Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Mechanical Stress Induces Molecular Changes in Oolong Tea: Insights from Multi-Omics Analysis

Zhilong Hao1, 2, *, #, Yuping Zhang1,3*, Weiyi Kong1, 3, Jiao Feng1, 3, Yucheng Zheng4, Hongzheng Lin5, Xiaomin Yu1, Yun Sun1, 2, Xiangxiang Huang1, 2, Wei Wang1, 2, Yang Wu1, 2 #, Xinyi Jin1, 2#

1 College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China

2 Key Laboratory of Tea Science in Universities of Fujian Province, Fuzhou 350002, China

3 Tea Industry Branch of 6.18 Collaborative Innovation Institute in Fujian Province, Fuzhou 350002, China

4 College of Tea and Food Sciences, Wuyi University, Tea Engineering Research Center of Fujian Higher Education, Tea Science Research Institute of Wuyi University, Wuyishan 354300, China

5 Fujian Vocational College of Agriculture, Fuzhou 350303, China

 Highlights: 

1. Integrated multi-omics (metabolomics, transcriptomics, proteomics) elucidates tea leaf responses to mechanical stress.

2. Mechanical stress-activated DAMPs ignite the Ca²+–JA–GSH signaling cascade, orchestrating downstream aroma biosynthesis.

3. Mechanical stress induces LOX/PAR genes and their encoded proteins in α-linolenic/Phe metabolism, boosting accumulation of 2-phenylethanol and jasmine lactone.

1. Integrated multi-omics (metabolomics, transcriptomics, proteomics) elucidates tea leaf responses to mechanical stress.

2. Mechanical stress-activated DAMPs ignite the Ca²+–JA–GSH signaling cascade, orchestrating downstream aroma biosynthesis.

3. Mechanical stress induces LOX/PAR genes and their encoded proteins in α-linolenic/Phe metabolism, boosting accumulation of 2-phenylethanol and jasmine lactone. -->

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

乌龙茶以其独特的花果香及醇厚的滋味备受消费者青睐。在其加工过程中,摇青工序是塑造其特色风味的关键步骤。在摇青过程中,茶叶经受反复的机械胁迫,进而触发一系列代谢变化,最终影响茶叶的品质。因此,深入解析茶树叶片响应机械胁迫的分子机制,对于揭示乌龙茶采后品质形成机制具有重要意义。本研究以铁观音鲜叶为材料,整合代谢组学、转录组学和TMT蛋白组学分析,系统分析乌龙茶摇青阶段机械胁迫下代谢物、转录本和蛋白质的动态变化规律及其互作关系。结果表明,机械胁迫首先激活损伤相关分子模式(DAMPs),介导Ca²⁺信号、茉莉酸(JA)信号及谷胱甘肽(GSH)代谢等途径的级联响应,并进一步诱导与品质形成密切相关的 α-亚麻酸代谢途径与苯丙氨酸代谢途径。在信号转导层面,CNGCs/CaCML介导的Ca²⁺内流、Rboh/CDPK驱动的ROS爆发以及JAZ/MYC2调控的JA信号网络均表现出基因及其编码蛋白的显著上调,共同激活MAPK级联反应;同时,GPX/GSTs参与的谷胱甘肽代谢维持氧化还原稳态,并与抗坏血酸-谷胱甘肽(ASC-GSH)循环形成联动,从而协调转录、翻译及代谢水平的整体响应。在代谢调控层面,α-亚麻酸途径中LOX等关键基因及其编码的蛋白上调表达,促进茉莉内酯等脂肪酸衍生香气物质的积累;苯丙氨酸途径中PASSPARAROADH等基因及AROADH蛋白上调表达,促进2-苯乙醇和苯甲醇合成。本研究基于多组学技术初步构建了机械胁迫信号转导代谢调控的调控框架,有助于深入理解乌龙茶特征性物质的形成机制,并为乌龙茶品质代谢调控提供参考。



