Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Microbial bioinputs in Brazilian agriculture

Alane Beatriz Vermelho1#, Andrew Macrae2, 3, Athayde Neves Junior1, Levy Domingos1, Julia Emanuela de Souza4, Amália Cristina Piazentim Borsari5, Silvia Souza de Oliveira6, Irene von der Weid6, Pedro Veillard7, Jerri Edson Zilli8#

1 Bioinovar-Biotechnology Center, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ),  Rio de Janeiro 21941-902, Brazil

Postgraduate Program in Plant Biotechnology and Bioprocesses, Health Sciences Center, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil

3 Paulo de Góes Institute of Microbiology, General Microbiology, Federal University of Rio de JaneiroRio de Janeiro 21941-902, Brazil

4 National Association for the Promotion and Innovation of the Biological Industry (ANPIIBIO)Curitiba 80035-010, Brazil 

5 CropLife Brazil,  São Paulo 04707-000, Brazil 

6 Brazilian National Institute of Industrial Property (INPI), Rio de Janeiro  20090-910Brazil 

7 State Secretariat for Economic Development, Industry, Trade and Services (SEDEICS), Rio de Janeiro  22.231-090, Brazil

8 Embrapa Agrobiology,   Rio de Janeiro 23891-000Brazil

 Highlights 

· Describes major categories, mechanisms of action, and global challenges of microbial bioinputs

· Summarizes Brazil's manufacturing infrastructure for bioinput production

· Discusses Brazilian bioinput patents and regulation in the global scenario

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  

Brazil maintains a leading position in agricultural exports and stands as the world's foremost producer and user of bioinputs in agriculture. These bioinputs generate annual savings of billions of dollars that would otherwise be allocated to chemical fertilizers and pesticides. The nation's regulatory framework enables bioinput agriculture and serves as a model for countries transitioning toward regenerative agriculture. Brazilian legislation categorizes bioinputs into: 1) Biofertilizers (extracts); 2) biostimulants (plant growth-promoting and biocontrol agents); and 3) inoculants (active ingredient comprises one or more living microorganisms). The inoculation of soybeans with Bradyrhizobium strains provides approximately 90% of the nitrogen accumulated by this crop. Brazil has registered over six hundred inoculants, with at least 60% specifically designated for soybean cultivation. The annual sales of inoculants in Brazil reach approximately 120 million doses. Although beans (Phaseolus vulgaris and Vigna unguiculata) represent an essential food crop in Brazil's staple diet and benefit from inoculation, inoculant supply remains insufficient. Regarding biocontrol, soy, corn, sugarcane, and coffee rank among the most protected crops, employing biocontrol agents against bacteria, fungi, nematodes, and insects. Bacillus, Pseudomonas, Streptomyces, Rhizobium, Azotobacter, and Paenibacillus strains were predominantly cited in the 5,000+ bioproduct patents filed between 2022 and 2024. Among fungal genera, Trichoderma, and Penicillium received the most citations. EMBRAPA's biobanks maintain over 10,000 strains of bacteria, fungi, and viruses for biocontrol, and 14,000 strains of nutrient-fixing and plant-growth promoters. Production challenges include quality control, particularly as on-farm production of inoculants becomes prevalent on larger farms, alongside product availability and supply limitations. Brazilian farmers maintain global competitiveness partly through reduced chemical fertilizer and pesticide costs enabled by bioinput usage. As components of regenerative agriculture, bioinputs enhance soil quality, decrease carbon footprints, and support SDGs. Brazil's leadership in microbial bioinput utilization stems from its extensive agricultural sector, rich microbial biodiversity, and progressive regulatory framework.

Keywords:  bioinputs       Brazil              agriculture              regenerative agriculture              circular economy  
Online: 12 September 2025  
Fund: 

This research was funded in part by the Postgraduate Program of the Paulo de Góes Institute of Microbiology, Federal University of Rio de Janeiro (UFRJ), through the Coordination of Higher Education Personnel Improvement (CAPES) (001), the National Council for Scientific and Technological Development (MCTI-CNPq) (309461/2019-7), and the Rio de Janeiro State Research Support Foundation (FAPERJ), grant Scientist of Our State- E26/200428/2023. 

About author:  #Correspondence Alane Beatriz Vermelho, E-mail: abvermelho@micro.com.br; Jerri Edson Zilli, E-mail: jerri.zilli@embrapa.br

Cite this article: 

Alane Beatriz Vermelho, Andrew Macrae, Athayde Neves Junior, Levy Domingos, Julia Emanuela de Souza, Amália Cristina Piazentim Borsari, Silvia Souza de Oliveira, Irene von der Weid, Pedro Veillard, Jerri Edson Zilli. 2025. Microbial bioinputs in Brazilian agriculture. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.09.013

Abbasi S, Sadeghi A, Safaie N. 2020. Streptomyces alleviate drought stress in tomato plants and modulate the expression of transcription factors ERF1 and WRKY70 genes. Scientia Horticulturae, 265, 109206. 

Afridi M S, Ali S, Salam A, César Terra W, Hafeez A, Sumaira, Ali B S, AlTami M, Ameen F, Ercisli S, Marc R A, Medeiros F H V, Karunakaran R. 2022a. Plant microbiome engineering: Hopes or hypes. Biology11, 1782.

Afridi M S, Fakhar A, Kumar A, Ali S, Medeiros F H V, Muneer M A, Ali H, Saleem M. 2022b. Harnessing microbial multitrophic interactions for rhizosphere microbiome engineering. Microbiological Research, 265, 127199.

Afridi M S, Schulman P, Lacerda V N C, Guimaraes R A, Vasconcelos De Medeiros F H. 2024. Long-term benefit contribution of chemical and biological nematicide in coffee nematode management in soil microbial diversity and crop yield perspectives. Microbiological Research, 282, 127638.

Agourram A, Ghirardello D, Rantsiou K, Zeppa G, Belviso S, Romane A, Oufdou K, Giordano M. 2013. Phenolic content, antioxidant potential, and antimicrobial activities of fruit and vegetable by-product extracts. International Journal of Food Properties, 16, 1092–1104.

 Alsubaie M, Al-Askar A A, Olyan Al-Otibi F, Maniah K, Alkathiri A, Taha Yassin M. 2024. Exploring the efficacy of endophytic Diaporthe caatingaensis as a biocontrol agent targeting Fusarium strains afflicting coffee plants in Saudi Arabia. Journal of King Saud University (Science), 36, 103396.

Alves B J R, Boddey R M, Urquiaga S. 2003. The success of BNF in soybean in Brazil. Plant and Soil252, 1–9.

Ammar E E, Aioub A A A, Elesawy A E, Karkour A M, Mouhamed M S, Amer A A, EL-Shershaby N A. 2022. Algae as bio-fertilizers: Between current situation and future prospective. Saudi Journal of Biological Sciences, 29, 3083–3096.

