Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (2): 341-359    DOI: 10.1016/j.jia.2022.08.077
Special Issue: 水稻遗传育种合辑Rice Genetics · Breeding · Germplasm Resources
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |

OsMas1, a novel maspardin protein gene, confers tolerance to salt and drought stresses by regulating ABA signaling in rice

WANG Fei-bing1*, WAN Chen-zhong1, NIU Hao-fei1, QI Ming-yang1, LI Gang2, ZHANG Fan3, HU Lai-bao1, YE Yu-xiu1, WANG Zun-xin1, PEI Bao-lei, CHEN Xin-hong1, YUAN Cai-yong2

1 School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an 223003, P.R.China

2 Huaiyin Institute of Agricultural Sciences of Xuhuai Region, Huai’an 223001, P.R.China

3 Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  水稻(Oryza sativa L.)是世界主要粮食作物之一,干旱和高盐等非生物胁迫环境严重影响水稻产量,提高水稻水分利用效率的主要途径是提高其抗旱性和耐盐性。克隆和利用水稻抗旱耐盐相关基因,提高水稻的抗逆能力,对我国乃至全世界粮食安全都具有重要意义。本研究报道了水稻maspardin蛋白基因OsMas1克隆、生物学功能以及分子作用机制亚细胞定位分析,结果表明 OsMas1蛋白定位于细胞质。逆境胁迫表达分析表明,OsMas1基因受到200 mM甘露醇、20% PEG6000200 mM NaCl100 μM ABA诱导表达。构建植物表达载体RNAi干扰载体,将该基因导入水稻品种中花11号(WT),通过对转基因水稻材料抗性鉴定,结果表明过表达OsMas1-OE)植株的耐盐性和抗旱性显著增强,而干扰(OsMas1-RNAi)植株的耐盐性和抗旱性显著降低。对OsMas1-OEOsMas1-RNAiWT水稻材料进行芽期和苗期的外源ABA处理,结果发现OsMas1-OE植株对ABA的敏感性明显高于WT植株,而OsMas1-RNAi植株对ABA的敏感性明显WT植株。干旱、胁迫处理后,OsMas1-OE植株的ABA、脯氨酸、K+含量以及超氧化物歧化酶(SOD、过氧化氢酶(CAT)、过氧化物酶(POD)和光合活性显著高于OsMas1-RNAi植株和WT植株,丙二醛(MDA)、过氧化氢(H2O2)、超氧阴离子自由基(O2-)和Na+含量显著OsMas1-RNAi植株和WT植株。qRT-PCR分析表明,在盐、干旱胁迫下,过表达OsMas1基因显著上调ABA生物合成与信号途径、脯氨酸生物合成途径、活性氧(ROS)清除系统、光合作用和离子转运相关基因的表达,从而显著提高了转基因水稻植株的耐盐性和抗旱性,为水稻水分高效利用和抗逆育种奠定理论基础。

Abstract  

Drought and salt stresses, the major environmental abiotic stresses in agriculture worldwide, affect plant growth, crop productivity, and quality.  Therefore, developing crops with higher drought and salt tolerance is highly desirable.  This study reported the isolation, biological function, and molecular characterization of a novel maspardin gene, OsMas1, from rice.  The OsMas1 protein was localized to the cytoplasm.  The expression levels of OsMas1 were up-regulated under mannitol, PEG6000, NaCl, and abscisic acid (ABA) treatments in rice.  The OsMas1 gene was introduced into the rice cultivar Zhonghua 11 (wild type, WT).  OsMas1-overexpression (OsMas1-OE) plants exhibited significantly enhanced salt and drought tolerance; in contrast, OsMas1-interference (OsMas1-RNAi) plants exhibited decreased tolerance to salt and drought stresses, compared with WT.  OsMas1-OE plants exhibited enhanced hypersensitivity, while OsMas1-RNAi plants showed less sensitivity to exogenous ABA treatment at both germination and post-germination stages.  ABA, proline and K+ contents and superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and photosynthesis activities were significantly increased.  In contrast, malonaldehyde (MDA), hydrogen peroxide (H2O2), superoxide anion radical (O2-·), and Na+ contents were significantly decreased in OsMas1-OE plants compared with OsMas1-RNAi and WT plants.  Overexpression of OsMas1 up-regulated the genes involved in ABA signaling, proline biosynthesis, reactive oxygen species (ROS)-scavenging system, photosynthesis, and ion transport under salt and drought stresses.  Our results indicate that the OsMas1 gene improves salt and drought tolerance in rice, which may serve as a candidate gene for enhancing crop resistance to abiotic stresses.

