Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Amur grape VaMYB4a mediates grapevine cold tolerance via dual regulation of CBF-COR and ABA pathways

Qinhan Yu1*, Yue Sun2*, Yaping Xie2, Jiaxin Li2, Rong Wang2, Qiaoling Zheng1, Chang Liu1, Ningbo Zhang2, 3, 4, 5, 6, Weirong Xu1, 2, 3, 4, 5, 6#

1 School of Life Sciences, Ningxia University, Yinchuan 750021, China

2 College of Enology and Horticulture, Ningxia University, Yinchuan 750021, Ningxia, China

3 Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, Yinchuan 750021, China

4 Ningxia Grape and Wine Research Institute, Ningxia University, Yinchuan 750021, China

5 Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China

6 State Key Laboratory of Efficient Production of Forest Resources, Ningxia, Yinchuan 750021, China

 Highlights 

1. VaMYB4a integrates CBF-COR and ABA signaling to enhance cold tolerance in grapevines.

2. CRISPR/Cas9 knockout and overexpression studies reveal VaMYB4a’s dual regulatory mechanisms.

3. ABA exerts a dual role, dynamically modulating VaMYB4a-mediated cold tolerance.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

低温胁迫是限制作物产量的关键因素,尤其在温带气候条件下尤为突出。尽管脱落酸在寒冷胁迫响应中的作用已被广泛认可,但转录因子如何介导ABA依赖的耐寒机制仍不明确。本研究从山葡萄(Vitis amurensis Rupr.)中鉴定出MYB转录因子VaMYB4a,其通过整合ABA信号与CBF-COR通路协同调控低温适应性。通过构建拟南芥、葡萄愈伤组织及欧洲葡萄(Vitis vinifera L.)幼苗中进行过表达和CRISPR/Cas9基因编辑株系,我们发现VaMYB4a通过促进渗透调节、活性氧清除及气孔关闭来增强植株抗冻性。该蛋白以同源二聚体形式发挥作用,其C端结构域对转录激活至关重要。在分子机制上,VaMYB4a可直接上调CBFCOR基因表达,并精细调控ABA信号通路关键因子ABI1ABF4。值得注意的是,ABA呈现双重调控效应:在短期胁迫下增强VaMYB4a介导的抗冻性,而在长期冷暴露中削弱其功能,揭示低温与激素通路间复杂的级联调控网络。本研究不仅深化了对植物冷适应机制的认知,更为培育气候韧性葡萄品种提供了关键遗传靶标。



Abstract  

Cold stress represents a critical constraint on crop productivity, particularly in temperate climates. Despite the established role of abscisic acid (ABA) in cold stress responses, the precise mechanisms through which transcription factors mediate ABA-dependent cold tolerance remain elusive. Here, we identify VaMYB4a, a MYB transcription factor from Vitis amurensis Rupr. (Amur grape), as a key regulator of cold tolerance. It integrates ABA signaling with the CBF (C-repeat binding factors)-COR (cold-regulated) pathway to orchestrate cold stress adaptation. Through a combination of overexpression and CRISPR/Cas9-mediated knockout lines in Arabidopsis thaliana, grape callus, and Vitis vinifera.L seedlings, we demonstrate that VaMYB4a enhances freezing tolerance by promoting osmotic regulation, ROS (Reactive oxygen species) scavenging, and stomatal closure. VaMYB4a functions as a homo-dimer, with its C-terminal domain being essential for transcriptional activation. Mechanistically, VaMYB4a directly upregulates CBF and COR genes while fine-tuning ABA signaling components such as ABI1 and ABF4. Notably, ABA exhibits a dual role: enhancing VaMYB4a-mediated freezing tolerance under short-term stress but attenuating its effects during prolonged cold exposure, revealing an intricate regulatory crosstalk between cold and hormonal pathways. Our work not only advances the molecular understanding of cold adaptation but also provides a promising genetic target for developing stress-resilient grape varieties to mitigate the impacts of climate change.

Keywords:  Vitis amurensis Rupr.       VaMYB4a       CRISPR/Cas9       ABA signaling       CBF-COR pathway       cold tolerance  
Online: 12 September 2025  
Fund: 

This work was supported by Ningxia Hui Autonomous Region Key R&D Program (2023BCF01003), the National Natural Science Foundation of China (32472711 and 32060672) and the Agricultural Breeding Project of Ningxia Hui Autonomous Region (NXNYYZ202101).

About author:  #Correspondence Weirong Xu, E-mail: xuwr@nxu.edu.cn * These authors contributed equally to this study.

