Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Global Evolutionary and Transmission Dynamics of Transmissible Gastroenteritis Virus, 1952–2023

Wenqiang Wang1*, Qilin Zhao1*, Zhenbang Zhu1, Wei Wen1, Xiangdong Li1, 2#

1 Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China

2 Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China

 Highlights 

TGEV comprises three genotypes with distinct geographic distribution patterns.

Adaptive evolution of TGEV is shaped by recombination and the host–virus arms race.

China serves as the major hub for global transmission of TGEV.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

猪传染性胃肠炎病毒(Transmissible gastroenteritis virus, TGEV)是一种猪源肠道冠状病毒,长期以来对全球养猪业构成了严重威胁。然而,TGEV的生态学特征、进化历史及其跨区域传播格局仍缺乏系统认识。本研究旨在揭示TGEV的进化动力学与全球传播模式,从而为病毒的防控提供科学依据。

本研究收集了19522023年全球67TGEV完整基因组,并通过系统发育分析、比较基因组学、重组检测、选择压力分析、单倍型网络构建及贝叶斯地理扩散模型,对TGEV的进化过程和传播路径进行了系统的研究。

研究结果显示,TGEV可划分为三种主要基因型:其一是具有洲际分布并呈现混合特征的GIa基因型;其二是主要分布于欧洲的GIb基因型;其三是仅限于美国的GII基因型。重组分析发现,GIa基因型的ORF1aS基因区存在多次重组事件,这些基因变化可能推动了TGEV的进化。选择压力分析表明,S基因处于强烈的正选择作用之下,其中五个位点受到显著选择压力,提示宿主-病毒间的“进化军备竞赛”可能加速了TGEV的适应与多样化。单倍型网络分析发现,美国来源的毒株具有最高的遗传多样性,而中国毒株则以两个核心单倍型为主,并伴随多个紧密相关的小单倍型。贝叶斯地理扩散分析结果证实,中国在TGEV的全球传播中发挥了关键作用,并揭示了其传播至美国、越南等地的具体路径。

综上所述,本研究首次基于全球时间跨度超过70年的全基因组数据系统阐明了TGEV的进化历史和全球传播格局,揭示了重组与宿主-病毒相互作用在其适应性进化中的重要作用。研究结果不仅加深了对TGEV生态学和进化机制的理解,也为未来制定更具针对性的防控策略提供了理论参考。



Abstract  

Transmissible gastroenteritis virus (TGEV) is an enteric coronavirus that poses a significant threat to the swine industry. However, the ecology, evolutionary history, and transmission dynamics of TGEV remain poorly understood. In this study, we analyzed 67 complete TGEV genomes collected globally between 1952 and 2023, employing comparative genomics to uncover the evolutionary dynamics and spatial dissemination of TGEV. Our findings reveal that TGEV can be classified into three major genotypes: the admixed GIa lineage with intercontinental distribution, the Europe-specific GIb lineage, and the U.S.-restricted GII lineage. Recombination events were identified in the ORF1a and S gene regions of GIa strains, suggesting that these genetic changes may have contributed to the evolutionary diversification of TGEV. Notably, the S gene is under strong positive selection, with five key codons under selection pressure, suggesting that the potential host–virus evolutionary arms race accelerates TGEV adaptation and diversification. Haplotype network analysis revealed that U.S. strains exhibit the highest genetic diversity, while Chinese strains are characterized by two dominant haplotypes surrounded by multiple closely related minor haplotypes. Bayesian phylogeographic analysis further confirmed that China has played an important role in the global dissemination of TGEV and clarified its transmission routes to regions such as the United States and Vietnam. Overall, this study advances our understanding of the evolution and spread of TGEV, and may contribute to the development of more effective strategies for its prevention and control.

Keywords:  TGEV evolution       recombination       selection       phylogeography       epidemiology  
Online: 23 September 2025  
Fund: 

This work was supported by the National Key Research and Development Program of China (2023YFD1800500), the Jiangsu Innovative and Entrepreneurial Talent Team Project, China (JSSCTD202224), the 111 Project D18007, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and the High Performance Computing Cluster of College of Veterinary Medicine, Yangzhou University, China.