Andreata M F L, Afonso L, Niekawa E T G, Salomão J M, Basso K R, Silva M C D, Alves L C, Alarcon S F, Parra M E A, Grzegorczyk K G, Chryssafidis A L, Andrade G. 2024. Microbial fertilizers: A study on the current scenario of brazilian inoculants and future perspectives. Plants, 13, 2246.

ANPIIB (Associação Nacional de Promoção e Inovação da Indústria de Biológicos). 2024. Análises e estatísticas 2023. [2025-01-25]. https://anpiibio.org.br/estatisticas/ (in Portuguese) 

ANVIS (Agencia Nacional de Vigilância Sanitária). 2022. Resolution RDC 658. [2025-01-18]. https://www.in.gov.br/en/web/dou/-/resolucao-rdc-n-658-de-30-de-marco-de-2022-389846242 (in Portuguese)

Aroca R, Porcel R, Ruiz‐Lozano J M. 2007. How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytologist173, 808–816.

Asad S A. 2022. Mechanisms of action and biocontrol potential of Trichoderma against fungal plant diseases-a review. Ecological Complexity49, 100978.

Baldani J I, Reis V M, Videira S S, Boddey L H, Baldani V L D. 2014. The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: A practical guide for microbiologists. Plant and Soil, 384, 413–431.

Bandara A Y, Weerasooriya D K, Bradley C A, Allen T W, Esker P D. 2020. Dissecting the economic impact of soybean diseases in the United States over two decades. PLoS ONE, 15, e0231141.

Bashan Y, de-Bashan L E. 2010. How the plant growth-promoting bacterium Azospirillum promotes plant growth-a critical assessment. In: Advances in Agronomy. Elsevier, Amsterdam, Netherlands. pp. 77–136.

Bashan Y, de-Bashan L E, Prabhu S R, Hernandez J P. 2014. Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives (1998–2013). Plant and Soil, 378, 1–33.

Basu A, Prasad P, Das S N, Kalam S, Sayyed R Z, Reddy M S, El Enshasy H. 2021. Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: Recent developments, constraints, and prospects. Sustainability, 13, 1140.

Bello A S, Saadaoui I, Ben-Hamadou R. 2021. “Beyond the source of bioenergy”: Microalgae in modern agriculture as a biostimulant, biofertilizer, and anti-abiotic stress. Agronomy, 11, 1610.

Bent A F. 2022. Exploring soybean resistance to soybean cyst nematode. Annual Review of Phytopathology, 60, 379–409.

Bettiol W, Medeiros F H V. 2023. Como o Brasil se tornou o maior produtor e consumidor de produtos de biocontrole. [2025-01-26]. https://www.embrapa.br/busca-de-noticias/-/noticia/79156418/artigo-como-o-brasil-se-tornou-o-maior-produtor-e-consumidor-de-produtos-de-biocontrole (in Portuguese)

BFG (Brazil Federal Government). 1980. Lei dos fertilizantes 6.894/1980. [2025-01-26]. https://www2.camara.leg.br/legin/fed/lei/1980-1987/lei-6894-16-dezembro-1980-371561-publicacaooriginal-1-pl.html (in Portuguese)

BFG (Brazil Federal Government). 2004. DECREE 4954, 14 DE JANEIRO DE 2004. [2025-01-26]. https://www.planalto.gov.br/ccivil_03/_ato2004-2006/2004/decreto/d4954.htm (in Portuguese)

BFG (Brazil Federal Government). 2023. Lei dos agrotóxicos 14.785/2023. [2025-01-27]. https://www.planalto.gov.br/ccivil_03/_ato2023-2026/2023/lei/l14785.htm (in Portuguese)

BFG (Brazil Federal Government). 2024. Lei de Bioinsumos 15070/2024. [2025-01-26]. https://www.planalto.gov.br/ccivil_03/_ato2023-2026/2024/lei/l15070.htm (in Portuguese)

Bhari R, Kaur M, Singh R S, Pandey A, Larroche C. 2018. Bioconversion of chicken feathers by Bacillus aerius NSMk2: A potential approach in poultry waste management. Bioresource Technology Reports, 3, 224–230.

Bonatelli M L, Lacerda-Júnior G V, Dos Reis Junior F B, Fernandes-Júnior P I, Melo I S, Quecine M C. 2021. Beneficial plant-associated microorganisms from semiarid regions and seasonally dry environments: A review. Frontiers in Microbiology, 11, 553223.

Borsari A C P, Vieira L C. 2022. Mercado e perspectivas dos bioinsumos no Brasil. In: Meyer M C, ed., Bioinsumos na Cultura da Soja. Embrapa, Brasília, DF, Brazil. pp. 38-52. (in Portuguese)

Braun J C A, Colla L M. 2023. Use of microalgae for the development of biofertilizers and biostimulants. BioEnergy Research16, 289–310.

Brito T B N, Ferreira M S L, Fai A E C. 2022. Utilization of agricultural by-products: Bioactive properties and technological applications. Food Reviews International, 38, 1305–1329.

Cai Y, Gu J, Ling L, Bing H, Cui L, Li A, Zhang Y, Kong X, Wang X, Zhao J, Xiang W. 2024. Study on the biocontrol effect of Streptomyces sp. NEAU-KT41 and its cell-free culture filtrate against wheat root rot. Physiological and Molecular Plant Pathology, 133, 102353.

Camargo I, Wallendorf R, GloboRural. 2024. Brazil’s bioinputs market could reach $45bn by 2032. [2025-01-26]. https://valorinternational.globo.com/agribusiness/news/2024/11/08/brazils-bioinputs-market-could-reach-45bn-by-2032.ghtml

Camuel A, Teulet A, Carcagno M, Haq F, Pacquit V, Gully D, Pervent M, Chaintreuil C, Fardoux J, Horta-Araujo N, Okazaki S, Ratu S T N, Gueye F, Zilli J, Nouwen N, Arrighi J F, Luo H, Mergaert P, Deslandes L, Giraud E. 2023. Widespread Bradyrhizobium distribution of diverse type III effectors that trigger legume nodulation in the absence of Nod factor. The ISME Journal17, 1416–1429.

Cassán F, Coniglio A, López G, Molina R, Nievas S, De Carlan C L N, Donadio F, Torres D, Rosas S, Pedrosa F O, De Souza E, Zorita M D, de-Bashan L, Mora V. 2020. Everything you must know about Azospirillum and its impact on agriculture and beyond. Biology and Fertility of Soils56, 461–479.

Cassán F, Diaz-Zorita M. 2016. Azospirillum sp. in current agriculture: From the laboratory to the field. Soil Biology and Biochemistry, 103, 117–130.