Cite this article: 

Qinhan Yu, Yue Sun, Yaping Xie, Jiaxin Li, Rong Wang, Qiaoling Zheng, Chang Liu, Ningbo Zhang, Weirong Xu. 2025. Amur grape VaMYB4a mediates grapevine cold tolerance via dual regulation of CBF-COR and ABA pathways. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.09.005

An J-P, Xu R-R, Liu X, Su L, Yang K, Wang X-F, Wang G-L, You C-X. 2022. Abscisic acid insensitive 4 interacts with ICE1 and JAZ proteins to regulate ABA signaling-mediated cold tolerance in apple. Journal of Experimental Botany, 73, 980-997.

An J, Lin R, Qu F-J, You C X, Wang X, Hao Y J. 2018. R2R3‐MYB transcription factor MdMYB23 is involved in the cold tolerance and proanthocyanidin accumulation in apple. The Plant Journal, 96, 562-577. doi,10.1111/tpj.14050.

An J P, Wang X F, Zhang X W, Xu H F, Bi S Q, You C X, Yu H. 2019. An apple MYB transcription factor regulates cold tolerance and anthocyanin accumulation and undergoes MIEL1‐mediated degradation. Plant Biotechnology Journal, 18, 337-353. doi,10.1111/pbi.13201.

Bates L S, Waldren R P, Tearesoil I D. 1973. Rapid determination of free proline for water-stress studies. Plant soil, 39, 205-207.

Buskirk H A V, Thomashow M F. 2006. Arabidopsis transcription factors regulating cold acclimation. Physiologia Plantarum, 126, 72-80.

Cavallini E, Matus J T, Finezzo L, Zenoni S, Loyola R, Guzzo F, Schlechter R, Ageorges A, Arce-Johnson P, Tornielli G B. 2015. The phenylpropanoid pathway is controlled at different branches by a set of R2R3-MYB C2 repressors in grapevine. Plant physiology, 167, 1448-1470.

Chen H, Lai L, Li L, Liu L, Jakada B H, Huang Y, He Q, Chai M, Niu X, Qin Y. 2020a. AcoMYB4, an Ananas comosus L. MYB transcription factor, functions in osmotic stress through negative regulation of ABA signaling. International Journal of Molecular Sciences, 21, 5727.

Chen J, Li Y, Li F, Wu Q, Jiang Y, Yuan D. 2018. Banana MaABI5 is involved in ABA-induced cold tolerance through interaction with a RING E3 ubiquitin ligase, MaC3HC4-1. Scientia Horticulturae, 237, 239-246.

Chen K, Li G-J, Bressan R A, Song C-P, Zhu J-K, Zhao Y. 2020b. Abscisic acid dynamics, signaling, and functions in plants. Journal of Integrative Plant Biology, 62, 25-54.

Chen W J, Zhu T. 2004. Networks of transcription factors with roles in environmental stress response. Trends in Plant Science, 9, 591-596.

Chu-kun W, Yu-wen Z, Peng-liang H, Jian-qiang Y, Yu-jin H, Qian X, Chunxiang Y, Da-gang H. 2022. Auxin response factor gene MdARF2 is involved in ABA signaling and salt stress response in apple. Journal of Integrative Agriculture, 21, 2264-2274.

Clough S J, Bent A F. 1998. Floral dip: a simplified method for Agrobacterium‐mediated transformation of Arabidopsis thaliana. The Plant Journal, 16, 735-743.

Colquhoun T A, Kim J Y, Wedde A E, Levin L A, Schmitt K C, Schuurink R C, Clark D G. 2011. PhMYB4 fine-tunes the floral volatile signature of Petunia× hybrida through PhC4H. Journal of Experimental Botany, 62, 1133-1143.

Cook D, Fowler S, Fiehn O, Thomashow M F. 2004. A prominent role for the cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 101, 15243-15248. doi,10.1073/pnas.0406069101.

De Y, Shi F, Gao F, Mu H, Wang Y. 2021. Siberian Wildrye (Elymus sibiricus L.) Abscisic Acid-Insensitive 5 Gene Is Involved in Abscisic Acid-Dependent Salt Response. Plants, 10, 1351-1351. doi,10.3390/plants10071351.

Ding Y, Li H, Zhang X, Xie Q, Gong Z, Yang S. 2015. OST1 Kinase Modulates Freezing Tolerance by Enhancing ICE1 Stability in Arabidopsis. Developmental Cell, 32, 278-289. doi,10.1016/j.devcel.2014.12.023.

Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L. 2010. MYB transcription factors in Arabidopsis. Trends in Plant Science, 15, 573-581.

Eremina M, Rozhon W, Poppenberger B. 2016. Hormonal control of cold stress responses in plants. Cellular Molecular Life Sciences, 73, 797-810.