About author:  Wenqiang Wang, E-mail: wqwang@yzu.edu.cn; Qilin Zhao, E-mail: 2224236752@qq.com #Correspondence Xiangdong Li, Tel: +86-15298450032, E-mail: 007352@yzu.edu.cn * These authors contributed equally to this study.

Cite this article: 

Wenqiang Wang, Qilin Zhao, Zhenbang Zhu, Wei Wen, Xiangdong Li. 2025. Global Evolutionary and Transmission Dynamics of Transmissible Gastroenteritis Virus, 1952–2023. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.09.026

Aftab S O, Ghouri M Z, Masood M U, Haider Z, Khan Z, Ahmad A, Munawar N. 2020. Analysis of SARS-CoV-2 RNA-dependent RNA polymerase as a potential therapeutic drug target using a computational approach. Journal of Translational Medicine, 18, 275.

Alonso S, Izeta A, Sola I, Enjuanes L. 2002. Transcription regulatory sequences and mRNA expression levels in the coronavirus transmissible gastroenteritis virus. Journal of Virology, 76, 1293-1308.

Ayres D L, Cummings M P, Baele G, Darling A E, Lewis P O, Swofford D L, Huelsenbeck J P, Lemey P, Rambaut A, Suchard M A. 2019. BEAGLE 3: Improved Performance, Scaling, and Usability for a High-Performance Computing Library for Statistical Phylogenetics. Systematic Biology, 68, 1052-1061.

Banerjee A K, Blanco M R, Bruce E A, Honson D D, Chen L M, Chow A, Bhat P, Ollikainen N, Quinodoz S A, Loney C, Thai J, Miller Z D, Lin A E, Schmidt M M, Stewart D G, Goldfarb D, De Lorenzo G, Rihn S J, Voorhees R M, Botten J W, et al. 2020. SARS-CoV-2 Disrupts Splicing, Translation, and Protein Trafficking to Suppress Host Defenses. Cell, 183, 1325-1339.e1321.

Bielejec F, Baele G, Vrancken B, Suchard M A, Rambaut A, Lemey P. 2016. SpreaD3: Interactive Visualization of Spatiotemporal History and Trait Evolutionary Processes. Molecular Biology and Evolution, 33, 2167-2169.

Boni M F, Posada D, Feldman M W. 2007. An exact nonparametric method for inferring mosaic structure in sequence triplets. Genetics, 176, 1035-1047.

Chen Y, Zhang Y, Wang X, Zhou J, Ma L, Li J, Yang L, Ouyang H, Yuan H, Pang D. 2023. Transmissible Gastroenteritis Virus: An Update Review and Perspective. Viruses, 15,

Dellicour S, Rose R, Faria N R, Lemey P, Pybus O G. 2016. SERAPHIM: studying environmental rasters and phylogenetically informed movements. Bioinformatics, 32, 3204-3206.

Delmas B, Gelfi J, L'haridon R, Vogel L K, Sjöström H, Norén O, Laude H. 1992. Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV. Nature, 357, 417-420.

Doyle L P, Hutchings L M. 1946. A transmissible gastroenteritis in pigs. Journal of the American Veterinary Medical Association, 108, 257-259.

Eleouet J F, Rasschaert D, Lambert P, Levy L, Vende P, Laude H. 1995. Complete sequence (20 kilobases) of the polyprotein-encoding gene 1 of transmissible gastroenteritis virus. Virology, 206, 817-822.

Forni D, Cagliani R, Clerici M, Sironi M. 2017. Molecular Evolution of Human Coronavirus Genomes. Trends in Microbiology, 25, 35-48.

Gibbs M J, Armstrong J S, Gibbs A J. 2000. Sister-scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics, 16, 573-582.

Graham R L, Baric R S. 2010. Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission. Journal of Virology, 84, 3134-3146.