Abstract  

Understanding the molecular responses of tea leaves to mechanical stress is crucial for elucidating the mechanisms of post-harvest quality formation during oolong tea processing. This study emplemented an integrated multi-omics strategy to characterize the changes and interactions among metabolomic (MB), transcriptomic (TX), and proteomic (PT) profiles in mechanically stressed tea leaves. Mechanical stress initially activated damage-associated molecular patterns (DAMPs), including Ca2+ signaling, jasmonic acid signaling, and glutathione metabolism pathways. These processes subsequently induced quality-related metabolic pathways (QRMPs), particularly α-linolenic acid and phenylalanine metabolism. Up-regulated expression of LOX, ADH1, and PAR genes, together with the increased abundance of their encoded proteins, respectively promoted the accumulation of jasmine lactone, benzyl alcohol, and 2-phenylethanol. These findings indicate that mechanical stress influence the metabolite biosynthesis in tea leaves through coordinated molecular responses. This study provides new insights into the molecular mechanisms underlying tea leaf responses to mechanical stress and a foundation for future investigations into how early molecular events may contribute to post-harvest metabolic changes during oolong tea processing.


Keywords:  oolong tea              multi-omics              mechanical stress              defense response              α-Linolenic acid metabolism       phenylalanine metabolism  
Online: 12 September 2025  
Fund: 

This study was supported by National Key Research and Development Program of China (2022YFD2101101), The Earmarked Fund for CARS-19, National Natural Science Foundation of China (32402634), Modern Agricultural (Tea) Industry Technology System of Fujian Province ([2025] No. 593) and Special Fund for Science and Technology Innovation of Fujian Zhang Tianfu Tea Development Foundation (FJZTF01). 

About author:  #Correspondence Zhilong Hao, E-mail: haozhilong@126.com; Yang Wu, E-mail: wy_forward@fafu.edu.cn; Xinyi Jin, E-mail: jxy427@tom.com *These authors contributed equally to this sthdy.

Cite this article: 

Zhilong Hao, Yuping Zhang, Weiyi Kong, Jiao Feng, Yucheng Zheng, Hongzheng Lin, Xiaomin Yu, Yun Sun, Xiangxiang Huang, Wei Wang, Yang Wu, Xinyi Jin. 2025. Mechanical Stress Induces Molecular Changes in Oolong Tea: Insights from Multi-Omics Analysis. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.09.014

Beck J J, Smith L, Baig N. 2014. An overview of plant volatile metabolomics, sample treatment and reporting considerations with emphasis on mechanical damage and biological control of weeds. Phytochemical Analysis, 25, 331–341.

Cai J, Aharoni A. 2022. Amino acids and their derivatives mediating defense priming and growth tradeoff. Current Opinion in Plant Biology, 69, 102288.

Cao H, Li J, Ye Y, Lin H, Hao Z, Ye N, Yue C. 2020. Integrative transcriptomic and metabolic analyses provide insights into the role of trichomes in tea plant (Camellia Sinensis). Biomolecules, 10, 311.

Chen M, Zhang Y, Wang Y, Cheng P, Zhang Q, Li M, Jia X, Pan Y, Lin S, Luo Z, Wang H, Ye J. 2024. Transcriptomic analysis of the effect of shaking and tumbling degree on quality formation of wuyi rock tea. Journal of Food Science, 89, 81–95.

Choi H W, Klessig D F. 2016. DAMPs, MAMPs, and NAMPs in plant innate immunity. BMC Plant Biology, 16, 232.

Dorion S, Ouellet J C, Rivoal J. 2021. Glutathione metabolism in plants under stress: beyond reactive oxygen species detoxification. Metabolites, 11, 641.

Grabherr M G, Haas B J, Yassour M, Levin J Z, Thompson D A, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, Di Palma F, Birren B W, Nusbaum C, Lindblad-Toh K et al. 2011. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nature Biotechnology, 29, 644–652.

Guo X, Schwab W, Ho C-T, Song C, Wan X. 2022. Characterization of the aroma profiles of oolong tea made from three tea cultivars by both GC–MS and GC-IMS. Food Chemistry, 376, 131933.

He H-F, Wei K, Yin J, Ye Y. 2021. Insight into tea flavonoids: composition and chemistry. Food Reviews International, 37, 812–823.

Hou S, Liu D, He P. 2021. Phytocytokines function as immunological modulators of plant immunity. Stress Biology, 1, 8.