Fennell A. 2004. Freezing tolerance and injury in grapevines. Journal of Crop Improvement, 10, 201-235.

Fowler S, Thomashow M F. 2002. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. The Plant Cell, 14, 1675-1690.

Gong Z, Dong C H, Lee H, Zhu J, Xiong L, Gong D, Stevenson B, Zhu J K. 2004. A DEAD Box RNA Helicase Is Essential for mRNA Export and Important for Development and Stress Responses in Arabidopsis. The Plant Cell, 17, 256-267. doi,10.1105/tpc.104.027557.

Gu K-D, Zhang Q-Y, Yu J-Q, Wang J-H, Zhang F-J, Wang C-K, Zhao Y-W, Sun C-H, You C-X, Hu D-G. 2020. R2R3-MYB transcription factor MdMYB73 confers increased resistance to the fungal pathogen Botryosphaeria dothidea in apples via the salicylic acid pathway. Journal of Agricultural Food Chemistry, 69, 447-458.

Guo H, Wang Y, Rui W, Hu P, Wang Y, Jia Y, Zhang C, Zhang Y, Zhang Y, Wang C, Yang C. 2017. Expression of the MYB transcription factor gene BplMYB46 affects abiotic stress tolerance and secondary cell wall deposition in Betula platyphylla. Plant Biotechnology Journal, 15, 107-121. doi,10.1111/pbi.12595.

Guo Y, Tan Y, Qu M, Hong K, Zeng L, Wang L, Zhuang C, Qian Q, Hu J, Xiong G. 2023. OsWR2 recruits OsHDA704 to regulate the deacetylation of H4K8ac in the promoter of OsABI5 in response to drought stress. Journal of Integrative Plant Biology, 65, 1651-1669. doi,10.1111/jipb.13481.

Gusta L, Trischuk R, Weiser C. 2005. Plant cold acclimation: the role of abscisic acid. Journal of Plant Growth Regulation, 24, 308-318.

Hong J H, Seah S W, Xu J. 2013. The root of ABA action in environmental stress response. Plant Cell Reports, 32. doi,10.1007/s00299-013-1439-9.

Jiang H, Zhou L, Gao H-N, Xiaofei W, Li Z, Li Y. 2022. The transcription factor MdMYB2 influences cold tolerance and anthocyanin accumulation by activating SUMO E3 ligase MdSIZ1 in apple. Plant physiology, 6, 2044-2060. doi,10.1093/plphys/kiac211.

Jin H, Cominelli E, Bailey P, Parr A, Mehrtens F, Jones J, Tonelli C, Weisshaar B, Martin C. 2000. Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. The EMBO Journal, 19, 6150-6161.

Kim J H, Kim W T. 2013. The Arabidopsis RING E3 Ubiquitin Ligase AtAIRP3/LOG2 Participates in Positive Regulation of High-Salt and Drought Stress Responses. Plant physiology, 162, 1733-1749. doi,10.1104/pp.113.220103.

Kim K, Cheong Y H, Grant J J, Pandey G K, Luan S. 2003. CIPK3, a Calcium Sensor–Associated Protein Kinase That Regulates Abscisic Acid and Cold Signal Transduction in Arabidopsis. The Plant Cell, 15, 411-423. doi,10.1105/tpc.006858.

Klumpp K, Lam A M, Lukacs C, Vogel R, Ren S, Espiritu C, Baydo R, Atkins K, Abendroth J, Liao G, Efimov A, Hartman G D, Flores O. 2015. High-resolution crystal structure of a hepatitis B virus replication inhibitor bound to the viral core protein. Proceedings of the National Academy of Sciences of the United States of America, 112, 15196-15201. doi,10.1073/pnas.1513803112.

Koornneef M, Bentsink L, Hilhorst H. 2002. Seed dormancy and germination. Current Opinion in Plant Biology, 5, 33-36.

Lee H G, Seo P J. 2015. The MYB 96– HHP module integrates cold and abscisic acid signaling to activate the CBF – COR pathway in Arabidopsis. The Plant Journal, 82, 962-977. doi,10.1111/tpj.12866.

Li-na X, Ming C, Dong-hong M, Lu F, Zhao-shi X, Yong-bin Z, Dong-bei X, Lian-cheng L, You-zhi M, Xiao-hong Z. 2017. The NAC-like transcription factor SiNAC110 in foxtail millet (Setaria italica L.) confers tolerance to drought and high salt stress through an ABA independent signaling pathway. Journal of Integrative Agriculture, 16, 559-571.

Li R, Song Y, Wang X, Zheng C, Liu B, Zhang H, Ke J, Wu X, Wu L, Yang R, Jiang M. 2024. OsNAC5 orchestrates OsABI5 to fine‐tune cold tolerance in rice. Journal of Integrative Plant Biology, 66, 660-682.