Keywords:  ABA signaling        OsMas1 gene       rice       salt and drought tolerance  
Received: 05 November 2021   Accepted: 07 January 2022
Fund: 

This work was supported by the Natural Science Foundation of Jiangsu Province, China (BK20191483), the Natural Science Fund for Colleges and Universities in Jiangsu Province, China (20KJA180004), the Postgraduate Practice Innovation Program of Jiangsu Province, China (SJCX20_1339), the College Student Practice Innovation Program of Jiangsu Province, China (202111049104H, 202211049133H and 202211049138H) and the Talent Introduction Research Project of Huaiyin Institute of Technology, China (Z301B16534).

About author:  Correspondence WANG Fei-bing, E-mail: wangfeibing1986@163.com

Cite this article: 

WANG Fei-bing, WAN Chen-zhong, NIU Hao-fei, QI Ming-yang, LI Gang, ZHANG Fan, HU Lai-bao, YE Yu-xiu, WANG Zun-xin, PEI Bao-lei, CHEN Xin-hong, YUAN Cai-yuan. 2023.

OsMas1, a novel maspardin protein gene, confers tolerance to salt and drought stresses by regulating ABA signaling in rice . Journal of Integrative Agriculture, 22(2): 341-359.

Alia, Saradhi P P, Mohanty P. 1997. Involvement of proline in protecting thylakoid membranes against free radical-induced photodamage. Journal of Photochemistry and Photobiology (B: Biology), 38, 253–257.
Apel K, Hirt H. 2004. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399.
Bugg T D. 2004. Diverse catalytic activities in the α/β-hydrolase family of enzymes: activation of H2O, HCN, H2O2, and O2. Bioorganic Chemistry, 32, 367–375.
Dong S M, Xiao L, Li Z B, Shen J, Yan H B, Li S X, Liao W B, Peng M. 2022. A novel long non-coding RNA, DIR, increases drought tolerance in cassava by modifying stress-related gene expression. Journal of Integrative Agriculture, 21, 2588–2602.
El-Esawi M A, Alayafi A A. 2019. Overexpression of rice Rab7 gene improves drought and heat tolerance and increases grain yield in rice (Oryza sativa L.). Genes, 10, 56.
Fernández-Falcón M, Hernández M, Alvarez C E, Borges A A. 2006. Variation in nutrition along time and relative chlorophyll content of Leucospermum cordifolium cv. ‘High Gold’, and their relationship with chlorotic sypmptoms. Scientia Horticulturae, 107, 373–379.
Fukuda A, Nakamura A, Hara N, Toki S, Tanaka Y. 2011. Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes. Planta, 233, 175–188.
Fukuda A, Nakamura A, Tagiri A, Tanaka H, Miyao A, Hirochika H, Tanaka Y. 2004. Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant and Cell Physiology, 45, 146–159.
Gill S S, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909–930.
Hanna M, Blackstone C. 2009. Interaction of the SPG21 protein ACP33/maspardin with the aldehyde dehydrogenase ALDH16A1. Neurogenetics, 10, 217–228.
Hayzer D J, Leisinger T. 1980. The gene-enzyme relationships of proline biosynthesis in Escherichia coli. Journal of General Microbiology, 118, 287–293.
Hiei Y, Ohta S, Komarl T, Kumashiro T. 1994. Effcient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of boundaries of the T-DNA. The Plant Journal, 6, 271–282.
Hong Y Y, Zhang W H, Wang X M. 2010. Phospholipase D and phosphatidic acid signalling in plant response to drought and salinity. Plant Cell and Environment, 33, 627–635.
Hu L Y, Yue H, Zhang J Y, Li Y T S, Gong X Q, Zhou K, Ma F W. 2022. Overexpression of MdMIPS1 enhances drought tolerance and water-use efficiency in apple. Journal of Integrative Agriculture, 21, 1968–1981.
Huang J, Sun S, Xu D, Lan H, Sun H, Wang Z, Bao Y, Wang J, Tang H, Zhang H. 2012. A TFIIIA-type zinc finger protein confers multiple abiotic stress tolerances in transgenic rice (Oryza sativa L.). Plant Molecular Biology, 80, 337–350.
