Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Biochar amendment reduced microbial necromass carbon accumulation in a paddy soil profile

Ruiling Ma1, 2, Suping Ji1, 2, Shuo Jiang1, 2, Dingyao Lei1, 2, Ying Cai1, 2, Xiulan Wu1, 2, Zhiwei Liu1, 2, Qi Yi1, 2, Shaopan Xia1, 2, Rongjun Bian1, 2, Xuhui Zhang1, 2, Jufeng Zheng1, 2#

1 Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095, China

2 Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China

 Highlights 

l Biochar reduced fungal necromass carbon in the topsoil while decreasing bacterial necromass carbon throughout the paddy soil profile.

l Biochar shifted the microbial community toward K-strategists to decrease microbial necromass carbon production.

l Biochar intensified microbial nitrogen limitation to enhance microbial necromass carbon decomposition.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

微生物残体碳 (MNC) 对土壤有机碳 (SOC) 的形成与稳定具有重要作用。尽管生物质炭施用能有效提升SOC固存,但其对稻田土壤剖面内MNC积累的影响仍不明确。本研究依托为期4年的田间试验,结合土壤剖面分层采样、微生物群落动态分析和生物标志物测定,系统探究生物质炭施用对稻田土壤剖面中三个土层 (0–15、15–30和30–45 cm) MNC积累的影响。结果表明,与未施用生物质炭处理相比,生物质炭施用导致各土层MNC含量分别降低10.5% (0–15 cm)7.5% (15–30 cm)9.6% (30–45 cm)。在表层土壤 (0–15 cm) 中,生物质炭施用下MNC的下降由真菌和细菌残体碳的减少共同驱动;而在亚表层土壤 (15–45 cm) 中,这一降低则主要归因于细菌残体碳的降低。进一步分析发现,生物质炭施用使土壤微生物生活史策略向K策略转变,并加剧微生物氮限制,进而降低土壤微生物生物量并提高氮获取胞外酶活性,因而导致MNC积累减少。本研究为揭示生物质炭施用下微生物介导的SOC动态提供了新的见解。



Abstract  

Microbial necromass carbon (MNC) serves a crucial function in the formation and stabilization of soil organic carbon (SOC). Although biochar amendment is recognized as a promising approach for enhancing SOC sequestration, its impact on MNC accumulation across the paddy soil profile remains uncertain. Through a 4-year field experiment, this study examined the effect of biochar amendment on MNC accumulation across three soil layers (0–15, 15–30, and 30–45 cm) in a paddy soil profile by combining vertical soil profiling, microbial community dynamics, and biomarker analysis. The results showed that biochar amendment reduced MNC by 10.5% (0–15 cm), 7.5% (15–30 cm), and 9.6% (30–45 cm), respectively, compared to the unamended control. In the topsoil (0–15 cm), the reduction in MNC under biochar amendment was attributed to decreases in both fungal and bacterial necromass carbon (C), whereas in the subsoil (15–45 cm), it primarily resulted from the decrease in bacterial necromass C. Biochar amendment reduced MNC content by decreasing microbial biomass and increasing nitrogen (N) acquisition enzyme activities, mainly due to a shift in the microbial community toward K-strategists and intensified microbial N limitation. This study provides novel insights into the microbially-mediated SOC dynamics in response to biochar amendment.

Keywords:  biochar       microbial necromass carbon       microbial life-history strategy              paddy soil profile  
Online: 01 October 2025  
Fund: 

This work was financially supported by the National Natural Science Foundation of China (42277330 and 41877097), and the Science and Technology Innovation Special Fund of Jiangsu Province, China (BE2022304 and BE2022423).

About author:  Ruiling Ma, E-mail: mrlashore@163.com; #Correspondence Jufeng Zheng, Tel: +86-25-84399852, E-mail: zhengjufeng@njau.edu.cn

Cite this article: 

Ruiling Ma, Suping Ji, Shuo Jiang, Dingyao Lei, Ying Cai, Xiulan Wu, Zhiwei Liu, Qi Yi, Shaopan Xia, Rongjun Bian, Xuhui Zhang, Jufeng Zheng. 2025. Biochar amendment reduced microbial necromass carbon accumulation in a paddy soil profile. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.10.001

Appuhn A, Joergensen R G. 2006. Microbial colonisation of roots as a function of plant species. Soil Biology and Biochemistry, 38, 1040–1051.