Li X, Jia J, Zhao P, Guo X, Chen S, Qi D, Cheng L, Liu G. 2020. LcMYB4, an unknown function transcription factor gene from sheepgrass, as a positive regulator of chilling and freezing tolerance in transgenic Arabidopsis. BMC Plant Biology, 20, 1-15.

Li Y, Liu Y, Gao Z, Wang R, Xu T, Qi M, Liu Y, Li T. 2023. MicroRNA162 regulates stomatal conductance in response to low night temperature stress via abscisic acid signaling pathway in tomato. Frontiers in plant science, 14, 1045112.

Lim C W, Lee S C. 2020. ABA-Dependent and ABA-Independent Functions of RCAR5/PYL11 in Response to Cold Stress. Frontiers in plant science, 11, 587620. doi,10.3389/fpls.2020.587620.

Liu S, Wu J, Mawia A M, Wei X, Cao R, Jiao G, Wu Y, Zhang J, Xie L, Sheng Z, Hu S, Li S, Lv Y, Lu F, Chen Y, Fiaz S, Tabassum J, Du Z, Gao F, Ren G, Shao G, Hu P, Tang S. 2024. A novel transcription factor OsMYB73 affects grain size and chalkiness by regulating endosperm storage substances' accumulation‐mediated auxin biosynthesis signalling pathway in rice. Plant Biotechnology Journal, 1-18.

Liu T, Chen T, Kan J, Yao Y, Guo D, Yang Y, Ling X, Wang J, Zhang B. 2021. The GhMYB36 transcription factor confers resistance to biotic and abiotic stress by enhancing PR1 gene expression in plants. Plant Biotechnology Journal, 20, 4. doi,10.1111/pbi.13751.

Liu X, Hu P, Huang M, Tang Y, Yuge L, Li L, Hou X L. 2016. The NF-YC–RGL2 module integrates GA and ABA signalling to regulate seed germination in Arabidopsis. Nature Communications, 7. doi,10.1038/ncomms12768.

Luo Y, Wang Y, Li X, Yang X, Bai H, Liao X, Luo X, Zhang F, Zhang L, Liu Q. 2023. Transcription factor DgMYB recruits H3K4me3 methylase to DgPEROXIDASE to enhance chrysanthemum cold tolerance. Plant physiology, 194, 1104-1119. doi,10.1093/plphys/kiad479.

Lv Y, Yang M, Hu D, Yang Z, Ma S, Li X, Xiong L. 2017. The OsMYB30 Transcription Factor Suppresses Cold Tolerance by Interacting with a JAZ Protein and Suppressing β-Amylase Expression. Plant physiology, 173, 1475-1491. doi,10.1104/pp.16.01725.

Mantyla E, Lang V, Palva E T. 1995. Role of abscisic acid in drought-induced freezing tolerance, cold acclimation, and accumulation of LT178 and RAB18 proteins in Arabidopsis thaliana. Plant physiology, 107, 141-148.

Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaguchi-Shinozaki K. 2004. Identification of cold‐inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. The Plant Journal, 38, 982-993.

Mittler R, Blumwald E. 2015. The Roles of ROS and ABA in Systemic Acquired Acclimation. The Plant Cell, 27 64-70. doi,10.1105/tpc.114.133090.

Miura K, Furumoto T. 2013. Cold signaling and cold response in plants. International Journal of Molecular Sciences, 14, 5312-5337.

Nai G, Liang G, Ma W, Lu S, Li Y, Gou H, Guo L, Chen B, Mao J. 2022. Overexpression VaPYL9 improves cold tolerance in tomato by regulating key genes in hormone signaling and antioxidant enzyme. BMC Plant Biology, 22, 344. doi,10.1186/s12870-022-03704-8.

Nakashima K, Yamaguchi‐Shinozaki K. 2005. Regulons involved in osmotic stress‐responsive and cold stress‐responsive gene expression in plants. Physiologia Plantarum, 126, 62-71. doi,10.1111/j.1399-3054.2005.00592.x.

Nonogaki H. 2014. Seed dormancy and germination—emerging mechanisms and new hypotheses. Frontiers in plant science, 5, 233.

Pandey G K, Cheong Y H, Kim K, Grant J J, Li L, Hung W, D’Angelo C, Weinl S, Kudla J, Luan S. 2004. The Calcium Sensor Calcineurin B-Like 9 Modulates Abscisic Acid Sensitivity and Biosynthesis in Arabidopsis. The Plant Cell, 16, 1912-1924. doi,10.1105/tpc.021311.