Huang Y, Zhang X X, Li Y H, Ding J Z, Du H M, Zhao Z, Zhou L N, Liu C, Gao S B, Cao M J, Lu Y L, Zhang S Z. 2018. Overexpression of the Suaeda salsa SsNHX1 gene confers enhanced salt and drought tolerance to transgenic Zea mays. Journal of Integrative Agriculture, 17, 2612–2623.
Hussain H A, Men S, Hussain S, Chen Y, Ali S, Zhang S, Zhang K, Li Y, Xu Q, Liao C, Wang L. 2019. Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Scientific Reports, 9, 3890.
Jiang Y, Qiu Y, Hu Y, Yu D. 2016. Heterologous expression of AtWRKY57 confers drought tolerance in Oryza sativa. Frontiers in Plant Science, 7, 145.
Jochens H, Hesseler M, Stiba K, Padhi S K, Kazlauskas R J, Bornscheuer U T. 2011. Protein engineering of α/β-hydrolase fold enzymes. Chembiochem, 12, 1508–1517.
Joo J, Lee Y H, Song S I. 2019. OsbZIP42 is a positive regulator of aba signaling and confers drought tolerance to rice. Planta, 249, 1521–1533.
Kang C, He S Z, Zhai H, Li R J, Zhao N, Liu Q C. 2018. A sweetpotato auxin response factor gene (IbARF5) is involved in carotenoid biosynthesis and salt and drought tolerance in transgenic Arabidopsis. Frontiers in Plant Science, 9, 1307.
Krasensky J, Jonak C. 2012. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany, 63, 1593–1608.
Lenfant N, Hotelier T, Bourne Y, Marchot P, Chatonnet A. 2013. Proteins with an alpha/beta hydrolase fold: Relationships between subfamilies in an ever-growing superfamily. Chemico-Biological Interactions, 203, 266–268.
Lenfant N, Hotelier T, Velluet E, Bourne Y, Marchot P, Chatonnet A. 2012. ESTHER, the database of the α/β-hydrolase fold superfamily of proteins: Tools to explore diversity of functions. Nucleic Acids Research, 41, 423–429.
Li G, Ye Y X, Ren X Q, Qi M Y, Zhao H Y, Zhou Q, Chen X H, Wang J, Yuan C Y, Wang F B. 2020. The rice Aux/IAA transcription factor gene OsIAA18 enhances salt and osmotic tolerance in Arabidopsis. Biologia Plantarum, 64, 454–464. 
Li J, Guo X, Zhang M, Wang X, Zhao Y, Yin Z, Zhang Z, Wang Y, Xiong H, Zhang H, Todorovskac E, Li Z. 2018. OsERF71 confers drought tolerance via modulating ABA signaling and proline biosynthesis. Plant Science, 270, 131–139.
Li J, Li Y, Yin Z, Jiang J, Zhang M, Guo X, Ye Z, Zhao Y, Xiong H, Zhang Z, Shao Y, Jiang C, Zhang H, An G, Paek N C, Ali J, Li Z. 2017. OsASR5 enhances drought tolerance through a stomatal closure pathway associated with ABA and H2O2 signalling in rice. Plant Biotechnology Journal, 15, 183–196.
Li W, Dang C X, Ye Y X, Wang Z X, Hu L B, Zhang F, Zhang Y, Qian X Z, Shi J B, Guo Y Y, Zhou Q, Wang T L, Chen X H, Wang F B. 2020. Overexpression of grapevine VvIAA18 gene enhanced salt tolerance in tobacco. International Journal of Molecular Sciences, 21, 1323.
Li Z J, Fu X Y, Tian Y S, Xu J, Gao J J, Wang B, Han H J, Wang L J, Zhang F J, Zhu Y M, Huang Y N, Peng R H, Yao Q H. 2019. Overexpression of a trypanothione synthetase gene from Trypanosoma cruzi, TcTrys, confers enhanced tolerance to multiple abiotic stresses in rice. Gene, 710, 279–290. 
Liu D G, Wang L J, Zhai H, Song X J, He S Z, Liu Q C. 2014. A novel α/β-hydrolase gene IbMas enhances salt tolerance in transgenic sweetpotato. PLoS ONE, 9, e115128.
Liu S, Zheng L, Xue Y, Qian Z, Lu W, Shou H. 2010. Overexpression of OsVP1 and OsNHX1 increases tolerance to drought and salinity in rice. Journal of Plant Biology, 53, 444–452.
Lord C C, Thomas G, Brown J M. 2013. Mammalian alpha beta hydrolase domain (ABHD) proteins: Lipid metabolizing enzymes at the interface of cell signaling and energy metabolism. Biochimica et Biophysica Acta, 1831, 792–802.