Bach C E, Warnock D D, Van Horn D J, Weintraub M N, Sinsabaugh R L, Allison S D, German D P. 2013. Measuring phenol oxidase and peroxidase activities with pyrogallol, l-DOPA, and ABTS: Effect of assay conditions and soil type. Soil Biology and Biochemistry, 67, 183–191.

Bao S D. 2000. Soil and Agricultural Chemistry Analysis. China Agriculture Press, Beijing. (in Chinese)

Barberán A, Bates S T, Casamayor E O, Fierer N. 2012. Using network analysis to explore co-occurrence patterns in soil microbial communities. The ISME Journal, 6, 343–351.

Bossio D A, Scow K M. 1998. Impacts of carbon and flooding on soil microbial communities: Phospholipid fatty acid profiles and substrate utilization patterns. Microbial Ecology, 35, 265–278.

Buckeridge K M, Creamer C, Whitaker J. 2022. Deconstructing the microbial necromass continuum to inform soil carbon sequestration. Functional Ecology, 36, 1396–1410.

Buckeridge K M, La Rosa A F, Mason K E, Whitaker J, McNamara N P, Grant H K, Ostle N J. 2020a. Sticky dead microbes: Rapid abiotic retention of microbial necromass in soil. Soil Biology and Biochemistry, 149, 107929.

Buckeridge K M, Mason K E, McNamara N P, Ostle N, Puissant J, Goodall T, Griffiths R I, Stott A W, Whitaker J. 2020b. Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization. Communications Earth & Environment, 1, 36.

Cai M K, Zhao G, Zhao B, Cong N, Zheng Z T, Zhu J T, Duan X Q, Zhang Y J. 2023. Climate warming alters the relative importance of plant root and microbial community in regulating the accumulation of soil microbial necromass carbon in a Tibetan alpine meadow. Global Change Biology, 29, 3193–3204.

Cao D, Wang X X, Miao Y, Wu C F, Zhang H Q, Wang S, Wang F, Chen L, Liang C, Kuzyakov Y, Chen J P, Ge T D, Zhu Z K. 2025. Microbial strategies regulate organic carbon accumulation in saline paddy soils: A millennium chronosequence. Catena, 252, 108869.

Chen R R, Senbayram M, Blagodatsky S, Myachina O, Dittert K, Lin X G, Blagodatskaya E, Kuzyakov Y. 2014. Soil C and N availability determine the priming effect: Microbial N mining and stoichiometric decomposition theories. Global Change Biology, 20, 2356–2367.

Chen X B, Hu Y J, Xia Y H, Zheng S M, Ma C, Rui Y C, He H B, Huang D Y, Zhang Z H, Ge T D, Wu J S, Guggenberger G, Kuzyakov Y, Su Y R. 2021. Contrasting pathways of carbon sequestration in paddy and upland soils. Global Change Biology, 27, 2478–2490.

Chen Y L, Du Z L, Weng Z, Sun K, Zhang Y Q, Liu Q, Yang Y, Li Y, Wang Z B, Luo Y, Gao B, Chen B, Pan Z Z, Van Zwieten L. 2023a. Formation of soil organic carbon pool is regulated by the structure of dissolved organic matter and microbial carbon pump efficacy: A decadal study comparing different carbon management strategies. Global Change Biology, 29, 5445–5459.

Chen Y L, Sun K, Yang Y, Gao B, Zheng H. 2023b. Effects of biochar on the accumulation of necromass-derived carbon, the physical protection and microbial mineralization of soil organic carbon. Critical Reviews in Environmental Science and Technology, 5, 39-67.

Chen Z, Jin P H, Wang H, Hu T L, Lin X W, Xie Z B. 2022. Ecoenzymatic stoichiometry reveals stronger microbial carbon and nitrogen limitation in biochar amendment soils: A meta-analysis. Science of the Total Environment, 838, 156532.