Pradeep K. Agarwal P A, M. K. Reddy & Sudhir K. Sopory 2006. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Reports, 25, 1263-1274.

Ramel F, Sulmon C, Bogard M, Couée I, Gouesbet G. 2009. Differential patterns of reactive oxygen species and antioxidative mechanisms during atrazine injury and sucrose-induced tolerance in Arabidopsis thaliana plantlets. BMC Plant Biology, 9, 1471-2229.

Rao M V, Davis K. 1999. Ozone‐induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. The Plant Journal, 37, 115-127.

Ren C, Kuang Y, Lin Y T, Guo Y, Li H, Fan P, Li S, Liang Z. 2022. Overexpression of grape ABA receptor gene VaPYL4 enhances tolerance to multiple abiotic stresses in Arabidopsis. BMC Plant Biology, 22, 271. doi,10.1186/s12870-022-03663-0.

Ren Y, Zhang S, Zhao Q, Wu Y, Li H. 2023. The CsMYB123 and CsbHLH111 are involved in drought stress-induced anthocyanin biosynthesis in Chaenomeles speciosa. Molecular Horticulture, 3, 25. doi,10.1186/s43897-023-00071-2.

Rubio S F, Noriega X, Pérez F J. 2018. Abscisic acid (ABA) and low temperatures synergistically increase the expression of CBF/DREB1 transcription factors and cold-hardiness in grapevine dormant buds. Annals of Botany, 123, 681-689. doi,10.1093/aob/mcy201.

Sah S K, Reddy K R, Li J. 2016. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants. Frontiers in plant science, 7. doi,10.3389/fpls.2016.00571.

Singh K B, Foley R C, Oñate-Sánchez L. 2002. Transcription factors in plant defense and stress responses. Current Opinion in Plant Biology, 5, 430-436.

Sun X-c, Gao Y-f, Zhang N, Li H-r, Yang S-z, Liu Y-s. 2015. SISOM inhibits seed germination by regulating the expression of ABA/GA metabolic genes and SIABI5 in Solanum lycopersicum. Journal of Integrative Agriculture, 14, 326-336. doi,10.1016/s2095-3119(14)60859-5.

Tuteja N. 2007. Abscisic acid and abiotic stress signaling. Plant signaling behavior, 2, 135-138.

Vannini C, Locatelli F, Bracale M, Magnani E, Marsoni M, Osnato M, Mattana M, Baldoni E, Coraggio I. 2004. Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. The Plant Journal, 37, 115-127.

Waadt R, Seller C A, Hsu P K, Takahashi Y, Munemasa S, Schroeder J I. 2022. Plant hormone regulation of abiotic stress responses. Nature Reviews Molecular Cell Biology, 23, 680-694. doi,10.1038/s41580-022-00479-6.

Wang F, Chen X, Dong S, Jiang X, Wang L, Yu J, Zhou Y. 2019a. Crosstalk of PIF4 and DELLA modulates CBF transcript and hormone homeostasis in cold response in tomato. Plant Biotechnology Journal, 18, 1041-1055. doi,10.1111/pbi.13272.

Wang P, Ma G, Zhang L, Li Y, Fu Z, Kan X, Han Y, Wang H, Jiang X, Liu Y, Gao L, Xia T. 2019b. A sucrose-induced MYB (SIMYB) transcription factor promoting proanthocyanidin accumulation in the tea plant (Camellia sinensis). Journal of Agricultural Food Chemistry, 67, 1418-1428.

Wang T, Jin Y, Deng L, Li F, Wang Z, Zhu Y, Wu Y, Qu H, Zhang S, Liu Y, Mei H, Luo L, Yan M, Gu M, Xu G. 2023. The transcription factor MYB110 regulates plant height, lodging resistance, and grain yield in rice. The Plant Cell, 36, 298-323. doi,10.1093/plcell/koad268.

Wang X, Liu W C, Zeng X-W, Yan S, Qiu Y, Wang J, Huang X, Yuan H. 2021a. HbSnRK2.6 Functions in ABA-Regulated Cold Stress Response by Promoting HbICE2 Transcriptional Activity in Hevea brasiliensis. International Journal of Molecular Sciences, 22, 12707-12707. doi,10.3390/ijms222312707.

Wang X, Liu W C, Zeng X-W, Yan S, Qiu Y, Wang J, Huang X, Yuan H. 2021b. HbSnRK2.6 Functions in ABA-Regulated Cold Stress Response by Promoting HbICE2 Transcriptional Activity in Hevea brasiliensis. International Journal of Molecular Sciences, 22, 12707-12707. doi,10.3390/ijms222312707.

Wani S H. 2015. Plant Stress Tolerance: Engineering ABA: A Potent Phytohormone. Transcriptomics: open access, 03. doi,10.4172/2329-8936.1000113.