Guo J, Fang L, Ye X, Chen J, Xu S, Zhu X, Miao Y, Wang D, Xiao S. 2019. Evolutionary and genotypic analyses of global porcine epidemic diarrhea virus strains. Transboundary and Emerging Diseases, 66, 111-118.

Guo R, Fan B, Chang X, Zhou J, Zhao Y, Shi D, Yu Z, He K, Li B. 2020. Characterization and evaluation of the pathogenicity of a natural recombinant transmissible gastroenteritis virus in China. Virology, 545, 24-32.

He W T, Ji X, He W, Dellicour S, Wang S, Li G, Zhang L, Gilbert M, Zhu H, Xing G, Veit M, Huang Z, Han G Z, Huang Y, Suchard M A, Baele G, Lemey P, Su S. 2020. Genomic Epidemiology, Evolution, and Transmission Dynamics of Porcine Deltacoronavirus. Molecular Biology and Evolution, 37, 2641-2654.

Hu X, Jr., Li N, Jr., Tian Z, Jr., Yin X, Jr., Qu L, Qu J. 2015. Molecular characterization and phylogenetic analysis of transmissible gastroenteritis virus HX strain isolated from China. BMC Veterinary Research, 11, 72.

Huson D H, Bryant D. 2006. Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23, 254-267.

Katoh K, Standley D M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30, 772-780.

Kim L, Chang K O, Sestak K, Parwani A, Saif L J. 2000. Development of a reverse transcription-nested polymerase chain reaction assay for differential diagnosis of transmissible gastroenteritis virus and porcine respiratory coronavirus from feces and nasal swabs of infected pigs. Journal of Veterinary Diagnostic Investigation, 12, 385-388.

Laude H, Rasschaert D, Delmas B, Godet M, Gelfi J, Charley B. 1990. Molecular biology of transmissible gastroenteritis virus. Veterinary Microbiology, 23, 147-154.

Lemey P, Rambaut A, Drummond A J, Suchard M A. 2009. Bayesian phylogeography finds its roots. PLoS Computational Biology, 5, e1000520.

Letunic I, Bork P. 2021. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49, W293-w296.

Ma M, Yang Y, Wu L, Zhou L, Shi Y, Han J, Xu Z, Zhu W. 2022. Conserved protein targets for developing pan-coronavirus drugs based on sequence and 3D structure similarity analyses.Computers in Biology and Medicine, 145, 105455.

Martin D, Rybicki E. 2000. RDP: detection of recombination amongst aligned sequences. Bioinformatics, 16, 562-563.

Martin D P, Murrell B, Golden M, Khoosal A, Muhire B. 2015. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evolution, 1, vev003.

Mcgoldrick A, Lowings J P, Paton D J. 1999. Characterisation of a recent virulent transmissible gastroenteritis virus from Britain with a deleted ORF 3a. Archives of Virology, 144, 763-770.

Minh B Q, Schmidt H A, Chernomor O, Schrempf D, Woodhams M D, Von Haeseler A, Lanfear R. 2020. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Molecular Biology and Evolution, 37, 1530-1534.

Murrell B, Wertheim J O, Moola S, Weighill T, Scheffler K, Kosakovsky Pond S L. 2012. Detecting individual sites subject to episodic diversifying selection. PLoS Genetics, 8, e1002764.

Padidam M, Sawyer S, Fauquet C M. 1999. Possible emergence of new geminiviruses by frequent recombination. Virology, 265, 218-225.

Paton D, Ibata G, Sands J, Mcgoldrick A. 1997. Detection of transmissible gastroenteritis virus by RT-PCR and differentiation from porcine respiratory coronavirus. Journal of Virological Methods, 66, 303-309.

Pensaert M, Cox E, Van Deun K, Callebaut P. 1993. A sero-epizootiological study of porcine respiratory coronavirus in Belgian swine.Veterinary Quarterly, 15, 16-20.

Penzes Z, Gonzalez J M, Calvo E, Izeta A, Smerdou C, Méndez A, Sanchez C M, Sola I, Almazan F, Enjuanes L. 2001. Complete genome sequence of transmissible gastroenteritis coronavirus PUR46-MAD clone and evolution of the purdue virus cluster. Virus Genes, 23, 105-118.