Cheng Z R, Guo J Y, Jin W, Liu Z T, Wang Q, Zha L, Zhou Z G, Meng Y L. 2024. Responses of SOC, labile SOC fractions, and amino sugars to different organic amendments in a coastal saline-alkali soil. Soil and Tillage Research, 239, 106051.

Cui J, Zhu Z K, Xu X L, Liu S L, Jones D L, Kuzyakov Y, Shibistova O, Wu J S, Ge T D. 2020. Carbon and nitrogen recycling from microbial necromass to cope with C:N stoichiometric imbalance by priming. Soil Biology and Biochemistry, 142, 107720.

Daims H, Wagner M. 2018. Nitrospira. Trends in Microbiology, 26, 462–463.

Dunbar J, Gallegos-Graves L V, Steven B, Mueller R, Hesse C, Zak D R, Kuske C R. 2014. Surface soil fungal and bacterial communities in aspen stands are resilient to eleven years of elevated CO2 and O3. Soil Biology and Biochemistry, 76, 227–234.

Fan K K, Delgado-Baquerizo M, Guo X S, Wang D Z, Wu Y Y, Zhu M, Yu W, Yao H Y, Zhu Y G, Chu H Y. 2019. Suppressed N fixation and diazotrophs after four decades of fertilization. Microbiome, 7, 143.

Feng X, Xia X, Chen S T, Lin Q M, Zhang X H, Cheng K, Liu X Y, Bian R J, Zheng J F, Li L Q, Joseph S, Drosos M, Pan G X. 2022. Amendment of crop residue in different forms shifted micro-pore system structure and potential functionality of macroaggregates while changed their mass proportion and carbon storage of paddy topsoil. Geoderma, 409, 115643.

Fierer N, Bradford M A, Jackson R B. 2007. Toward an ecological classification of soil bacteria. Ecology, 88, 1354–1364.

Gai X P, Wang H Y, Liu J, Zhai L M, Liu S, Ren T Z, Liu H B. 2014. Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate. PLoS ONE, 9, e113888.

Gao S, DeLuca T H, Cleveland C C. 2019. Biochar additions alter phosphorus and nitrogen availability in agricultural ecosystems: A meta-analysis. Science of the Total Environment, 654, 463–472.

German D P, Weintraub M N, Grandy A S, Lauber C L, Rinkes Z L, Allison S D. 2011. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biology and Biochemistry, 43, 1387–1397.

Gong Z T. 1999. Chinese Soil Taxonomy: Theory Approaches and Application. Science Press, Beijing, China. pp. 160–165. (in Chinese)

Han Z Q, Xu P S, Li Z T, Guo S M, Li S Q, Liu S W, Wu S, Wang J Y, Zou J W. 2023. Divergent effects of biochar amendment and replacing mineral fertilizer with manure on soil respiration in a subtropical tea plantation. Biochar, 5, 73.

He M, Fang K, Chen L Y, Feng X H, Qin S Q, Kou D, He H B, Liang C, Yang Y H. 2022. Depth-dependent drivers of soil microbial necromass carbon across Tibetan alpine grasslands. Global Change Biology, 28, 936–949.

Heuck C, Weig A, Spohn M. 2015. Soil microbial biomass C:N:P stoichiometry and microbial use of organic phosphorus. Soil Biology and Biochemistry, 85, 119–129.

Hill P W, Jones D L. 2019. Plant–microbe competition: Does injection of isotopes of C and N into the rhizosphere effectively characterise plant use of soil N? New Phytologist, 221, 796–806.

Hu P L, Zhang W, Kuzyakov Y, Xiao L M, Xiao D, Xu L, Chen H S, Zhao J, Wang K L. 2023. Linking bacterial life strategies with soil organic matter accrual by karst vegetation restoration. Soil Biology and Biochemistry, 177, 108925.

Hu Y, Zheng Q, Zhang S S, Noll L, Wanek W. 2018. Significant release and microbial utilization of amino sugars and D-amino acid enantiomers from microbial cell wall decomposition in soils. Soil Biology and Biochemistry, 123, 115–125.