Castagna A, Aboudia A, Guendouz A, Scieuzo C, Falabella P, Matthes J, Schmid M, Drissner D, Allais F, Chadni M, Cravotto C, Senge J, Krupitzer C, Canesi I, Spinelli D, Drira F, Ben Hlima H, Abdelkafi S, Konstantinou I, Albanis T, et al. 2025. Transforming agricultural waste from mediterranean fruits into renewable materials and products with a circular and digital approach. Materials, 18, 1464.

Cerveira R, Pompeu G B, Cunha C F D. 2025. Perception of the adoption of bioinput technology by rural grain producers in the Brazilian cerrado region. Revista Delos, 18, e3546. (in Portuguese)

Chatterjee A, Singh S, Agrawal C, Yadav S, Rai R, Rai L C. 2017. Role of algae as a biofertilizer. In: Algal Green Chemistry. Elsevier, Amsterdam, Netherlands. pp. 189–200.

Chávez-Díaz I F, Ruiz-Ramírez S, Bautista-Ramírez E, Cruz-Cárdenas C I, Calvillo-Aguilar F F, Blanco-Camarillo M, Resendiz-Venado Z, Ramos-Garza J, Zelaya-Molina L X. 2024. Bacillus strains from a fire affected oyamel-fir forest soil as biocontrol and plant-growth-promoting bacteria. Journal of Agriculture and Food Research16, 101214.

Chen Y, Zhang X, Gong X, Tao T, Wang Z, Zhang J, Zhu Y. 2023. Recovery and utilization of waste filtrate from industrial biological fermentation: Development and metabolite profile of the Bacillus cereus liquid bio-fertilizer. Journal of Environmental Management346, 118945.

Chetan K K, Varma P K, Chandrasekhar V, Kumar P A, Vasanthi V. 2024. Plant, bacteria and fungi crosstalk: Direct and indirect biocontrol mechanisms of sugarcane rhizoplane Pseudomonas species against Fusarium wilt. Rhizosphere, 31, 100952.

Chisti Y, Moo-Young M. 1994. Clean-in-place systems for industrial bioreactors: Design, validation and operation. Journal of Industrial Microbiology, 13, 201–207.

Copping L G, Duke S O. 2007. Natural products that have been used commercially as crop protection agents. Pest Management Science, 63, 524–554.

Coyle D. 2023. Bacterial cross contamination: All you need to know. Healthline-nutrition. [2025-01-26]. https://www.healthline.com/nutrition/what-is-cross-contamination#bottom-line

Croplife Brasil. 2024. Bioinsumos: Soluções sustentáveis para o agronegócio. [2025-06-28]. https://croplifebrasil.org/bioinsumos/ (in Portuguese)

Cucina M, De Nisi P, Sordi S, Adani F. 2021. Sewage sludge as n-fertilizers for crop production enabling the circular bioeconomy in agriculture: A challenge for the new eu regulation 1009/2019. Sustainability, 13, 13165.

Dalitz C D A, Porsani M V, Figel I C, Pimentel I C, Dalzoto P R. 2017. Potential for biocontrol of melanized fungi by actinobacteria isolated from intertidal region of Ilha Do Mel, Paraná, Brazil. Brazilian Journal of Microbiology, 48, 32–36.

Damasceno C L, Duarte E A A, Dos Santos L B P R, De Oliveira T A S, De Jesus F N, De Oliveira L M, Góes-Neto A, Soares A C F. 2019. Postharvest biocontrol of anthracnose in bananas by endophytic and soil rhizosphere bacteria associated with sisal (Agave sisalana) in Brazil. Biological Control137, 104016.

Daniel A I, Fadaka A O, Gokul A, Bakare O O, Aina O, Fisher S, Burt A F, Mavumengwana V, Keyster M, Klein A. 2022. Biofertilizer: The future of food security and food safety. Microorganisms, 10, 1220.

Daroodi Z, Taheri P, Tarighi S. 2021. Direct antagonistic activity and tomato resistance induction of the endophytic fungus Acrophialophora jodhpurensis against Rhizoctonia solani. Biological Control, 160, 104696.

Dimaria G, Sicilia A, Modica F, Russo M, Bazzano M C, Massimino M E, Piero A R L, Bella P, Catara V. 2024. Biocontrol efficacy of Pseudomonas mediterranea PVCT 3C against Plenodomus tracheiphilus: In vitro and in planta mechanisms at early disease stages. Microbiological Research, 287, 127833.

El-Sheshtawy A A, Hager M A, Shawer S S. 2019. Effect of bio-fertilizer, phosphorus source and humic substances on yield, yield components and nutrients uptake by barley plant. Journal of Biological Chemistry and Environmental Sciences, 14, 279–300.

EPC (Europeean Parliament and Council). 2019. Regulation (EU) 2019/1009 of the European parliament and of the council of 5 June 2019 laying down rules on the making available on the market of EU fertilising products and amending regulations (EC) No 1069/2009 and (EC) No 1107/2009 and repealing Regulation (EC) No 2003/2003 (Text with EEA relevance). [2025-01-26]. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32019R1009

Etesami H, Jeong B R, Glick B R. 2023. Biocontrol of plant diseases by Bacillus spp. Physiological and Molecular Plant Pathology, 126, 102048.

FAO (Food and Agriculture Organization). 2022. The Global Action on Green Development of Special Agricultural Products: One Country one Priority Product-Action Plan 2021–2025. Food and Agriculture Organization, Rome, Italy. pp. 12-14.

FAO (Food and Agriculture Organization). 2025. Promoting bioeconomy through agriculture practice in Eastern Europe and Central Asia. Food and Agriculture Organization. [2025-06-26]. https://www.fao.org/family-farming/detail/en/c/1731969/

Faria R D S, Wander A E. 2024. Bio-Inputs in Brazilian agriculture: Public policies and regulatory framework. Revista de Gestão Social e Ambiental, 18, e09089.

Faverin V. 2024. Soja protagonista: Setor de inoculantes fatura R$ 441 milhões em 2023. [2025-02-09]. https://www.canalrural.com.br/agricultura/projeto-soja-brasil/soja-protagonista-setor-de-inoculantes-fatura-r-441-milhoes-em-2023/ (in Portuguese)

Fukami J, Cerezini P, Hungria M. 2018. Azospirillum: Benefits that go far beyond biological nitrogen fixation. AMB Express, 8, 73.

Ge W, Zhang L, Meng F, Tian C. 2025. Study on biocontrol potential of volatile organic compounds produced by Pseudomonas atacamensis GZ-3 on poplar anthracnose. Industrial Crops and Products224, 120402.

Georgieva G, Nedeva T, Badalova M, Deleva V, Savov V. 2023. Study of the plant growth-promoting capacity of Pseudomonas putida 1046 in a model plant system. BioRisk20, 115–128.