Miao L L, Li Y Y, Zhang H J, Zhang H J, Liu X L, Wang J Y, Chang X P, Mao X G, Jing R L. 2021. TaSnRK2.4 is a vital regulator in control of thousand-kernel weight and response to abiotic stress in wheat. Journal of Integrative Agriculture, 20, 46–54.
Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.
Parida A K, Das A B. 2005. Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety, 60, 324–349.
Patra B, Ray S, Richter A, Majumder A L. 2010. Enhanced salt tolerance of transgenic tobacco plants by co-expression of PcINO1 and McIMT1 is accompanied by increased level of myo-inositol and methylated inositol. Protoplasma, 245, 143–152.
Qiu Q S. 2012. Plant and yeast NHX antiporters: roles in membrane trafficking. Journal of Integrative Plant Biology, 54, 66–72.
De Ronde J A, Cress W A, Krüger G H J, Strasser R J, Van Staden J. 2004. Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. Journal of Plant Physiology, 161, 1211–1224.
Schmittgen T D, Livak K J. 2008. Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3, 1101–1108.
Simpson M A, Cross H, Proukakis C, Pryde A, Hershberger R, Chatonnet A, Patton M A, Crosby A H. 2003. Maspardin is mutated in mast syndrome, a complicated form of hereditary spastic paraplegia associated with dementia. American Journal of Human Genetics, 73, 1147–1156.
Sripinyowanich S, Klomsakul P, Boonburapong B, Bangyeekhun T, Asami T, Gu H, Buaboocha T, Chadchawan S. 2013. Exogenous ABA induces salt tolerance in indica rice (Oryza sativa L.): The role of OsP5CS1 and OsP5CR gene expression during salt stress. Environmental and Experimental Botany, 86, 94–105.
Swapna T S. 2002. Esterase as molecular marker for salt tolerance in regenerated plants of rice, Oryza sativa L. Indian Journal of Experimental Biology, 40, 1056–1059.
Tan C M, Chen R J, Zhang J H, Gao X L, Li L H, Wang P R, Deng X J, Xu Z J. 2013. OsPOP5, a prolyl oligopeptidase family gene from rice confers abiotic stress tolerance in Escherichia coli. International Journal of Molecular Sciences, 14, 20204–20219.
Teng X X, Cao W L, Lan H X, Tang H J, Bao Y M, Zhang H S. 2017. OsNHX2, an Na+/H+ antiporter gene, can enhance salt tolerance in rice plants through more effective accumulation of toxic Na+ in leaf mesophyll and bundle sheath cells. Acta Physiologiae Plantarum, 39, 113.
Tuteja N. 2007. Mechanisms of high salinity tolerance in plants. Methods in Enzymology, 428, 419–438.
Wang F B, Kong W L, Wong G, Fu L F, Peng R H, Li Z J, Yao Q H. 2016. AtMYB12 regulates flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis thaliana. Molecular Genetics and Genomics, 291, 1545–1559.
Wang F B, Ren G L, Li F S, Qi S T, Xu Y, Wang B W, Yang Y L, Ye Y X, Zhou Q, Chen X H. 2018. A chalcone synthase gene AeCHS from Abelmoschus esculentus regulates flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis. Acta Physiologiae Plantarum, 40, 97.
Wang X M. 2002. Phospholipase D in hormonal and stress signaling. Current Opinion in Plant Biology, 5, 408–414.
Xiang Y, Huang Y, Xiong L. 2007. Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiology, 144, 1416–1428.
Yokoi S, Quintero F J, Cubero B, Ruiz M T, Bressan R A, Hasegawa P M, Pardo J M. 2002. Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant Journal, 30, 529–539.
Yoo S D, Cho Y H, Sheen J. 2007. Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis. Nature Protocols, 2, 1565–1572.
Yue Y, Zhang M C, Zhang J C, Duan L S, Li Z H. 2012. SOS1 gene overexpression increased salt tolerance in transgenic tobacco by maintaining a higher K+/Na+ ratio. Journal of Plant Physiology, 169, 255–261.
Zeitlmann L, Sirim P, Kremmer E, Kolanus W. 2001. Cloning of ACP33 as a novel intracellular ligand of CD4. Journal of Biological Chemistry, 276, 9123–9132.