Hu S, Chen Q, Guo F, Wang M, Zhao H, Wang Y, Ni D, Wang P. 2020. (Z)-3-hexen-1-ol accumulation enhances hyperosmotic stress tolerance in Camellia sinensis. Plant Molecular Biology, 103, 287–302.

Huang X, Cao H, Guo Y, Liu J, Sun Y, Liu S, Lin J, Wei S, Wu L. 2020a. The dynamic change of oolong tea constitutes during enzymatic‐catalysed process of manufacturing. International Journal of Food Science and Technology, 55, 3604–3612.

Huang X, Cao H, Guo Y, Liu J, Sun Y, Liu S, Lin J, Wei S, Wu L. 2020b. The dynamic change of oolong tea constitutes during enzymatic‐catalysed process of manufacturing. International Journal of Food Science & Technology, 55, 3604–3612.

Huber A E, Bauerle T L. 2016. Long-distance plant signaling pathways in response to multiple stressors: the gap in knowledge. Journal of Experimental Botany, 67, 2063–2079.

Kaminaga Y, Schnepp J, Peel G, Kish C M, Ben-Nissan G, Weiss D, Orlova I, Lavie O, Rhodes D, Wood K, Porterfield D M, Cooper A J L, Schloss J V, Pichersky E, Vainstein A, Dudareva N. 2006. Plant phenylacetaldehyde synthase is a bifunctional homotetrameric enzyme that catalyzes phenylalanine decarboxylation and oxidation. Journal of Biological Chemistry, 281, 23357–23366.

Kumar S, Pandey A K. 2013. Chemistry and biological activities of flavonoids: an overview. Scientific World Journal, 2013, 162750.

Li B, Dewey C N. 2011. RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinformatics, 12, 323.

Li C, Lin J, Hu Q, Sun Y, Wu L. 2023. An integrated metabolomic and transcriptomic analysis reveals the dynamic changes of key metabolites and flavor formation over tieguanyin oolong tea production. Food Chemistry: X, 20, 100952.

Li H, Liu J-X, Wang Y, Zhuang J. 2020. The ascorbate peroxidase 1 regulates ascorbic acid metabolism in fresh-cut leaves of tea plant during postharvest storage under light/dark conditions. Plant Science, 296, 110500.

Lin J, Lin H, Li C, Liao N, Zheng Y, Yu X, Sun Y, Wu L. 2024. Unveiling characteristic metabolic accumulation over enzymatic-catalyzed process of tieguanyin oolong tea manufacturing by DESI-MSI and multiple-omics. Food Research International, 181, 114136.

Lin J, Tu Z, Zhu H, Chen L, Wang Y, Yang Y, Lv H, Zhu Y, Yu L, Ye Y. 2022. Effects of shaking and withering processes on the aroma qualities of black tea. Horticulturae, 8, 549.

Liu S, Guo L, Zhou Q, Jiang Z, Jin L, Zhu J, Xie H, Wei C. 2022. Identification and functional analysis of two alcohol dehydrogenase genes involved in catalyzing the reduction of (Z)-3-hexenal into (Z)-3-hexenol in tea plants (Camellia sinensis). Journal of Agricultural and Food Chemistry, 70, 1830–1839.

Liu X, Zhao M, Gu C, Jiang H, Sun J, Li J. 2022. Genome-wide identification of MAPK family genes and their response to abiotic stresses in tea plant (Camellia sinensis). Open Life Sciences, 17, 1064–1074.

Love M I, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15, 550.

Meena M K, Prajapati R, Krishna D, Divakaran K, Pandey Y, Reichelt M, Mathew M K, Boland W, Mithöfer A, Vadassery J. 2019. The Ca2+ Channel CNGC19 Regulates Arabidopsis Defense Against Spodoptera Herbivory. The Plant Cell, 31, 1539–1562.

Ni T, Xu S, Wei Y, Li T, Jin G, Deng W-W, Ning J. 2021. Understanding the promotion of withering treatment on quality of postharvest tea leaves using UHPLC-orbitrap-MS metabolomics integrated with TMT-based proteomics. LWT, 147, 111614.