Hu Y T, Zheng Q, Noll L, Zhang S S, Wanek W. 2020. Direct measurement of the in situ decomposition of microbial-derived soil organic matter. Soil Biology and Biochemistry, 141, 107660.

Huang W G, Kuzyakov Y, Niu S L, Luo Y, Sun B, Zhang J B, Liang Y T. 2023. Drivers of microbially and plant-derived carbon in topsoil and subsoil. Global Change Biology, 29, 6188–6200.

Jia X Y, Ma H Z, Yan W M, Shangguan Z, Zhong Y. 2024. Effects of co-application of biochar and nitrogen fertilizer on soil profile carbon and nitrogen stocks and their fractions in wheat field. Journal of Environmental Management, 368, 122140.

Jiang B N, Lu M B, Zhang Z Y, Xie B L, Song H L. 2023. Quantifying biochar-induced greenhouse gases emission reduction effects in constructed wetlands and its heterogeneity: A multi-level meta-analysis. Science of the Total Environment, 855, 158688.

Joergensen R G. 2018. Amino sugars as specific indices for fungal and bacterial residues in soil. Biology and Fertility of Soils, 54, 559–568.

Ju F, Xia Y, Guo F, Wang Z P, Zhang T. 2014. Taxonomic relatedness shapes bacterial assembly in activated sludge of globally distributed wastewater treatment plants. Environmental Microbiology, 16, 2421–2432.

Kerner P, Struhs E, Mirkouei A, Aho K, Lohse K, Dungan R, You Y Q. 2023. Microbial responses to biochar soil amendment and influential factors: A three-level meta-analysis. Environmental Science & Technology, 57, 19838–19848.

Koele N, Bird M, Haig J, Marimon-Junior B H, Marimon B S, Phillips O L, de Oliveira E A, Quesada C A, Feldpausch T R. 2017. Amazon Basin forest pyrogenic carbon stocks: First estimate of deep storage. Geoderma, 306, 237–243.

Kong F X, Jiu A M, Kan Z R, Zhou J, Yang H S, Li F M. 2024. Deep tillage combined with straw biochar return increases rice yield by improving nitrogen availability and root distribution in the subsoil. Field Crops Research, 315, 109481.

Lehmann J, Cowie A, Masiello C A, Kammann C, Woolf D, Amonette J E, Cayuela M L, Camps-Arbestain M, Whitman T. 2021. Biochar in climate change mitigation. Nature Geoscience, 14, 883–892.

Lehmann J, Rillig M C, Thies J, Masiello C A, Hockaday W C, Crowley D. 2011. Biochar effects on soil biota – A review. Soil Biology and Biochemistry, 43, 1812–1836.

Lei C T, Lu T, Qian H F, Liu Y X. 2023. Machine learning models reveal how biochar amendment affects soil microbial communities. Biochar, 5, 89.

Li H, Yang S, Semenov M V, Yao F, Ye J, Bu R C, Ma R A, Lin J J, Kurganova I, Wang X G, Deng Y, Kravchenko I, Jiang Y, Kuzyakov Y. 2021. Temperature sensitivity of SOM decomposition is linked with a K-selected microbial community. Global Change Biology, 27, 2763–2779.

Li M R, Zhang X F, Xin X L, Yang W L, Zhong X Y, Liu Y C, Zhu A N. 2024. Characteristics of organic amendments induce diverse microbial metabolisms for exogenous C turnover in Mollisols. Applied Soil Ecology, 203, 105681.

Li P H, Hur J. 2017. Utilization of UV-Vis spectroscopy and related data analyses for dissolved organic matter (DOM) studies: A review. Critical Reviews in Environmental Science and Technology, 47, 131–154.

Li T T, Yuan Y, Mou Z J, Li Y, Kuang L H, Zhang J, Wu W J, Wang F M, Wang J, Lambers H, Sardans J, Peñuelas J, Ren H, Liu Z F. 2023. Faster accumulation and greater contribution of glomalin to the soil organic carbon pool than amino sugars do under tropical coastal forest restoration. Global Change Biology, 29, 533–546.