Zhai H, Wang F B, Si Z Z, Huo J X, Xing L, An Y Y, He S Z, Liu Q C. 2016. A myo-inositol-1-phosphate synthase gene, IbMIPS1, enhances salt and drought tolerance and stem nematode resistance in transgenic sweetpotato. Plant Biotechnology Journal, 14, 592–602.
Zhang H, Gao X R, Zhi Y H, Li X, Zhang Q, Niu J B, Wang J, Zhai H, Zhao N, Li J G, Liu Q C, He S Z. 2019. A non-tandem CCCH-type zinc-finger protein, IbC3H18, functions as a nuclear transcriptional activator and enhances abiotic stress tolerance in sweet potato. New Phytologist, 223, 1918–1936.
Zhang H, Liu Y, Wen F, Yao D, Wang L, Guo J, Ni L, Zhang A, Tan M, Jiang M. 2014. A novel rice C2H2-type zinc finger protein, ZFP36, is a key player involved in abscisic acid-induced antioxidant defence and oxidative stress tolerance in rice. Journal of Experimental Botany, 65, 5795–5809.
Zhao Q, Zhou L, Liu J, Du X, Asad M A, Huang F, Pan G, Cheng F. 2018. Relationship of ROS accumulation and superoxide dismutase isozymes in developing anther with floret fertility of rice under heat stress. Plant Physiology and Biochemistry, 122, 90–101.
Zhao Y J, Zhang Y Y, Bai X Y, Lin R Z, Shi G Q, Du P P, Xiao K. 2022. TaNF-YB11, a gene of NF-Y transcription factor family in Triticum aestivum, confers drought tolerance on plants via modulating osmolyte accumulation and reactive oxygen species homeostasis. Journal of Integrative Agriculture, 21, 3114–3130.
Zhu H, Zhou Y Y, Zhai H, He S Z, Zhao N, Liu Q C. 2019. Transcriptome profiling reveals insights into the molecular mechanism of drought tolerance in sweetpotato. Journal of Integrative Agriculture, 18, 9–23.
Zhu J K. 2002. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 53, 247–273.
Zhu J K. 2016. Abiotic stress signaling and responses in plants. Cell, 167, 313–324.
Zhu M D, Zhang M, Gao D J, Zhou K, Lv Y M. 2020. Rice OsHSFA3 gene improves drought tolerance by modulating polyamine biosynthesis depending on abscisic acid and ROS levels. International Journal of Molecular Sciences, 21, 1857.
[1] Gaozhao Wu, Xingyu Chen, Yuguang Zang, Ying Ye, Xiaoqing Qian, Weiyang Zhang, Hao Zhang, Lijun Liu, Zujian Zhang, Zhiqin Wang, Junfei Gu, Jianchang Yang. An optimized strategy of nitrogen-split application based on the leaf positional differences in chlorophyll meter readings[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2605-2617.
[2] Xiaogang He, Zirong Li, Sicheng Guo, Xingfei Zheng, Chunhai Liu, Zijie Liu, Yongxin Li, Zheming Yuan, Lanzhi Li. Epistasis-aware genome-wide association studies provide insights into the efficient breeding of high-yield and high-quality rice[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2541-2556.
[3] Myeong-Hyeon Min, Aye Aye Khaing, Sang-Ho Chu, Bhagwat Nawade, Yong-Jin Park. Exploring the genetic basis of pre-harvest sprouting in rice through a genome-wide association study-based haplotype analysis[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2525-2540.
[4] Peng Xu, Mengdie Jiang, Imran Khan, Muhammad Shaaban, Hongtao Wu, Barthelemy Harerimana, Ronggui Hu. Regulatory potential of soil available carbon, nitrogen, and functional genes on N2O emissions in two upland plantation systems[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2792-2806.
[5] Bin Lei, Jiale Shao, Feng Zhang, Jian Wang, Yunhua Xiao, Zhijun Cheng, Wenbang Tang, Jianmin Wan. Genetic analysis and fine mapping of a grain size QTL in the small-grain sterile rice line Zhuo201S[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2155-2163.
[6] Hanzhu Gu, Xian Wang, Minhao Zhang, Wenjiang Jing, Hao Wu, Zhilin Xiao, Weiyang Zhang, Junfei Gu, Lijun Liu, Zhiqin Wang, Jianhua Zhang, Jianchang Yang, Hao Zhang.