Pritchard G C. 1987. Transmissible gastroenteritis in endemically infected breeding herds of pigs in East Anglia, 1981-85. Veterinary Record, 120, 226-230.

Pritchard G C, Paton D J, Wibberley G, Ibata G. 1999. Transmissible gastroenteritis and porcine epidemic diarrhoea in Britain. Veterinary Record,, 144, 616-618.

Putics Á, Gorbalenya A E, Ziebuhr J. 2006. Identification of protease and ADP-ribose 1''-monophosphatase activities associated with transmissible gastroenteritis virus non-structural protein 3. Journal Of General Virology, 87, 651-656.

Rambaut A, Drummond A J, Xie D, Baele G, Suchard M A. 2018. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Systematic Biology, 67, 901-904.

Ricciardi S, Guarino A M, Giaquinto L, Polishchuk E V, Santoro M, Di Tullio G, Wilson C, Panariello F, Soares V C, Dias S S G, Santos J C, Souza T M L, Fusco G, Viscardi M, Brandi S, Bozza P T, Polishchuk R S, Venditti R, De Matteis M A. 2022. The role of NSP6 in the biogenesis of the SARS-CoV-2 replication organelle. Nature, 606, 761-768.

Rozas J, Ferrer-Mata A, Sánchez-Delbarrio J C, Guirao-Rico S, Librado P, Ramos-Onsins S E, Sánchez-Gracia A. 2017. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Molecular Biology and Evolution, 34, 3299-3302.

Sabir J S, Lam T T, Ahmed M M, Li L, Shen Y, Abo-Aba S E, Qureshi M I, Abu-Zeid M, Zhang Y, Khiyami M A, Alharbi N S, Hajrah N H, Sabir M J, Mutwakil M H, Kabli S A, Alsulaimany F A, Obaid A Y, Zhou B, Smith D K, Holmes E C, et al. 2016. Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia. Science, 351, 81-84.

Smith J M. 1992. Analyzing the mosaic structure of genes. Journal of Molecular Evolution, 34, 126-129.

Suchard M A, Lemey P, Baele G, Ayres D L, Drummond A J, Rambaut A. 2018. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution, 4, vey016.

Tao Y, Shi M, Chommanard C, Queen K, Zhang J, Markotter W, Kuzmin I V, Holmes E C, Tong S. 2017. Surveillance of Bat Coronaviruses in Kenya Identifies Relatives of Human Coronaviruses NL63 and 229E and Their Recombination History. Journal of Virology, 91, e01953-16.

Templeton A R, Crandall K A, Sing C F. 1992. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics, 132, 619-633.

Teng Y, Xu F, Zhang X, Mu J, Sayed M, Hu X, Lei C, Sriwastva M, Kumar A, Sundaram K, Zhang L, Park J W, Chen S Y, Zhang S, Yan J, Merchant M L, Zhang X, Mcclain C J, Wolfe J K, Adcock R S, et al. 2021. Plant-derived exosomal microRNAs inhibit lung inflammation induced by exosomes SARS-CoV-2 Nsp12. Molecular Therapy, 29, 2424-2440.

Tian Y, Sun J, Hou X, Liu Z, Chen Z, Pan X, Wang Y, Ren J, Zhang D, Yang B, Si L, Bi Y, Liu K, Shang G, Tian W X, Wang Q, Gao G F, Niu S. 2025. Cross-species recognition of two porcine coronaviruses to their cellular receptor aminopeptidase N of dogs and seven other species. PLoS Pathogens, 21, e1012836.

Viana R, Moyo S, Amoako D G, Tegally H, Scheepers C, Althaus C L, Anyaneji U J, Bester P A, Boni M F, Chand M, Choga W T, Colquhoun R, Davids M, Deforche K, Doolabh D, Du Plessis L, Engelbrecht S, Everatt J, Giandhari J, Giovanetti M, et al. 2022. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature, 603, 679-686.