Wei T, Jiao Z, Hou Y, Xu Y, Khan A, Pu L, Wang Y, Wang K, Liu F, Cai X, Zhou Z. 2023. GhGTG1 enhances cold stress tolerance by improving sensitivity to ABA in cotton and Arabidopsis. Environmental and Experimental Botany, 208, 105256-105256. doi,10.1016/j.envexpbot.2023.105256.

Wu J, Zhang J, Hao X, Lv K, Xi Y, Xu W. 2024. Establishment of an efficient callus transient transformation system for Vitis vinifera cv. ‘Chardonnay’. Protoplasma, 261, 351-366. doi,10.1007/s00709-023-01901-2.

Xie Y, Chen P, Yan Y, Bao C, Li X, Wang L, Shen X, Li H, Liu X, Niu C, C Z, Fang N, Shao Y, Zhao T, Yu J, Zhu J, Xu L, Nocker S v, Ma F, Guan Q. 2017. An atypical R2R3 MYB transcription factor increases cold hardiness by CBF‐dependent and CBF‐independent pathways in apple. New Phytologist, 218, 201-218. doi,10.1111/nph.14952.

Xin X, Wang L, Pan Y, Ye L, Zhai T, Gu M, Wang Y, Zhang J, Li X, Ma W, Zhang S. 2024. MYB Transcription Factor CDC5 Activates CBF3 Expression to Positively Regulates Freezing Tolerance via Cooperating With ICE1 and Histone Modification in Arabidopsis. Plant Cell & Environment, 48, 97-108. doi,10.1111/pce.15144.

Xing C, Liu Y, Zhao L, Zhang S, Huang X. 2018. A novel MYB transcription factor regulates ascorbic acid synthesis and affects cold tolerance. Plant, Cell & Environment, 42, 832-845. doi,10.1111/pce.13387.

Xu P-y, Xu L, Xu H, He X-w, He P, Chang Y-s, Wang S, Zheng W-y, Wang C-z, Chen X, Li L-g, Wang H-b. 2023. MdWRKY40 is directly promotes anthocyanin accumulation and blocks MdMYB15L, the repressor of MdCBF2, which improves cold tolerance in apple. Journal of Integrative Agriculture, 22, 1704-1719. doi,10.1016/j.jia.2023.04.033.

Ya R, Li J, Zhang N, Yu Q, Xu W. 2022. Phenotypically abnormal cotyledonaryVitis viniferaembryos differ in anatomy, endogenous hormone levels and transcriptome profiles. Tree Physiology, 43. doi,10.1093/treephys/tpac129.

Ya R, Li J, Zhang N, Yu Q, Xu W. 2023. Phenotypically abnormal cotyledonary Vitis vinifera embryos differ in anatomy, endogenous hormone levels and transcriptome profiles. Tree Physiology, 43, 467-485.

Yadav S K. 2010. Cold stress tolerance mechanisms in plants. A review. Agronomy for Sustainable Development, 30, 515-527. doi,10.1051/agro/2009050.

Yan F, Deng W, Wang X, Yang C, Li Z. 2012. Maize (Zea mays L.) homologue of ABA-insensitive (ABI) 5 gene plays a negative regulatory role in abiotic stresses response. Plant Growth Regulation. doi,10.1007/s10725-012-9727-x.

Yan J, Yu L, He L, Zhu L, Xu S, Wan Y, Wang H, Wang Y, Zhu W. 2019. Comparative transcriptome analysis of celery leaf blades identified an R2R3-MYB transcription factor that regulates apigenin metabolism. Journal of Agricultural Food Chemistry, 67, 5265-5277.

Yang J, Wu X, Aucapiña C b, Zhang D, Huang J, Hao Z, Zhang Y, Ren Y, Miao Y. 2023. NtMYB12 requires for competition between flavonol and (pro) anthocyanin biosynthesis in Narcissus tazetta tepals. Molecular Horticulture, 3, 2.

Yao P, Huang Y, Dong Q, Wan M, Wang A, Chen Y, Li C, Wu Q, Chen H, Zhao H. 2020. FtMYB6, a light-induced SG7 R2R3-MYB transcription factor, promotes flavonol biosynthesis in tartary buckwheat (Fagopyrum tataricum). Journal of Agricultural Food Chemistry, 68, 13685-13696.

Yu Q, Zheng Q, Shen W, Li J, Yao W, Xu W. 2022a. Grape CIPK18 acts as a positive regulator of CBF cold signaling pathway by modulating ROS homeostasis. Environmental and Experimental Botany, 203, 103999-103999. doi,10.22541/au.165073686.69448424/v1.