O’Connell R J, Thon M R, Hacquard S, Amyotte S G, Kleemann J, Torres M F, Damm U, Buiate E A, Epstein L, Alkan N, Altmüller J, Alvarado-Balderrama L, Bauser C A, Becker C, Birren B W, Chen Z, Choi J, Crouch J A, Duvick J P et al. 2012. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nature Genetics, 44, 1060–1065.

Ruan J, Zhou Y, Zhou M, Yan J, Khurshid M, Weng W, Cheng J, Zhang K. 2019. Jasmonic acid signaling pathway in plants. International Journal of Molecular Sciences, 20, 2479.

Sakai M, Hirata H, Sayama H, Sekiguchi K, Itano H, Asai T, Dohra H, Hara M, Watanabe N. 2007. Production of 2-phenylethanol in roses as the dominant floral scent compound fromL-phenylalanine by two key enzymes, a PLP-dependent decarboxylase and a phenylacetaldehyde reductase. Bioscience, Biotechnology, and Biochemistry, 71, 2408–2419.

Shi J, Ma C, Qi D, Lv H, Yang T, Peng Q, Chen Z, Lin Z. 2015. Transcriptional responses and flavor volatiles biosynthesis in methyl jasmonate-treated tea leaves. BMC Plant Biology, 15, 233.

Shi J, Xie D, Qi D, Peng Q, Chen Z, Schreiner M, Lin Z, Baldermann S. 2019. Methyl jasmonate-induced changes of flavor profiles during the processing of green, oolong, and black tea. Frontiers in Plant Science, 10, 781.

Song C, Katja H, McGrapher K, Hoffman T. 2018. Attractive but toxic: emerging roles of glycosidically bound volatiles and glycosyltransferases In. Molecular Plant, 11, 1225–1236.

Wang D, Yoshimura T, Kubota K, Kobayashi A. 2000. Analysis of glycosidically bound aroma precursors in tea leaves. 1. Qualitative and quantitative analyses of glycosides with aglycons as aroma compounds. Journal of Agricultural and Food Chemistry, 48, 5411–5418.

Wei C, Yang H, Wang S, Zhao J, Liu C, Gao L, Xia E, Lu Y, Tai Y, She G, Sun J, Cao H, Tong W, Gao Q, Li Y, Deng W, Jiang X, Wang W, Chen Q et al. 2018. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proceedings of the National Academy of Sciences, 115, E4151–E4158.

Wu L, Wang Y, Liu S, Sun Y, Li C, Lin J, Wei S. 2022. The stress-induced metabolites changes in the flavor formation of oolong tea during enzymatic-catalyzed process: a case study of zhangping shuixian tea. Food Chemistry, 391, 133192.

Xue Z, Chen Z, Wang Y, Sun W. 2023. Proteomic analysis reveals the association between the pathways of glutathione and α-Linolenic acid metabolism and lanthanum accumulation in tea plants. Molecules, 28, 1124.

Yang Z, Sakai M, Sayama H, Shimeno T, Yamaguchi K, Watanabe N. 2009. Elucidation of the biochemical pathway of 2-phenylethanol from shikimic acid using isolated protoplasts of rose flowers. Journal of Plant Physiology, 166, 887–891.

Zeng L, Wang X, Xiao Y, Gu D, Liao Y, Xu X, Jia Y, Deng R, Song C, Yang Z. 2019. Elucidation of (Z)-3-hexenyl-β-glucopyranoside enhancement mechanism under stresses from the oolong tea manufacturing process. Journal of Agricultural and Food Chemistry, 67, 6541–6550.

Zeng L, Watanabe N, Yang Z. 2019. Understanding the biosyntheses and stress response mechanisms of aroma compounds in tea (Camellia sinensis) to safely and effectively improve tea aroma. Critical Reviews in Food Science and Nutrition, 59, 2321–2334.

Zeng L, Zhou Y, Fu X, Liao Y, Yuan Y, Jia Y, Dong F, Yang Z. 2018. Biosynthesis of jasmine lactone in tea (Camellia sinensis) leaves and its formation in response to multiple stresses. Journal of Agricultural and Food Chemistry, 66, 3899–3909.