Wang L, Qiao X, Zhang S, Qin Y, Guo T, Hao Z, Sun L, Wang X, Wang Y, Jiang Y, Tang L, Xu Y, Li Y. 2018. Porcine transmissible gastroenteritis virus nonstructural protein 2 contributes to inflammation via NF-κB activation. Virulence, 9, 1685-1698.

Wojdyla J A, Manolaridis I, Van Kasteren P B, Kikkert M, Snijder E J, Gorbalenya A E, Tucker P A. 2010. Papain-like protease 1 from transmissible gastroenteritis virus: crystal structure and enzymatic activity toward viral and cellular substrates. Journal of Virology, 84, 10063-10073.

Wu Y, Li M, Tian J, Yan H, Pan Y, Shi H, Shi D, Chen J, Guo L, Feng L. 2023. Broad antagonism of coronaviruses nsp5 to evade the host antiviral responses by cleaving POLDIP3. PLoS Pathogens, 19, e1011702.

Yuan D, Yan Z, Li M, Wang Y, Su M, Sun D. 2021. Isolation and Characterization of a Porcine Transmissible Gastroenteritis Coronavirus in Northeast China. Frontiers in Veterinary Science, 8, 611721.

Zhang H, Zou C, Peng O, Ashraf U, Xu Q, Gong L, Fan B, Zhang Y, Xu Z, Xue C, Wei X, Zhou Q, Tian X, Shen H, Li B, Zhang X, Cao Y. 2023. Global Dynamics of Porcine Enteric Coronavirus PEDV Epidemiology, Evolution, and Transmission. Molecular Biology and Evolution, 40, msad052.

Zhang X, Zhu Y, Zhu X, Shi H, Chen J, Shi D, Yuan J, Cao L, Liu J, Dong H, Jing Z, Zhang J, Wang X, Feng L. 2017. Identification of a natural recombinant transmissible gastroenteritis virus between Purdue and Miller clusters in China. Emerging Microbes & Infections, 6, e74.

Zuñiga S, Pascual-Iglesias A, Sanchez C M, Sola I, Enjuanes L. 2016. Virulence factors in porcine coronaviruses and vaccine design. Virus Research, 226, 142-151.

[1] Wei Liu, Xueling Huang, Meng Ju, Mudi Sun, Zhimin Du, Zhensheng Kang, Jie Zhao. Molecular evidence of the west-to-east dispersal of Puccinia striiformis f. sp. tritici in central Shaanxi and the migration of the inoculum from Gansu[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2251-2265.
[2] Wenrui Fan, Yuntong Chen, Mengmeng Yu, Yongzhen Liu, Yulong Gao. Advances on ALV-J in China over the past two decades[J]. >Journal of Integrative Agriculture, 2025, 24(2): 429-440.
[3] Xi Tang, Lei Xie, Min Yan, Longyun Li, Tianxiong Yao, Siyi Liu, Wenwu Xu, Shijun Xiao, Nengshui Ding, Zhiyan Zhang, Lusheng Huang . Genomic selection for meat quality traits based on VIS/NIR spectral information[J]. >Journal of Integrative Agriculture, 2025, 24(1): 235-245.
[4] Guohao Han, Jing Wang, Hanwen Yan, Lijun Cao, Shiyu Liu, Xiuquan Li, Yilin Zhou, Wei Liu, Tiantian Gu, Zhipeng Shi, Hong Liu, Lihui Li, Diaoguo An. Development and molecular cytogenetic identification of a new wheat–rye 6RL ditelosomic addition and 1R (1B) substitution line with powdery mildew resistance[J]. >Journal of Integrative Agriculture, 2025, 24(1): 72-84.
[5] Xianglin Zhang, Jie Xue, Songchao Chen, Zhiqing Zhuo, Zheng Wang, Xueyao Chen, Yi Xiao, Zhou Shi. Improving model performance in mapping cropland soil organic matter using time-series remote sensing data[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2820-2841.
[6] Xiaogang He, Zirong Li, Sicheng Guo, Xingfei Zheng, Chunhai Liu, Zijie Liu, Yongxin Li, Zheming Yuan, Lanzhi Li. Epistasis-aware genome-wide association studies provide insights into the efficient breeding of high-yield and high-quality rice[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2541-2556.
[7] Zihui Liu, Xiangjun Lai, Yijin Chen, Peng Zhao, Xiaoming Wang, Wanquan Ji, Shengbao Xu. Selection and application of four QTLs for grain protein content in modern wheat cultivars[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2557-2570.
[8] Yuhan Yang, Dou Wang, Yaning Bai, Wenyan Huang, Shimin Gao, Xingchen Wu, Ying Wang, Jianle Ren, Jinxin He, Lin Jin, Mingming Hu, Zhiwei Wang, Zhongbing Wang, Haili Ma, Junping Li, Libin Liang. Genetic and pathogenic characterization of new infectious bronchitis virus strains in the GVI-1 and GI-19 lineages isolated in central China[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2407-2420.
[9] Mansoor Sheikh, Farooq Iqra, Hamadani Ambreen, Kumar A Pravin, Manzoor Ikra, Yong Suk Chung. Integrating artificial intelligence and high-throughput phenotyping for crop improvement[J]. >Journal of Integrative Agriculture, 2024, 23(6): 1787-1802.
[10] Keanning Li, Bingxing An, Mang Liang, Tianpeng Chang, Tianyu Deng, Lili Du, Sheng Cao, Yueying Du, Hongyan Li, Lingyang Xu, Lupei Zhang, Xue Gao, Junya LI, Huijiang Gao.