Li Z, Duan X, Guo X B, Gao W, Li Y, Zhou P, Zhu Q H, O’Donnell A G, Dai K, Wu J S. 2024. Microbial metabolic capacity regulates the accrual of mineral-associated organic carbon in subtropical paddy soils. Soil Biology and Biochemistry, 195, 109457.

Liang C, Amelung W, Lehmann J, Kästner M. 2019. Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biology, 25, 3578–3590.

Liang C, Schimel J P, Jastrow J D. 2017. The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2, 17105.

Liu H Y, Mi Z R, Lin L, Wang Y H, Zhang Z H, Zhang F W, Wang H, Liu L L, Zhu B, Cao G M, Zhao X Q, Sanders N J, Classen A T, Reich P B, He J S. 2018. Shifting plant species composition in response to climate change stabilizes grassland primary production. Proceedings of the National Academy of Sciences of the United States of America, 115, 4051–4056.

Liu Y L, Ge T D, van Groenigen K J, Yang Y H, Wang P, Cheng K, Zhu Z K, Wang J K, Li Y, Guggenberger G, Sardans J, Penuelas J, Wu J S, Kuzyakov Y. 2021. Rice paddy soils are a quantitatively important carbon store according to a global synthesis. Communications Earth & Environment, 2, 154.

Liu Y L, Ge T D, Zhu Z K, Liu S L, Luo Y, Li Y, Wang P, Gavrichkova O, Xu X L, Wang J K, Wu J S, Guggenberger G, Kuzyakov Y. 2019. Carbon input and allocation by rice into paddy soils: A review. Soil Biology and Biochemistry, 133, 97–107.

Liu Z W, Wu X L, Li S X, Liu W, Bian R J, Zhang X H, Zheng J F, Drosos M, Li L Q, Pan G X. 2021. Quantitative assessment of the effects of biochar amendment on photosynthetic carbon assimilation and dynamics in a rice–soil system. New Phytologist, 232, 1250–1258.

Liu Z W, Wu X L, Liu W, Bian R J, Ge T D, Zhang W, Zheng J F, Drosos M, Liu X Y, Zhang X H, Cheng K, Li L Q, Pan G X. 2020. Greater microbial carbon use efficiency and carbon sequestration in soils: Amendment of biochar versus crop straws. GCB Bioenergy, 12, 1092–1103.

Liu Z W, Zhu M T, Wang J M, Liu X X, Guo W J, Zheng J F, Bian R J, Wang G M, Zhang X H, Cheng K, Liu X Y, Li L Q, Pan G X. 2019. The responses of soil organic carbon mineralization and microbial communities to fresh and aged biochar soil amendments. GCB Bioenergy, 11, 1408–1420.

Ma R L, Wu X L, Liu Z W, Yi Q, Xu M, Zheng J F, Bian R J, Zhang X H, Pan G X. 2023. Biochar improves soil organic carbon stability by shaping the microbial community structures at different soil depths four years after an incorporation in a farmland soil. Current Research in Environmental Sustainability, 5, 100214.

Ma Y Q, Woolf D, Fan M S, Qiao L, Li R, Lehmann J. 2023. Global crop production increase by soil organic carbon. Nature Geoscience, 16, 1159–1165.

Major J, Lehmann J, Rondon M, Goodale C. 2010. Fate of soil-applied black carbon: Downward migration, leaching and soil respiration. Global Change Biology, 16, 1366–1379.

Malik A A, Martiny J B H, Brodie E L, Martiny A C, Treseder K K, Allison S D. 2020. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. The ISME Journal, 14, 1–9.

Nan Q, Tang L P, Chi W C, Waqas M, Wu W X. 2023. The implication from six years of field experiment: The aging process induced lower rice production even with a high amount of biochar application. Biochar, 5, 27.

Novak J, Busscher W, Watts D W, Amonette J, Ippolito J, Lima I, Gaskin J, Das K C, Steiner C, Ahmedna M, Rehrah D, Schomberg H. 2012. Biochars impact on soil-moisture storage in an Ultisol and two Aridisols. Soil Science, 177, 310–320.