Ghada H M, Mostafa M A, Khalil N S A M, Manal M. 2013. Manufacturing amino acids biofertilizers from agricultural wastes. i-usage of tomatoes and sugar beet straw to prepare organic synthesized fertilizers. Egyptian Journal of Soil Science, 53, 461–474.

Glick B R. 2012. Plant growth-promoting bacteria: Mechanisms and applications. Scientifica, 2012, 1–15.

Gómez-García R, Campos D A, Aguilar C N, Madureira A R, Pintado M. 2021. Valorisation of food agro-industrial by-products: From the past to the present and perspectives. Journal of Environmental Management299, 113571.

Goulet F, Fonteyne S, Ridaura S L, Niederle P, Odjo S, Schneider S, Verhulst N, Van Loon J. 2024. The emergence of microbiological inputs and the challenging laboratorisation of agriculture: Lessons from Brazil and Mexico. Agriculture and Human Values, 42, 369-381.

Guiné R P F, Barroca M J, Coldea T E, Bartkiene E, Anjos O. 2021. Apple fermented products: An overview of technology, properties and health effects. Processes, 9, 223.

Gupta S, Sharma S, Aich A, Verma A K, Bhuyar P, Nadda A K, Mulla S I, Kalia S. 2023. Chicken Feather waste hydrolysate as a potential biofertilizer for environmental sustainability in organic agriculture management. Waste and Biomass Valorization, 14, 2783–2799.

Gururani P, Bhatnagar P, Dogra P, Chandra Joshi H, Chauhan P K, Vlaskin M S, Chandra Joshi N, Kurbatova A, Irina A, Kumar V. 2023. Bio-based food packaging materials: A sustainable and holistic approach for cleaner environment- a review. Current Research in Green and Sustainable Chemistry, 7, 100384.

Haddad F, Maffia L A, Mizubuti E S G, Teixeira H. 2009. Biological control of coffee rust by antagonistic bacteria under field conditions in Brazil. Biological Control49, 114–119.

Haefele S M, Konboon Y, Wongboon W, Amarante S, Maarifat A A, Pfeiffer E M, Knoblauch C. 2011. Effects and fate of biochar from rice residues in rice-based systems. Field Crops Research, 121, 430–440.

Hafez M, Popov A I, Rashad M. 2022. The biological correction using humic substances, vermicompost, and Azospirillum as an optimum way of optimizing plant production and enhancing soil micronutrients in arid regions. The Open Agriculture Journal16, e187433152204180.

Hall C, Dawson T P, Macdiarmid J I, Matthews R B, Smith P. 2017. The impact of population growth and climate change on food security in Africa: Looking ahead to 2050. International Journal of Agricultural Sustainability15, 124–135.

Harman G E. 2019. 50 Years of development of beneficial microbes for sustainable agriculture and society: Progress and challenges still to be met-part of the solution to global warming and “hothouse earth.” In: Singh D P, Gupta V K, Prabha R, eds., Microbial Interventions in Agriculture and Environment. Springer Singapore, Singapore, pp. 1–28.

Harman G E, Howell C R, Viterbo A, Chet I, Lorito M. 2004. Trichoderma species- opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2, 43–56.

Hu H W, Chen D, He J Z. 2015. Microbial regulation of terrestrial nitrous oxide formation: Understanding the biological pathways for prediction of emission rates. FEMS Microbiology Reviews, 39, 729–749.

Huang J, Su Y, Chen X, Yang G, Wang Z, Chen K, Du M, Zalán Z, Hegyi F, Kan J. 2025. Modeling the effect of environmental factors on growth and toxin production of Aspergillus versicolor in wheat and the potential biocontrol effect of Bacillus subtilis HJ4. Food Bioscience63, 105706.

Hungria M, Nogueira M A. 2022. Fixação biológica do nitrogênio. In: Meyer M C, Bueno A F, Mazaro S M, Silva J C, eds., Bioinsumos na Cultura da Soja. Embrapa, Brasília, DF, Brazil. pp. 141–162. (in Portuguese)

Hungria M, Nogueira M A, Araujo R S. 2013. Co-inoculation of soybeans and common beans with rhizobia and azospirilla: Strategies to improve sustainability. Biology and Fertility of Soils, 49, 791–801.

INPI (Instituto Nacional da Propriedade Intelectual), Farias P I V, Oliveira S S, Santos C U S M. 2023a. RADAR TECNOLÓGICO. Radar tecnológico de fertilizantes. Instituto nacional da propriedade industrial. INPI/DIRPA/DIESP. [2025-01-26]. https://www.gov.br/inpi/pt-br/assuntos/informacao/radarfertilizantesPNF31012023.pdf (in Portuguese)

INPI (Instituto Nacional da Propriedade Intelectual), Oliveira S S, Santos P R. 2023b. RADAR TECNOLÓGICO. Bioinsumos na agricultura: Inoculantes. Instituto nacional da propriedade industrial. INPI/DIRPA/DIES. [2025-01-26]. https://www.gov.br/inpi/pt-br/assuntos/informacao/13_12_2023_RadarInoculantesfinal.pdf (in Portuguese)

INPI (Instituto Nacional da Propriedade Intelectual), Oliveira S S, Cidade SA P. 2024. RADAR TECNOLÓGICO. Edição gênica: Mapeamento de patentes associadas a tecnologias CRISPR e suas aplicações na agricultura e pecuária. Instituto nacional da propriedade industrial. INPI/DIRPA/DIESP. [2025-01-26]. https://www.gov.br/inpi/pt-br/assuntos/informacao/RadarTecnolgicoEdioGnica26_06_2024.pdf (in Portuguese)

Iqbal A, Schulz P, Rizvi S S H. 2021. Valorization of bioactive compounds in fruit pomace from agro-fruit industries: Present Insights and future challenges. Food Bioscience44, 101384.

Isaac Delali K, Chen O, Wang W, Zeng K. 2022. Disease resistance induction by K. marxianus against green mold in citrus via transcriptome analysis and verification based on metabolites. Biological Control, 176, 105065.

Jana C, Elgueta S, Arancibia V, Hernández J, Liu S, Zhao G, Kumar S. 2025. Transition of the agricultural sector towards a circular economy. In: Hernández J, Kacprzyk J, eds., Agriculture Value Chain-Challenges and Trends in Academia and Industry. Studies in Systems, Decision and Control. Springer Nature, Switzerland. pp. 221–234.

Jang S J, Kuk Y I. 2019. Growth promotion effects of plant extracts on various leafy vegetable crops. Horticultural Science and Technology, 37, 322–336.

Du Jardin P. 2015. Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3–14.

Jayathilakan K, Sultana K, Radhakrishna K, Bawa A S. 2012. Utilization of byproducts and waste materials from meat, poultry and fish processing industries: A review. Journal of Food Science and Technology, 49, 278–293.