Yu Q, Zheng Q, Shen W, Li J, Yao W, Xu W. 2022b. Grape CIPK18 acts as a positive regulator of CBF cold signaling pathway by modulating ROS homeostasis. Environmental Experimental Botany, 203, 105063.

Zhang J, Wu J, Hao X, Xie Y, Lv K, Xu W. 2023. Establishment of a stable grape immature zygotic embryo-based genetic transformation system. Scientia Horticulturae, 316, 112009. doi,10.1016/j.scienta.2023.112009.

Zhang L, Song J, Lin R, Tang M, Shao S, Yu J, Zhou Y. 2022. Tomato SlMYB15 transcription factor targeted by sly-miR156e-3p positively regulates ABA-mediated cold tolerance. Journal of Experimental Botany, 73, 7538-7551. doi,10.1093/jxb/erac370.

Zhang Q Y, Yu J Q, Wang J, Hu D-g, Hao Y J. 2017. Functional characterization of MdMYB73 reveals its involvement in cold stress response in apple calli and Arabidopsis. Journal of Integrative Agriculture, 16, 2215-2221. doi,10.1016/s2095-3119(17)61723-4.

Zhang Y, Yu S, Niu P, Su L, Jiao X-C, Sui X, Shi Y, Liu B, Lu W, Zhu H, Jiang X. 2024. RcMYB8 enhances salt and drought tolerance in rose (Rosa chinensis) by modulating RcPR5/1 and RcP5CS1. Molecular Horticulture, 4, 3. doi,10.1186/s43897-024-00080-9.

Zhao C, Zhang Z, Xie S, Si T, Li Y, Zhu J. 2016. Mutational evidence for the critical role of CBF transcription factors in cold acclimation in Arabidopsis. Plant physiology, 171, 2744-2759.

Zheng P, Cao L, Zhang C, Fang X, Wang L, Miao M, Tang X, Liu Y, Cao S. 2023a. The transcription factor MYB43 antagonizes with ICE1 to regulate freezing tolerance in Arabidopsis. New Phytologist, 238, 2440-2459. doi,10.1111/nph.18882.

Zheng P, Cao L, Zhang C, Fang X, Wang L, Miao M, Tang X, Liu Y, Cao S. 2023b. The transcription factor MYB43 antagonizes with ICE1 to regulate freezing tolerance in Arabidopsis. New Phytologist, 238, 2240-2459. doi,10.1111/nph.18882.

Zhou M, Shen C, Wu L, Tang K, Lin J. 2010. CBF-dependent signaling pathway: A key responder to low temperature stress in plants. Critical Reviews in Biotechnology, 31, 186-192. doi,10.3109/07388551.2010.505910.

Zhu J. 2016a. Abiotic Stress Signaling and Responses in Plants. Cell, 167, 313-324. doi,10.1016/j.cell.2016.08.029.

Zhu J K. 2016b. Abiotic stress signaling and responses in plants. Cell, 167, 313-324. 

[1] Shanyu Li, Guifang Lin, Haoqi Wen, Haiyan Lu, Anyuan Yin, Chanqin Zheng, Feifei Li, Qingxuan Qiao, Lu Jiao, Ling Lin, Yi Yan, Xiujuan Xiang, Huang Liao, Huiting Feng, Yussuf Mohamed Salum, Minsheng You, Wei Chen, Weiyi He. Knock-in of exogenous sequences based on CRISPR/Cas9 targeting autosomal genes and sex chromosomes in the diamondback moth, Plutella xylostella[J]. >Journal of Integrative Agriculture, 2024, 23(9): 3089-3103.
[2] Jun Lü, Jingxiang Chen, Yutao Hu , Lin Chen, Shihui Li, Yibing Zhang, Wenqing Zhang.

CRISPR/Cas9-mediated NlInR2 mutants: Analyses of residual mRNA and truncated proteins [J]. >Journal of Integrative Agriculture, 2024, 23(6): 2006-2017.

[3] Jianjun Wang, Yanan Shao, Xin Yang, Chi Zhang, Yuan Guo, Zijin Liu, Mingxun Chen.

Heterogeneous expression of stearoyl-acyl carrier protein desaturase genes SAD1 and SAD2 from Linum usitatissimum enhances seed oleic acid accumulation and seedling cold and drought tolerance in Brassica napus [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1864-1878.

[4] Jiali Ying, Yan Wang, Liang Xu, Tiaojiao Qin, Kai Xia, Peng Zhang, Yinbo Ma, Keyun Zhang, Lun Wang, Junhui Dong, Lianxue Fan, Yuelin Zhu, Liwang Liu.

Establishing VIGS and CRISPR/Cas9 techniques to verify RsPDS function in radish [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1557-1567.