Parks D H, Tyson G W, Hugenholtz P, Beiko R G. 2014. STAMP: Statistical analysis of taxonomic and functional profiles. Bioinformatics, 30, 3123–3124.

Qin S Q, Chen L Y, Fang K, Zhang Q W, Wang J, Liu F T, Yu J C, Yang Y H. 2019. Temperature sensitivity of SOM decomposition governed by aggregate protection and microbial communities. Science Advances, 5, eaau1218.

R Core Team. 2022. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

Schweigert M, Herrmann S, Miltner A, Fester T, Kästner M. 2015. Fate of ectomycorrhizal fungal biomass in a soil bioreactor system and its contribution to soil organic matter formation. Soil Biology and Biochemistry, 88, 120–127.

Shao P S, Lynch L, Xie H T, Bao X L, Liang C. 2021. Tradeoffs among microbial life history strategies influence the fate of microbial residues in subtropical forest soils. Soil Biology and Biochemistry, 153, 108112.

Shi W, Ju Y Y, Bian R J, Li L Q, Joseph S, Mitchell D R G, Munroe P, Taherymoosavi S, Pan G X. 2020. Biochar bound urea boosts plant growth and reduces nitrogen leaching. Science of the Total Environment, 701, 134424.

Sinsabaugh R L, Lauber C L, Weintraub M N, Ahmed B, Allison S D, Crenshaw C, Contosta A R, Cusack D, Frey S, Gallo M E, Gartner T B, Hobbie S E, Holland K, Keeler B L, Powers J S, Stursova M, Takacs-Vesbach C, Waldrop M P, Wallenstein M D, Zak D R, et al. 2008. Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 11, 1252–1264.

Sinsabaugh R L, Manzoni S, Moorhead D L, Richter A. 2013. Carbon use efficiency of microbial communities: Stoichiometry, methodology and modelling. Ecology Letters, 16, 930–939.

Sohi S P. 2012. Carbon storage with benefits. Science, 338, 1034–1035.

Takele L, Yang S Y, Chen Z M, Yuan J J, Ding W X. 2025. Contribution of microbial necromass to soil organic carbon in profile depths exhibited opposite patterns across ecosystems: A global meta-analysis. Soil Biology and Biochemistry, 207, 109842.

Wang B R, An S S, Liang C, Liu Y, Kuzyakov Y. 2021. Microbial necromass as the source of soil organic carbon in global ecosystems. Soil Biology and Biochemistry, 162, 108422.

Wang C, Qu L R, Yang L M, Liu D W, Morrissey E, Miao R H, Liu Z P, Wang Q K, Fang Y T, Bai E. 2021. Large-scale importance of microbial carbon use efficiency and necromass to soil organic carbon. Global Change Biology, 27, 2039–2048.  

Wang J Y, Xiong Z Q, Kuzyakov Y. 2016. Biochar stability in soil: Meta-analysis of decomposition and priming effects. GCB Bioenergy, 8, 512–523.

Wang R, Hou J H, Chen L T, He L L, Na L P, Wang Y Y, Lu H H, Yang S M, Liu Y X. 2025. Priming effects of vermiculite modified rice straw biochar on soil organic carbon: A new perspective of soil bacteria. Biochar, 7, 54.

Wang X X, Zhou L Y, Zhou G Y, Zhou H M, Lu C Y, Gu Z Z, Liu R Q, He Y H, Du Z G, Liang X N, He H B, Zhou X H. 2022. Tradeoffs of fungal and bacterial residues mediate soil carbon dynamics under persistent drought in subtropical evergreen forests. Applied Soil Ecology, 178, 104588.

Wang Y, Yin Y J, Joseph S, Flury M, Wang X, Tahery S, Li B G, Shang J Y. 2024. Stabilization of organic carbon in top- and subsoil by biochar application into calcareous farmland. Science of the Total Environment, 907, 168046.