Jiang H, Azad M A K, Zhu Q, Ni H, Kong X. 2025. Fermented cassava residue meal improves meat quality by regulating muscle fiber and enhancing lipid metabolism in Huanjiang mini-pigs. Animals, 15, 177.

Kaushal P, Ali N, Saini S, Pati P K, Pati A M. 2023. Physiological and molecular insight of microbial biostimulants for sustainable agriculture. Frontiers in Plant Science, 14, 1041413.

Keerthana Devi M, Manikandan S, Oviyapriya M, Selvaraj M, Assiri M A, Vickram S, Subbaiya R, Karmegam N, Ravindran B, Chang S W, Awasthi M K. 2022. Recent advances in biogas production using agro-industrial waste: A comprehensive review outlook of techno-economic analysis. Bioresource Technology363, 127871.

Keshmirshekan A, De Souza Mesquita L M, Ventura S P M. 2024. Biocontrol manufacturing and agricultural applications of Bacillus velezensis. Trends in Biotechnology, 42, 986–1001.

Kim B, Kim Y S, Han J W, Yu J S, Kim T H, Shin T S, Choi G J, Kim H. 2024. Biocontrol potential of Bevibacillus brevis HK544 for fungal plant diseases. Biological Control198, 105629.

Lacerda Júnior G V, Melo I S. 2022. Bactérias envolvidas na mitigação do estresse hídrico. In: Meyer M C, Bueno A F, Mazaro S M, Silva J C, eds., Bioinsumos na Cultura da Soja. Embrapa, Brasília, DF, Brazil. pp. 197-212. (in Portuguese)

Laibach N, Börner J, Bröring S. 2019. Exploring the future of the bioeconomy: An expert-based scoping study examining key enabling technology fields with potential to foster the transition toward a bio-based economy. Technology in Society, 58, 101118.

Law J W F, Ser H L, Khan T M, Chuah L H, Pusparajah P, Chan K G, Goh B H, Lee L H. 2017. The potential of Streptomyces as biocontrol agents against the rice blast fungus, Magnaporthe oryzae (Pyricularia oryzae). Frontiers in Microbiology, 8, 1-13.

Lazzarini R, Müller M M, Lazzarini P R C, Tamanini Junior C, Matos C K D, Kawakami J. 2022. Humic substances: Effects on potato growth and yield. Horticultura Brasileira40, 33–38.

Lee D H. 2016. Bio-based economies in Asia: Economic analysis of development of bio-based industry in China, India, Japan, Korea, Malaysia and Taiwan. International Journal of Hydrogen Energy, 41, 4333–4346.

Li D, Nanseki T. 2023. Practice, promotion and perspective of smart agriculture in China. In: Nanseki T, ed., Agricultural Innovation in Asia. Springer Nature, Singapore, Singapore. pp. 183–203.

Li W, Wu D. 2025. Sustainability through business model innovation and climate finance in developing countries. Humanities and Social Sciences Communications, 12, 66.

Liu H, Chen D, Zhang R, Hang X, Li R, Shen Q. 2016. Amino acids hydrolyzed from animal carcasses are a good additive for the production of bio-organic fertilizer. Frontiers in Microbiology7, 1-10.

Lobato B, Caldas J, Miura J. 2019. Brasil é líder mundial em tecnologias de controle biológico. [2025-01-25]. https://www.embrapa.br/busca-de-noticias/-/noticia/46366490/brasil-e-lider-mundial-em-tecnologias-de-controle-biologico (in Portuguese)

Lordelo F, Sousa Junior M, Paulilo L. 2010. Esterilização de equipamentos e materiais em laboratórios de biotecnologia & processos fermentativos. Instituto Federal da Bahia, 7, 1-17. (in Portuguese)

Lu Y, Song W, Wang J, Cao Y, Han X, Xu C, Wang F, Ge B. 2024. Biocontrol of Botrytis cinerea by Streptomyces noursei C27 and preliminary identification of antimicrobial metabolites. Biological Control196, 105561.

Lugtenberg B, Kamilova F. 2009. Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541–556.

MALFS (Ministry of Agriculture, Livestock and Food Supply). 2011. Normative Instruction n 13 of March 24, 2011 [2025-09-06]. https://www.ctpconsultoria.com.br/pdf/Instrucao-Normativa-13-de-24-03-2011.pdf  (in Portuguese)  

MALFS (Ministry of Agriculture, Livestock and Food Supply). 2023. Catálogo nacional de bioinsumos: consulta aberta. [2025-01-26]. https://www.gov.br/agricultura/pt-br/assuntos/inovacao/bioinsumos/o-programa/catalogo-nacional-de-bioinsumos (in Portuguese)

MALFS (Ministry of Agriculture, Livestock and Food Supply). 2025. Catálogo nacional de bioinsumos. [2025-06-28]. https://www.gov.br/agricultura/pt-br/assuntos/inovacao/bioinsumos/o-programa/catalogo-nacional-de-bioinsumos (in Portuguese)

Mannaa M, Park A R, Park J, Jeon H W, Jung H, Jeon H S, Han G, Kim J C, Seo Y S. 2024. Eco-friendly biocontrol of pine wilt disease: Enhancing tree defense with Bacillus subtilis JCK-1398 for sustainable forest management. Science of the Total Environment955, 177233.

Mashamaite C V, Ngcobo B L, Manyevere A, Bertling I, Fawole O A. 2022. Assessing the usefulness of moringa oleifera leaf extract as a biostimulant to supplement synthetic fertilizers: A review. Plants, 11, 2214.

Medina G D S, Rotondo R, Rodríguez G R. 2023. Agricultural bio-inputs as an innovative area of opportunity for agro-industrial growth in developing countries: Lessons from argentina. World, 4, 709–725.

Meena D C, Birthal P S, Kumara T M K. 2025. Biostimulants for sustainable development of agriculture: A bibliometric content analysis. Discover Agriculture, 3, 2.

Mendes R, Garbeva P, Raaijmakers J M. 2013. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 37, 634–663.

Mileva S, Georgieva T. 2022. Sectoral innovation system of agribusiness in Bulgaria-main challenges and perspectives. Access Journal (Access to Science, Business, Innovation in the Digital Economy), 3, 307–338.

Minuto A, Spadaro D, Garibaldi A, Gullino M L. 2006. Control of soilborne pathogens of tomato using a commercial formulation of Streptomyces griseoviridis and solarization. Crop Protection, 25, 468–475.

Morandi M A B, Halfeld-Vieira B A, Bettiol W. 2011. Fermentação líquida como meio para produção massal de conídios de Trichoderma. Embrapa Meio Ambiente. [2025-01-26]. https://www.cnpma.embrapa.br/anais/forum/posteres/PT017.pdf?utm_source=chatgpt.com

Moreira J B, Santos T D, Duarte J H, Bezerra P Q M, De Morais M G, Costa J A V. 2021. Role of microalgae in circular bioeconomy: From waste treatment to biofuel production. Clean Technologies and Environmental Policy, 25, 427-437.