Prescreening of large-effect markers with multiple strategies improves the accuracy of genomic prediction [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1634-1643.

[11] Yunping Chen, Jie Hu, Zhiwen Cai, Jingya Yang, Wei Zhou, Qiong Hu, Cong Wang, Liangzhi You, Baodong Xu.

A phenology-based vegetation index for improving ratoon rice mapping using harmonized Landsat and Sentinel-2 data [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1164-1178.

[12] Jun Zhou, Qing Lin, Xueyan Feng, Duanyang Ren, Jinyan Teng, Xibo Wu, Dan Wu, Xiaoke Zhang, Xiaolong Yuan, Zanmou Chen, Jiaqi Li, Zhe Zhang, Hao Zhang.

Evaluating the performance of genomic selection on purebred population by incorporating crossbred data in pigs [J]. >Journal of Integrative Agriculture, 2024, 23(2): 639-648.

[13] Akmaral Baidyussen, Gulmira Khassanova, Maral Utebayev, Satyvaldy Jatayev, Rystay Kushanova, Sholpan Khalbayeva, Aigul Amangeldiyeva, Raushan Yerzhebayeva, Kulpash Bulatova, Carly Schramm, Peter Anderson, Colin L. D. Jenkins, Kathleen L. Soole, Yuri Shavrukov. Assessment of molecular markers and marker-assisted selection for drought tolerance in barley (Hordeum vulgare L.)[J]. >Journal of Integrative Agriculture, 2024, 23(1): 20-38.
[14] Ambreen LEGHARI, Shakeel Ahmed LAKHO, Faiz Muhammad KHAND, Khaliq ur Rehman BHUTTO, Sameen Qayoom LONE, Muhammad Tahir ALEEM, Iqra BANO, Muhammad Ali CHANDIO, Jan Muhammad SHAH, LIN Hui-xing, FAN Hong-jie. Molecular epidemiology, characterization of virulence factors and antibiotic-resistance profile of Streptococcus agalactiae isolated from dairy farms in China and Pakistan[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1514-1528.
[15] HU Wen-jing, FU Lu-ping, GAO De-rong, LI Dong-sheng, LIAO Sen, LU Cheng-bin. Marker-assisted selection to pyramid Fusarium head blight resistance loci Fhb1 and Fhb2 in a high-quality soft wheat cultivar Yangmai 15[J]. >Journal of Integrative Agriculture, 2023, 22(2): 360-370.
No Suggested Reading articles found!