Weng Z H, Lehmann J, Zwieten L van, Joseph S, Archanjo B S, Cowie B, Thomsen L, Tobin M J, Vongsvivut J P, Klein A, Doolette C L, Hou H, Mueller C W, Lombi E, Kopittke P M. 2021. Probing the nature of soil organic matter. Critical Reviews in Environmental Science and Technology, 52, 4072–4093.

Xia L L, Cao L, Yang Y Y, Ti C P, Liu Y Z, Smith P, van Groenigen K J, Lehmann J, Lal R, Butterbach-Bahl K, Kiese R, Zhuang M, Lu X, Yan X. 2023. Integrated biochar solutions can achieve carbon-neutral staple crop production. Nature Food, 4, 236–246.

Yang L Y, Canarini A, Zhang W S, Lang M, Chen Y X, Cui Z L, Kuzyakov Y, Richter A, Chen X P, Zhang F S, Tian J. 2024. Microbial life-history strategies mediate microbial carbon pump efficacy in response to N management depending on stoichiometry of microbial demand. Global Change Biology, 30, e17311.

Yang Y, Gunina A, Cheng H, Liu L X, Wang B R, Dou Y X, Wang Y Q, Liang C, An S S, Chang SX. 2025. Unlocking mechanisms for soil organic matter accumulation: Carbon use efficiency and microbial necromass as the keys. Global Change Biology, 31, e70033.

Yao Q, Liu J J, Yu Z H, Li Y S, Jin J, Liu X B, Wang G H. 2017. Three years of biochar amendment alters soil physiochemical properties and fungal community composition in a black soil of northeast China. Soil Biology and Biochemistry, 110, 56–67.

Yuan Y H, Liang Y, Cai H G, Yuan J C, Li C L, Liu H, Zhang C, Wang L C, Zhang J J. 2025. Soil organic carbon accumulation mechanisms in soil amended with straw and biochar: Entombing effect or biochemical protection? Biochar, 7, 33.

Zhang X D, Amelung W. 1996. Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils. Soil Biology and Biochemistry, 28, 1201–1206.

Zhang Y Y, Wang T, Yan C, Li Y Z, Mo F, Han J. 2024. Microbial life-history strategies and particulate organic carbon mediate formation of microbial necromass carbon and stabilization in response to biochar addition. Science of the Total Environment, 950, 175041.

Zhu C H, Xiang J, Zhang Y P, Zhang Y K, Zhu D D, Chen H Z. 2019. Mechanized transplanting with side deep fertilization increases yield and nitrogen use efficiency of rice in Eastern China. Scientific Reports, 9, 5653.

Zhu M T, Liu Z W, Yi Q, Ma R L, Xu M, Song K Y, Bian R J, Zheng J F, Zhang X H. 2025. The divergent response of fungal and bacterial necromass carbon in soil aggregates under biochar amendment in paddy soil. Plant and Soil, doi: 10.1007/s11104-025-07228-6

 

