection and microbial communities. Science Advances, 5, eaau1218.
R Core Team. 2022. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Schweigert M, Herrmann S, Miltner A, Fester T, Kästner M. 2015. Fate of ectomycorrhizal fungal biomass in a soil bioreactor system and its contribution to soil organic matter formation. Soil Biology and Biochemistry, 88, 120–127.
Shao P S, Lynch L, Xie H T, Bao X L, Liang C. 2021. Tradeoffs among microbial life history strategies influence the fate of microbial residues in subtropical forest soils. Soil Biology and Biochemistry, 153, 108112.
Shi W, Ju Y Y, Bian R J, Li L Q, Joseph S, Mitchell D R G, Munroe P, Taherymoosavi S, Pan G X. 2020. Biochar bound urea boosts plant growth and reduces nitrogen leaching. Science of the Total Environment, 701, 134424.
Sinsabaugh R L, Lauber C L, Weintraub M N, Ahmed B, Allison S D, Crenshaw C, Contosta A R, Cusack D, Frey S, Gallo M E, Gartner T B, Hobbie S E, Holland K, Keeler B L, Powers J S, Stursova M, Takacs-Vesbach C, Waldrop M P, Wallenstein M D, Zak D R, et al. 2008. Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 11, 1252–1264.
Sinsabaugh R L, Manzoni S, Moorhead D L, Richter A. 2013. Carbon use efficiency of microbial communities: Stoichiometry, methodology and modelling. Ecology Letters, 16, 930–939.
Sohi S P. 2012. Carbon storage with benefits. Science, 338, 1034–1035.
Takele L, Yang S Y, Chen Z M, Yuan J J, Ding W X. 2025. Contribution of microbial necromass to soil organic carbon in profile depths exhibited opposite patterns across ecosystems: A global meta-analysis. Soil Biology and Biochemistry, 207, 109842.
Wang B R, An S S, Liang C, Liu Y, Kuzyakov Y. 2021. Microbial necromass as the source of soil organic carbon in global ecosystems. Soil Biology and Biochemistry, 162, 108422.
Wang C, Qu L R, Yang L M, Liu D W, Morrissey E, Miao R H, Liu Z P, Wang Q K, Fang Y T, Bai E. 2021. Large-scale importance of microbial carbon use efficiency and necromass to soil organic carbon. Global Change Biology, 27, 2039–2048.
Wang J Y, Xiong Z Q, Kuzyakov Y. 2016. Biochar stability in soil: Meta-analysis of decomposition and priming effects. GCB Bioenergy, 8, 512–523.
Wang R, Hou J H, Chen L T, He L L, Na L P, Wang Y Y, Lu H H, Yang S M, Liu Y X. 2025. Priming effects of vermiculite modified rice straw biochar on soil organic carbon: A new perspective of soil bacteria. Biochar, 7, 54.
Wang X X, Zhou L Y, Zhou G Y, Zhou H M, Lu C Y, Gu Z Z, Liu R Q, He Y H, Du Z G, Liang X N, He H B, Zhou X H. 2022. Tradeoffs of fungal and bacterial residues mediate soil carbon dynamics under persistent drought in subtropical evergreen forests. Applied Soil Ecology, 178, 104588.
Wang Y, Yin Y J, Joseph S, Flury M, Wang X, Tahery S, Li B G, Shang J Y. 2024. Stabilization of organic carbon in top- and subsoil by biochar application into calcareous farmland. Science of the Total Environment, 907, 168046.
Weng Z H, Lehmann J, Zwieten L van, Joseph S, Archanjo B S, Cowie B, Thomsen L, Tobin M J, Vongsvivut J P, Klein A, Doolette C L, Hou H, Mueller C W, Lombi E, Kopittke P M. 2021. Probing the nature of soil organic matter. Critical Reviews in Environmental Science and Technology, 52, 4072–4093.
Xia L L, Cao L, Yang Y Y, Ti C P, Liu Y Z, Smith P, van Groenigen K J, Lehmann J, Lal R, Butterbach-Bahl K, Kiese R, Zhuang M, Lu X, Yan X. 2023. Integrated biochar solutions can achieve carbon-neutral staple crop production. Nature Food, 4, 236–246.
Yang L Y, Canarini A, Zhang W S, Lang M, Chen Y X, Cui Z L, Kuzyakov Y, Richter A, Chen X P, Zhang F S, Tian J. 2024. Microbial life-history strategies mediate microbial carbon pump efficacy in response to N management depending on stoichiometry of microbial demand. Global Change Biology, 30, e17311.
Yang Y, Gunina A, Cheng H, Liu L X, Wang B R, Dou Y X, Wang Y Q, Liang C, An S S, Chang SX. 2025. Unlocking mechanisms for soil organic matter accumulation: Carbon use efficiency and microbial necromass as the keys. Global Change Biology, 31, e70033.
Yao Q, Liu J J, Yu Z H, Li Y S, Jin J, Liu X B, Wang G H. 2017. Three years of biochar amendment alters soil physiochemical properties and fungal community composition in a black soil of northeast China. Soil Biology and Biochemistry, 110, 56–67.
Yuan Y H, Liang Y, Cai H G, Yuan J C, Li C L, Liu H, Zhang C, Wang L C, Zhang J J. 2025. Soil organic carbon accumulation mechanisms in soil amended with straw and biochar: Entombing effect or biochemical protection? Biochar, 7, 33.
Zhang X D, Amelung W. 1996. Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils. Soil Biology and Biochemistry, 28, 1201–1206.
Zhang Y Y, Wang T, Yan C, Li Y Z, Mo F, Han J. 2024. Microbial life-history strategies and particulate organic carbon mediate formation of microbial necromass carbon and stabilization in response to biochar addition. Science of the Total Environment, 950, 175041.
Zhu C H, Xiang J, Zhang Y P, Zhang Y K, Zhu D D, Chen H Z. 2019. Mechanized transplanting with side deep fertilization increases yield and nitrogen use efficiency of rice in Eastern China. Scientific Reports, 9, 5653.
Zhu M T, Liu Z W, Yi Q, Ma R L, Xu M, Song K Y, Bian R J, Zheng J F, Zhang X H. 2025. The divergent response of fungal and bacterial necromass carbon in soil aggregates under biochar amendment in paddy soil. Plant and Soil, doi: 10.1007/s11104-025-07228-6
|