Morin-Crini N, Lichtfouse E, Torri G, Crini G. 2019. Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environmental Chemistry Letters, 17, 1667–1692.

Morrison O. 2024. Biologicals in Brazil: What can the rest of the world learn? AgTechNavigator. [2025-01-05]. https://www.agtechnavigator.com/Article/2024/07/11/Biologicals-in-Brazil-what-can-the-rest-of-the-world-learn/?utm_source=chatgpt.com

Muthu Narayanan M, Metali F, Shivanand P, Ahmad N. 2024. Mangrove endophytic fungi: Biocontrol potential against Rhizoctonia solani and biofertilizers for fragrant rice cultivation. Heliyon, 10, e32310.

Nagaraj G, Kolanthasamy E. 2025. Unveiling the antimicrobial and biocontrol potential of the ascomycete fungus, Clonostachys rosea: A review. The Microbe, 6, 100226.

Nannipieri P, Ascher J, Ceccherini M T, Landi L, Pietramellara G, Renella G. 2017. Microbial diversity and soil functions. European Journal of Soil Science, 68, 12–26.

Nazari M T, Schommer V A, Braun J C A, Dos Santos L F, Lopes S T, Simon V, Machado B S, Ferrari V, Colla L M, Piccin J S. 2023. Using Streptomyces spp. as plant growth promoters and biocontrol agents. Rhizosphere, 27, 100741.

Nekvapil F, Ganea I V, Ciorîță A, Hirian R, Tomšić S, Martonos I M, Cintă Pinzaru S. 2021. A new biofertilizer formulation with enriched nutrients content from wasted algal biomass extracts incorporated in biogenic powders. Sustainability, 13, 8777.

Nguyen T H, Wang X, Utomo D, Gage E, Xu B. 2025. Circular bioeconomy and sustainable food systems: What are the possible mechanisms? Cleaner and Circular Bioeconomy, 11, 100145.

Niyogi A, Sarkar P, Bhattacharyya S, Pal S, Mukherjee S. 2024. Harnessing the potential of agriculture biomass: Reuse, transformation and applications in energy and environment. Environmental Science and Pollution Research, 32, 19180-19203.

Novaski A, Mógor Á F, Amatussi J O, Mógor G. 2024. Microalga as biofertilizer improves yield, sugars and amino acids content in red beets. Comunicata Scientiae15, e4065.

Nsabiyeze A, Ma R, Li J, Luo H, Zhao Q, Tomka J, Zhang M. 2024. Tackling climate change in agriculture: A global evaluation of the effectiveness of carbon emission reduction policies. Journal of Cleaner Production, 468, 142973.

Oliveira C A, Alves V M C, Marriel I E, Gomes E A, Scotti M R, Carneiro N P, Guimarães C T, Schaffert R E, Sá N M H. 2009. Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian cerrado biome. Soil Biology and Biochemistry, 41, 1782–1787.

Oliveira C L. 2021. Humic substances potential use. Modern Techniques in Agricultural and Horticultural Sciences, 1, 1-3.

 Oliveira M C, Fernandes T A, Cota L V, Valicente F H, Marriel I E. 2016. Banco ativo de germoplasma de microrganismos multifuncionais e fitopatogênicos: Acervo estruturado como coleção institucional da Embrapa Milho e Sorgo. In: XXXI Congresso Nacional de Milho e Sorgo. Rio Grande do Sul, Brazil. pp. 1–5. (in Portuguese)

Oliveira Paiva C A, Alves V M C, Gomes E A, Sousa S M, Paula Lana U G, Marriel I E. 2022. Microrganismos solubilizadores de fósforo e potássio na cultura da soja. In: Bioinsumos na Cultura da Soja. Embrapa, Brasilia, DF. pp. 163–181. (in Portuguese)

Oliveira Silva M F D, de Moura Pires M, Perobelli F S, Da Silva Gomes A, Martins Neto F L. 2025. Economic-ecological impacts of coffee growing: A multiregional analysis for Chapada Diamantina region, Bahia. Regional Science Policy & Practice17, 100206.

Papade S E, Mohapatra B, Phale P S. 2024. Pseudomonas and Acinetobacter spp. capable of metabolizing aromatics displays multifarious plant growth promoting traits: Insights on strategizing consortium-based application to agro-ecosystems. Environmental Technology & Innovation36, 103786.

Pedrero-Méndez A, Illescas M, Monte E, Hermosa R. 2025. The hex1 gene of Trichoderma simmonsii is involved in stress responses, biocontrol potential and wheat plant growth. Microbiological Research, 290, 127958.

Peng D, Jiang R, Peng H, Liu S. 2021. Soybean cyst nematodes: A destructive threat to soybean production in China. Phytopathology Research, 3, 19.

Perea-Molina P A, Pedraza-Herrera L A, Beauregard P B, Uribe-Vélez D. 2022. A biocontrol Bacillus velezensis strain decreases pathogen Burkholderia glumae population and occupies a similar niche in rice plants. Biological Control, 176, 105067.

Pérez-García A, Romero D, De Vicente A. 2011. Plant protection and growth stimulation by microorganisms: Biotechnological applications of Bacilli in agriculture. Current Opinion in Biotechnology, 22, 187–193.

Rajani P, Rajasekaran C, Vasanthakumari M M, Olsson S B, Ravikanth G, Uma Shaanker R. 2021. Inhibition of plant pathogenic fungi by endophytic Trichoderma spp. through mycoparasitism and volatile organic compounds. Microbiological Research, 242, 126595.

Rashwan A K, Bai H, Osman A I, Eltohamy K M, Chen Z, Younis H A, Al-Fatesh A, Rooney D W, Yap P S. 2023. Recycling food and agriculture by-products to mitigate climate change: A review. Environmental Chemistry Letters, 21, 3351–3375.

Reis V M, Rios F A, Braz G B P, Constantin J, Hirata E S, Biffe D F. 2020. Agronomic performance of sugarcane inoculated with Nitrospirillum amazonense (BR11145). Revista Caatinga, 33, 918–926.

Richardson A E, Barea J M, McNeill A M, Prigent-Combaret C. 2009. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil321, 305–339.

Rivera-Méndez W, Obregón M, Morán-Diez M E, Hermosa R, Monte E. 2020. Trichoderma asperellum biocontrol activity and induction of systemic defenses against Sclerotium cepivorum in onion plants under tropical climate conditions. Biological Control, 141, 104145.

Rocha M R D, Balduíno D P, Puerari H H, Marques E, De Souza T L P O. 2024. Reaction of common bean genotypes to Heterodera glycines. Pesquisa Agropecuária Tropical, 54, e78378.