[1] Niu Wang, Weidong Zhang, Zhenyu Zhong, Xiongbo Zhou, Xinran Shi, Xin Wang. FGF7 secreted from dermal papillae cell regulates the proliferation and differentiation of hair follicle stem cell[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3583-3597.
[2] Lichao Zhai, Shijia Song, Lihua Zhang, Jinan Huang, Lihua Lv, Zhiqiang Dong, Yongzeng Cui, Mengjing Zheng, Wanbin Hou, Jingting Zhang, Yanrong Yao, Yanhong Cui, Xiuling Jia. Subsoiling before winter wheat alleviates the kernel position effect of densely grown summer maize by delaying post-silking root–shoot senescence[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3384-3402.
[3] Tiantian Chen, Lei Li, Dan Liu, Yubing Tian, Lingli Li, Jianqi Zeng, Awais Rasheed, Shuanghe Cao, Xianchun Xia, Zhonghu He, Jindong Liu, Yong Zhang. Genome wide linkage mapping for black point resistance in a recombinant inbred line population of Zhongmai 578 and Jimai 22[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3311-3321.
[4] Zuxian Chen, Bingbing Zhao, Yingying Wang, Yuqing Du, Siyu Feng, Junsheng Zhang, Luxiang Zhao, Weiqiang Li, Yangbao Ding, Peirong Jiao. H5N1 avian influenza virus PB2 antagonizes duck IFN-β signaling pathway by targeting mitochondrial antiviral signaling protein[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3614-3625.
[5] Yang Sun, Yu Liu, Li Zhou, Xinyan Liu, Kun Wang, Xing Chen, Chuanqing Zhang, Yu Chen. Activity of fungicide cyclobutrifluram against Fusarium fujikuroi and mechanism of the pathogen resistance associated with point mutations in FfSdhB, FfSdhC2 and FfSdhD[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3511-3528.
[6] Yufeng Xiao, Meiqi Dong, Xian Wu, Shuang Liang, Ranhong Li, Hongyu Pan, Hao Zhang. Enrichment, domestication, degradation, adaptive mechanism, and nicosulfuron bioremediation of bacteria consortium YM2[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3529-3545.
[7] Yuxin He, Fei Deng, Chi Zhang, Qiuping Li, Xiaofan Huang, Chenyan He, Xiaofeng Ai, Yujie Yuan, Li Wang, Hong Cheng, Tao Wang, Youfeng Tao. Wei Zhou, Xiaolong Lei, Yong Chen, Wanjun Ren. Can a delayed sowing date improve the eating and cooking quality of mechanically transplanted rice in the Sichuan Basin, China?[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3368-3383.
[8] Dili Lai, Md. Nurul Huda, Yawen Xiao, Tanzim Jahan, Wei Li, Yuqi He, Kaixuan Zhang, Jianping Cheng, Jingjun Ruan, Meiliang Zhou. Evolutionary and expression analysis of sugar transporters from Tartary buckwheat revealed the potential function of FtERD23 in drought stress[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3334-3350.
[9] Zishuai Wang, Wangchang Li, Zhonglin Tang. Enhancing the genomic prediction accuracy of swine agricultural economic traits using an expanded one-hot encoding in CNN models[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3574-3582.
[10] Yunji Xu, Xuelian Weng, Shupeng Tang, Weiyang Zhang, Kuanyu Zhu, Guanglong Zhu, Hao Zhang, Zhiqin Wang, Jianchang Yang. Untargeted lipidomic analysis of milled rice under different alternate wetting and soil drying irrigation regimes[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3351-3367.
[11] Minghui Li, Yilan Chen, Siqiao Wang, Xueke Sun, Yongkun Du, Siyuan Liu, Ruiqi Li, Zejie Chang, Peiyang Ding, Gaiping Zhang. Plug-and-display nanoparticle immunization of the core epitope domain induces potent neutralizing antibody and cellular immune responses against PEDV[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3598-3613.
[12] Jing Zhou, Bingshuai Du, Yibo Cao, Kui Liu, Zhihua Ye, Yiming Huang, Lingyun Zhang. Genome-wide identification of sucrose transporter genes in Camellia oleifera and characterization of CoSUT4[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3494-3510.
[13] Yuheng Wang, Furong Kang, Bo Yu, Quan Long, Huaye Xiong, Jiawei Xie, Dong Li, Xiaojun Shi, Prakash Lakshmanan, Yueqiang Zhang, Fusuo Zhang. Magnesium supply is vital for improving fruit yield, fruit quality and magnesium balance in citrus orchards with increasingly acidic soil[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3641-3655.
[14] Mingxin Feng, Ying Hu, Xin Yang, Jingwen Li, Haochen Wang, Yujia Liu, Haijun Ma, Kai Li, Jiayin Shang, Yulin Fang, Jiangfei Meng. Uncovering the miRNA-mediated regulatory network involved in postharvest senescence of grape berries[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3465-3483.
[15] Li Liu, Yifeng Feng, Ziqi Han, Yaxiao Song, Jianhua Guo, Jing Yu, Zidun Wang, Hui Wang, Hua Gao, Yazhou Yang, Yuanji Wang, Zhengyang Zhao. Functional analysis of the xyloglucan endotransglycosylase/hydrolase gene MdXTH2 in apple fruit firmness formation[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3418-3434.
No Suggested Reading articles found!