Zhang G, Yang J, Cui D, Zhao D, Li Y, Wan X, Zhao J. 2020. Transcriptome and metabolic profiling unveiled roles of peroxidases in theaflavin production in black tea processing and determination of tea processing suitability. Journal of Agricultural and Food Chemistry, 68, 3528–3538.

Zhang H, Zhu J, Gong Z, Zhu J-K. 2022. Abiotic stress responses in plants. Nature Reviews Genetics, 23, 104–119.

Zhang N, Jing T, Zhao M, Jin J, Xu M, Chen Y, Zhang S, Wan X, Schwab W, Song C. 2019. Untargeted metabolomics coupled with chemometrics analysis reveals potential non-volatile markers during oolong tea shaking. Food Research International, 123, 125–134.

Zhang X, Yu Y, Zhang J, Qian X, Li X, Sun X. 2024. Recent progress regarding jasmonates in tea plants: biosynthesis, signaling, and function in stress responses. International Journal of Molecular Sciences, 25, 1079.

Zhao M, Zhang N, Gao T, Jin J, Jing T, Wang J, Wu Y, Wan X, Schwab W, Song C. 2020. Sesquiterpene glucosylation mediated by glucosyltransferase UGT91Q2 is involved in the modulation of cold stress tolerance in tea plants. New Phytologist, 226, 362–372.

Zheng Y, Chen X, Wang P, Sun Y, Yue C, Ye N. 2020. Genome-wide and expression pattern analysis of JAZ family involved in stress responses and postharvest processing treatments in Camellia sinensis. Scientific Reports, 10, 2792.

Zhou Z, Wu Q, Ni Z, Hu Q, Yang Y, Zheng Y, Bi W, Deng H, Liu Z, Ye N, Lai Z, Sun Y. 2021. Metabolic flow of C6 volatile compounds from LOX-HPL pathway based on airflow during the post-harvest process of oolong tea. Frontiers in Plant Science, 12, 738445.

Zhou Z, Wu Q, Rao H, Cai L, Zheng S, Sun Y. 2023. The dynamic change in aromatic compounds and their relationship with CsAAAT genes during the post-harvest process of oolong tea. Metabolites, 13, 868.

Zhu C, Zhang S, Fu H, Zhou C, Chen L, Li X, Lin Y, Lai Z, Guo Y. 2019. Transcriptome and phytochemical analyses provide new insights into long non-coding RNAs modulating characteristic secondary metabolites of oolong tea (Camellia sinensis) in solar-withering. Frontiers in Plant Science, 10, 1638.

Zhu Q, Liu L, Lu X, Du X, Xiang P, Cheng B, Tan M, Huang J, Wu L, Kong W, Shi Y, Wu L, Lin J. 2023. The biosynthesis of EGCG, theanine and caffeine in response to temperature is mediated by hormone signal transduction factors in tea plant (Camellia sinensis L.). Frontiers in Plant Science, 14, 1149182.