Rocha T M, Marcelino P R F, Da Costa R A M, Rubio-Ribeaux D, Barbosa F G, Da Silva S S. 2024. Agricultural bioinputs obtained by solid-state fermentation: From production in biorefineries to sustainable agriculture. Sustainability, 16, 1076.  

Rudrakar S, Rughani P. 2024. IoT based agriculture (Ag-IoT): A detailed study on architecture, security and forensics. Information Processing in Agriculture11, 524–541.

Sandle T. 2020. Best practices in environmental monitoring. [2025-01-26]. https://www.researchgate.net/publication/342883006_Best_practices_in_environmental_monitoring

Santos F, Melkani S, Oliveira-Paiva C, Bini D, Pavuluri K, Gatiboni L, Mahmud A, Torres M, McLamore E, Bhadha J H. 2024. Biofertilizer use in the United States: Definition, regulation, and prospects. Applied Microbiology and Biotechnology108, 511.

Shahrajabian M H, Cheng Q, Sun W. 2022. The effects of amino acids, phenols and protein hydrolysates as biostimulants on sustainable crop production and alleviated stress. Recent Patents on Biotechnology16, 319–328.

Sharma S K, Saini S, Verma Sharma P K, Lal R, Roy M, Singh U B, Saxena A K, Sharma A K. 2019. National agriculturally important microbial culture collection in the global context of microbial culture collection centres. Proceedings of the National Academy of Sciences, India (Section B: Biological Sciences), 89, 405–418.

 Sharma V, Sharma A, Malannavar A B, Salwan R. 2020. Molecular aspects of biocontrol species of Streptomyces in agricultural crops. In: Salwan R, Sharma V, eds., Molecular Aspects of Plant Beneficial Microbes in Agriculture. Elsevier, Netherlands. pp. 89–109.

Siddique Afridi M, Schulman P, Teixeira W D, Guimaraes R A, Lacerda V N C, Teixeira S J C, De Medeiros F H V. 2024. Biocontrol agent amendments shape the soybean rhizosphere in a cyst nematode (Heterodera glycines) conducive soil over a two-year field trial. European Journal of Soil Biology, 122, 103638.

 

Da Silva J A T, De Medeiros E V, Da Silva J M, Tenório D D A, Moreira K A, da Silva Nascimento T C E, Souza-Motta C. 2016. Trichoderma aureoviride URM 5158 and Trichoderma hamatum URM 6656 are biocontrol agents that act against cassava root rot through different mechanisms. Journal of Phytopathology, 164, 1003–1011.

Silva J C F, Machado K L D G, Silva A F D S, Dias R, Bodnar V R, Vieira W O, Moreno-Pizani M A, Ramos J D, Santos E R D, Pauli I, Costa L C. 2025. Challenges and opportunities for new frontiers and technologies to guarantee food production: A broad systematic perspective. Sustainability17, 3792.

Da Silva Medina G, Rotondo R, Rodríguez G R. 2024. Innovations in agricultural bio-inputs: Commercial products developed in Argentina and Brazil. Sustainability, 16, 2763.

Smith J E. 2009. Mycorrhizal Symbiosis, 3rd ed. Soil Science Society of America Journal, New York, USA. pp. 787.

Sousa L F, Antunes A P A, Moreira M M, Arantes É H, Souza E G, Souza B H S, Cardoso E Bufalo T, Freitas C G, Dambroz C, Dória J. 2025. Combination of nanobioproduct and chemical ethylene synthesis inhibitor with entomopathogenic fungi: A novel management strategy for coffee berry borer in arabica coffee. Plants, 14, 1495.

Sprent J I, Ardley J, James E K. 2017. Biogeography of nodulated legumes and their nitrogen‐fixing symbionts. New Phytologist, 215, 40–56.

Tapadar S A, Jha D K. 2013. Disease management in staple crops: A bacteriological approach. In: Maheshwari D K, ed., Bacteria in Agrobiology: Disease Management. Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 111–152.

Telles T S, Nogueira M A, Hungria M. 2023. Economic value of biological nitrogen fixation in soybean crops in Brazil. Environmental Technology & Innovation31, 103158.

Terán F, Vives‐Peris V, Gómez‐Cadenas A, Pérez‐Clemente R M. 2024. Facing climate change: Plant stress mitigation strategies in agriculture. Physiologia Plantarum176, e14484.

Tian R, Tian Y, Mi Q, Huang L. 2025. Histocytological analysis reveals the biocontrol activity of a rhizospheric bacterium Pseudomonas rhizophila Z98 against kiwifruit bacterial canker. Pesticide Biochemistry and Physiology, 208, 106251.

Tienda S, Vida C, Villar-Moreno R, De Vicente A, Cazorla F M. 2024. Development of a Pseudomonas-based biocontrol consortium with effective root colonization and extended beneficial side effects for plants under high-temperature stress. Microbiological Research285, 127761.

Trujillo-Roldán M A, Valdez-Cruz N A, Gonzalez-Monterrubio C F, Acevedo-Sánchez E V, Martínez-Salinas C, García-Cabrera R I, Gamboa-Suasnavart R A, Marín-Palacio L D, Villegas J, Blancas-Cabrera A. 2013. Scale-up from shake flasks to pilot-scale production of the plant growth-promoting bacterium Azospirillum brasilense for preparing a liquid inoculant formulation. Applied Microbiology and Biotechnology, 97, 9665–9674.

Vassilev N, Vassileva M, Lopez A, Martos V, Reyes A, Maksimovic I, Eichler-Löbermann B, Malusà E. 2015. Unexploited potential of some biotechnological techniques for biofertilizer production and formulation. Applied Microbiology and Biotechnology, 99, 4983–4996.

Viana C M, Freire D, Abrantes P, Rocha J, Pereira P. 2022. Agricultural land systems importance for supporting food security and sustainable development goals: A systematic review. Science of the Total Environment, 806, 150718.

Villavicencio-Vásquez M, Espinoza-Lozano F, Espinoza-Lozano L, Coronel-León J. 2025. Biological control agents: Mechanisms of action, selection, formulation and challenges in agriculture. Frontiers in Agronomy, 7, 1578915.

Wang Y, Pei Y, Wang X, Dai X, Zhu M. 2024. Antimicrobial metabolites produced by the plant growth-promoting rhizobacteria (PGPR): Bacillus and Pseudomonas. Advanced Agrochem3, 206–221.

Yang Z, Liu T, Fan J, Chen Y, Wu S, Li J, Liu Z, Yang Z, Li L, Liu S, Yang H, Yin H, Meng D, Tang Q. 2024. Biocontrol agents modulate phyllosphere microbiota interactions against pathogen Pseudomonas syringae. Environmental Science and Ecotechnology, 21, 100431.