[5] Wei Huang, Ruyu Jiao, Hongtao Cheng, Shengli Cai, Jia Liu, Qiong Hu, Lili Liu, Bao Li, Tonghua Wang, Mei Li, Dawei Zhang, Mingli Yan.

Targeted mutations of BnPAP2 lead to a yellow seed coat in Brassica napus L. [J]. >Journal of Integrative Agriculture, 2024, 23(2): 724-730.

[6] Yang Yang, Hongfei Li, Changhao Liang, Donghai He, Hang Zhao, Hongbo Jiang, Jinjun Wang. Neuropeptide signaling systems are involved in regulating thermal tolerance in the oriental fruit fly[J]. >Journal of Integrative Agriculture, 2024, 23(12): 4147-4160.
[7] CAO Song, SUN Dong-dong, LIU Yang, YANG Qing, WANG Gui-rong.

Mutagenesis of odorant coreceptor Orco reveals the distinct role of olfaction between sexes in Spodoptera frugiperda [J]. >Journal of Integrative Agriculture, 2023, 22(7): 2162-2172.

[8] XU Peng-yue, XU Li, XU Hai-feng, HE Xiao-wen, HE Ping, CHANG Yuan-sheng, WANG Sen, ZHENG Wen-yan, WANG Chuan-zeng, CHEN Xin, LI Lin-guang, WANG Hai-bo.

MdWRKY40is directly promotes anthocyanin accumulation and blocks MdMYB15L, the repressor of MdCBF2, which improves cold tolerance in apple [J]. >Journal of Integrative Agriculture, 2023, 22(6): 1704-1719.

[9] WANG Fei-bing, WAN Chen-zhong, NIU Hao-fei, QI Ming-yang, LI Gang, ZHANG Fan, HU Lai-bao, YE Yu-xiu, WANG Zun-xin, PEI Bao-lei, CHEN Xin-hong, YUAN Cai-yuan.

OsMas1, a novel maspardin protein gene, confers tolerance to salt and drought stresses by regulating ABA signaling in rice [J]. >Journal of Integrative Agriculture, 2023, 22(2): 341-359.

[10] OUYANG Chun-zheng, YE Fan, WU Qing-jun, WANG Shao-li, Neil CRICKMORE, ZHOU Xu-guo, GUO Zhao-jiang, ZHANG You-jun. CRISPR/Cas9-based functional characterization of PxABCB1 reveals its roles in the resistance of Plutella xylostella (L.) to Cry1Ac, abamectin and emamectin benzoate[J]. >Journal of Integrative Agriculture, 2023, 22(10): 3090-3102.
[11] JIANG Mao-cheng, HU Zi-xuan, WANG Ke-xin, YANG Tian-yu, LIN Miao, ZHAN Kang, ZHAO Guo-qi. CRISPR/Cas9-mediated knockout of SLC15A4 gene involved in the immune response in bovine rumen epithelial cells[J]. >Journal of Integrative Agriculture, 2023, 22(10): 3148-3158.
[12] XIANG Guang-ming, ZHANG Xiu-ling, XU Chang-jiang, FAN Zi-yao, XU Kui, WANG Nan, WANG Yue, CHE Jing-jing, XU Song-song, MU Yu-lian, LI Kui, LIU Zhi-guo. The collagen type I alpha 1 chain gene is an alternative safe harbor locus in the porcine genome[J]. >Journal of Integrative Agriculture, 2023, 22(1): 202-213.
[13] WANG Chu-kun, ZHAO Yu-wen, HAN Peng-liang, YU Jian-qiang, HAO Yu-jin, XU Qian, YOU Chun-xiang, HU Da-gang. Auxin response factor gene MdARF2 is involved in ABA signaling and salt stress response in apple[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2264-2274.
[14] JIN Ming-hui, TAO Jia-hui, LI Qi, CHENG Ying, SUN Xiao-xu, WU Kong-ming, XIAO Yu-tao . Genome editing of the SfABCC2 gene confers resistance to Cry1F toxin from Bacillus thuringiensis in Spodoptera frugiperda[J]. >Journal of Integrative Agriculture, 2021, 20(3): 815-820.
[15] ZHANG Ting-ting, WEN Ting-mei, YUE Yang, YAN Qiang, DU Er-xia, FAN San-hong, Siegfried ROTH, LI Sheng, ZHANG Jian-zhen, ZHANG Xue-yao, ZHANG Min. Egg tanning improves the efficiency of CRISPR/Cas9-mediated mutant locust production by enhancing defense ability after microinjection[J]. >Journal of Integrative Agriculture, 2021, 20(10): 2716-2726.
No Suggested Reading articles found!