[1] Niu Wang, Weidong Zhang, Zhenyu Zhong, Xiongbo Zhou, Xinran Shi, Xin Wang. FGF7 secreted from dermal papillae cell regulates the proliferation and differentiation of hair follicle stem cell[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3583-3597.
[2] Lichao Zhai, Shijia Song, Lihua Zhang, Jinan Huang, Lihua Lv, Zhiqiang Dong, Yongzeng Cui, Mengjing Zheng, Wanbin Hou, Jingting Zhang, Yanrong Yao, Yanhong Cui, Xiuling Jia. Subsoiling before winter wheat alleviates the kernel position effect of densely grown summer maize by delaying post-silking root–shoot senescence[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3384-3402.
[3] Tiantian Chen, Lei Li, Dan Liu, Yubing Tian, Lingli Li, Jianqi Zeng, Awais Rasheed, Shuanghe Cao, Xianchun Xia, Zhonghu He, Jindong Liu, Yong Zhang. Genome wide linkage mapping for black point resistance in a recombinant inbred line population of Zhongmai 578 and Jimai 22[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3311-3321.
[4] Zuxian Chen, Bingbing Zhao, Yingying Wang, Yuqing Du, Siyu Feng, Junsheng Zhang, Luxiang Zhao, Weiqiang Li, Yangbao Ding, Peirong Jiao. H5N1 avian influenza virus PB2 antagonizes duck IFN-β signaling pathway by targeting mitochondrial antiviral signaling protein[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3614-3625.
[5] Yang Sun, Yu Liu, Li Zhou, Xinyan Liu, Kun Wang, Xing Chen, Chuanqing Zhang, Yu Chen. Activity of fungicide cyclobutrifluram against Fusarium fujikuroi and mechanism of the pathogen resistance associated with point mutations in FfSdhB, FfSdhC2 and FfSdhD[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3511-3528.
[6] Yufeng Xiao, Meiqi Dong, Xian Wu, Shuang Liang, Ranhong Li, Hongyu Pan, Hao Zhang. Enrichment, domestication, degradation, adaptive mechanism, and nicosulfuron bioremediation of bacteria consortium YM2[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3529-3545.
[7] Yuxin He, Fei Deng, Chi Zhang, Qiuping Li, Xiaofan Huang, Chenyan He, Xiaofeng Ai, Yujie Yuan, Li Wang, Hong Cheng, Tao Wang, Youfeng Tao. Wei Zhou, Xiaolong Lei, Yong Chen, Wanjun Ren. Can a delayed sowing date improve the eating and cooking quality of mechanically transplanted rice in the Sichuan Basin, China?[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3368-3383.
[8] Dili Lai, Md. Nurul Huda, Yawen Xiao, Tanzim Jahan, Wei Li, Yuqi He, Kaixuan Zhang, Jianping Cheng, Jingjun Ruan, Meiliang Zhou. Evolutionary and expression analysis of sugar transporters from Tartary buckwheat revealed the potential function of FtERD23 in drought stress[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3334-3350.
[9] Zishuai Wang, Wangchang Li, Zhonglin Tang. Enhancing the genomic prediction accuracy of swine agricultural economic traits using an expanded one-hot encoding in CNN models[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3574-3582.
[10] Yunji Xu, Xuelian Weng, Shupeng Tang, Weiyang Zhang, Kuanyu Zhu, Guanglong Zhu, Hao Zhang, Zhiqin Wang, Jianchang Yang. Untargeted lipidomic analysis of milled rice under different alternate wetting and soil drying irrigation regimes[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3351-3367.
[11] Minghui Li, Yilan Chen, Siqiao Wang, Xueke Sun, Yongkun Du, Siyuan Liu, Ruiqi Li, Zejie Chang, Peiyang Ding, Gaiping Zhang. Plug-and-display nanoparticle immunization of the core epitope domain induces potent neutralizing antibody and cellular immune responses against PEDV[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3598-3613.
[12] Jing Zhou, Bingshuai Du, Yibo Cao, Kui Liu, Zhihua Ye, Yiming Huang, Lingyun Zhang. Genome-wide identification of sucrose transporter genes in Camellia oleifera and characterization of CoSUT4[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3494-3510.
[13] Yuheng Wang, Furong Kang, Bo Yu, Quan Long, Huaye Xiong, Jiawei Xie, Dong Li, Xiaojun Shi, Prakash Lakshmanan, Yueqiang Zhang, Fusuo Zhang. Magnesium supply is vital for improving fruit yield, fruit quality and magnesium balance in citrus orchards with increasingly acidic soil[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3641-3655.
[14] Mingxin Feng, Ying Hu, Xin Yang, Jingwen Li, Haochen Wang, Yujia Liu, Haijun Ma, Kai Li, Jiayin Shang, Yulin Fang, Jiangfei Meng. Uncovering the miRNA-mediated regulatory network involved in postharvest senescence of grape berries[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3465-3483.
[15] Li Liu, Yifeng Feng, Ziqi Han, Yaxiao Song, Jianhua Guo, Jing Yu, Zidun Wang, Hui Wang, Hua Gao, Yazhou Yang, Yuanji Wang, Zhengyang Zhao. Functional analysis of the xyloglucan endotransglycosylase/hydrolase gene MdXTH2 in apple fruit firmness formation[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3418-3434.
No Suggested Reading articles found!