Yasmin H, Bano A, Wilson N L, Nosheen A, Naz R, Hassan M N, Ilyas N, Saleem M H, Noureldeen A, Ahmad P, Kennedy I. 2022. Drought‐tolerant Pseudomonas sp. showed differential expression of stress‐responsive genes and induced drought tolerance in Arabidopsis thalianaPhysiologia Plantarum, 174, e13497.

Yogi L N, Thalal T, Bhandari S. 2025. The role of agriculture in Nepal’s economic development: Challenges, opportunities, and pathways for modernization. Heliyon, 11, e41860.

Zenelt W, Krawczyk K. 2025. Insect-derived bacteria as biocontrol tool and a potent suppressor of plant pathogenic fungi in tomato cultivation. Microbial Pathogenesis198,  107158.

Zhang M, Li X, Pan Y, Qi D, Zhou D, Chen Y, Feng J, Wei Y, Zhao Y, Li K, Wang W, Zhang L, Xie J. 2024. Biocontrol mechanism of Bacillus siamensis sp. QN2MO-1 against tomato fusarium wilt disease during fruit postharvest and planting. Microbiological Research, 283, 127694.

Zobiole L H S, Kremer R J, De Oliveira R S, Constantin J. 2010. Glyphosate affects photosynthesis in first and second generation of glyphosate-resistant soybeans. Plant and Soil, 336, 251–265.

Zulfiqar F, Moosa A, Ali H M, Bermejo N F, Munné-Bosch S. 2024. Biostimulants: A sufficiently effective tool for sustainable agriculture in the era of climate change? Plant Physiology and Biochemistry, 211, 108699.


[1] Niu Wang, Weidong Zhang, Zhenyu Zhong, Xiongbo Zhou, Xinran Shi, Xin Wang. FGF7 secreted from dermal papillae cell regulates the proliferation and differentiation of hair follicle stem cell[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3583-3597.
[2] Lichao Zhai, Shijia Song, Lihua Zhang, Jinan Huang, Lihua Lv, Zhiqiang Dong, Yongzeng Cui, Mengjing Zheng, Wanbin Hou, Jingting Zhang, Yanrong Yao, Yanhong Cui, Xiuling Jia. Subsoiling before winter wheat alleviates the kernel position effect of densely grown summer maize by delaying post-silking root–shoot senescence[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3384-3402.
[3] Tiantian Chen, Lei Li, Dan Liu, Yubing Tian, Lingli Li, Jianqi Zeng, Awais Rasheed, Shuanghe Cao, Xianchun Xia, Zhonghu He, Jindong Liu, Yong Zhang. Genome wide linkage mapping for black point resistance in a recombinant inbred line population of Zhongmai 578 and Jimai 22[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3311-3321.
[4] Zuxian Chen, Bingbing Zhao, Yingying Wang, Yuqing Du, Siyu Feng, Junsheng Zhang, Luxiang Zhao, Weiqiang Li, Yangbao Ding, Peirong Jiao. H5N1 avian influenza virus PB2 antagonizes duck IFN-β signaling pathway by targeting mitochondrial antiviral signaling protein[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3614-3625.
[5] Yang Sun, Yu Liu, Li Zhou, Xinyan Liu, Kun Wang, Xing Chen, Chuanqing Zhang, Yu Chen. Activity of fungicide cyclobutrifluram against Fusarium fujikuroi and mechanism of the pathogen resistance associated with point mutations in FfSdhB, FfSdhC2 and FfSdhD[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3511-3528.
[6] Yufeng Xiao, Meiqi Dong, Xian Wu, Shuang Liang, Ranhong Li, Hongyu Pan, Hao Zhang. Enrichment, domestication, degradation, adaptive mechanism, and nicosulfuron bioremediation of bacteria consortium YM2[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3529-3545.
[7] Yuxin He, Fei Deng, Chi Zhang, Qiuping Li, Xiaofan Huang, Chenyan He, Xiaofeng Ai, Yujie Yuan, Li Wang, Hong Cheng, Tao Wang, Youfeng Tao. Wei Zhou, Xiaolong Lei, Yong Chen, Wanjun Ren. Can a delayed sowing date improve the eating and cooking quality of mechanically transplanted rice in the Sichuan Basin, China?[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3368-3383.
[8] Dili Lai, Md. Nurul Huda, Yawen Xiao, Tanzim Jahan, Wei Li, Yuqi He, Kaixuan Zhang, Jianping Cheng, Jingjun Ruan, Meiliang Zhou. Evolutionary and expression analysis of sugar transporters from Tartary buckwheat revealed the potential function of FtERD23 in drought stress[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3334-3350.
[9] Zishuai Wang, Wangchang Li, Zhonglin Tang. Enhancing the genomic prediction accuracy of swine agricultural economic traits using an expanded one-hot encoding in CNN models[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3574-3582.
[10] Yunji Xu, Xuelian Weng, Shupeng Tang, Weiyang Zhang, Kuanyu Zhu, Guanglong Zhu, Hao Zhang, Zhiqin Wang, Jianchang Yang. Untargeted lipidomic analysis of milled rice under different alternate wetting and soil drying irrigation regimes[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3351-3367.
[11] Minghui Li, Yilan Chen, Siqiao Wang, Xueke Sun, Yongkun Du, Siyuan Liu, Ruiqi Li, Zejie Chang, Peiyang Ding, Gaiping Zhang. Plug-and-display nanoparticle immunization of the core epitope domain induces potent neutralizing antibody and cellular immune responses against PEDV[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3598-3613.
[12] Jing Zhou, Bingshuai Du, Yibo Cao, Kui Liu, Zhihua Ye, Yiming Huang, Lingyun Zhang. Genome-wide identification of sucrose transporter genes in Camellia oleifera and characterization of CoSUT4[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3494-3510.
[13] Yuheng Wang, Furong Kang, Bo Yu, Quan Long, Huaye Xiong, Jiawei Xie, Dong Li, Xiaojun Shi, Prakash Lakshmanan, Yueqiang Zhang, Fusuo Zhang. Magnesium supply is vital for improving fruit yield, fruit quality and magnesium balance in citrus orchards with increasingly acidic soil[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3641-3655.
[14] Mingxin Feng, Ying Hu, Xin Yang, Jingwen Li, Haochen Wang, Yujia Liu, Haijun Ma, Kai Li, Jiayin Shang, Yulin Fang, Jiangfei Meng. Uncovering the miRNA-mediated regulatory network involved in postharvest senescence of grape berries[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3465-3483.
[15] Li Liu, Yifeng Feng, Ziqi Han, Yaxiao Song, Jianhua Guo, Jing Yu, Zidun Wang, Hui Wang, Hua Gao, Yazhou Yang, Yuanji Wang, Zhengyang Zhao. Functional analysis of the xyloglucan endotransglycosylase/hydrolase gene MdXTH2 in apple fruit firmness formation[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3418-3434.
No Suggested Reading articles found!