The response of roots and the rhizosphere environment to integrative cultivation practices in paddy rice [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1879-1896.

[7] Luqi Jia, Yongdong Dai, Ziwei Peng, Zhibo Cui, Xuefei Zhang, Yangyang Li, Weijiang Tian, Guanghua He, Yun Li, Xianchun Sang.

The auxin transporter OsAUX1 regulates tillering in rice (Oryza sativa) [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1454-1467.

[8] Chaoyue Pang, Ling Jin, Haoyu Zang, Damalk Saint-Claire S. Koklannou, Jiazhi Sun, Jiawei Yang, Yongxing Wang, Liang Xu, Chunyan Gu, Yang Sun, Xing Chen, Yu Chen. Establishment of a system for screening and identification of novel bactericide targets in the plant pathogenic bacterium Xanthomonas oryzae pv. oryzae using Tn-seq and SPR[J]. >Journal of Integrative Agriculture, 2024, 23(5): 1580-1592.
[9] Yuguang Zang, Gaozhao Wu, Qiangqiang Li, Yiwen Xu, Mingming Xue, Xingyu Chen, Haiyan Wei, Weiyang Zhang, Hao Zhang, Lijun Liu, Zhiqin Wang, Junfei Gu, Jianchang Yang.

Irrigation regimes modulate non-structural carbohydrate remobilization and improve grain filling in rice (Oryza sativa L.) by regulating starch metabolism [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1507-1522.

[10] Junnan Hang, Bowen Wu, Diyang Qiu, Guo Yang, Zhongming Fang, Mingyong Zhang.

OsNPF3.1, a nitrate, abscisic acid and gibberellin transporter gene, is essential for rice tillering and nitrogen utilization efficiency [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1087-1104.

[11] Shuang Cheng, Zhipeng Xing, Chao Tian, Mengzhu Liu, Yuan Feng, Hongcheng Zhang.

Optimized tillage methods increase mechanically transplanted rice yield and reduce the greenhouse gas emissions [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1150-1163.

[12] Yunping Chen, Jie Hu, Zhiwen Cai, Jingya Yang, Wei Zhou, Qiong Hu, Cong Wang, Liangzhi You, Baodong Xu.

A phenology-based vegetation index for improving ratoon rice mapping using harmonized Landsat and Sentinel-2 data [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1164-1178.

[13] Jingnan Zou, Ziqin Pang, Zhou Li, Chunlin Guo, Hongmei Lin, Zheng Li, Hongfei Chen, Jinwen Huang, Ting Chen, Hailong Xu, Bin Qin, Puleng Letuma, Weiwei Lin, Wenxiong Lin.

The underlying mechanism of variety–water–nitrogen–stubble damage interactions on yield formation in ratoon rice with low stubble height under mechanized harvesting [J]. >Journal of Integrative Agriculture, 2024, 23(3): 806-823.

[14] Min Jiang, Zhang Chen, Yuan Li , Xiaomin Huang, Lifen Huang, Zhongyang Huo.

Rice canopy temperature is affected by nitrogen fertilizer [J]. >Journal of Integrative Agriculture, 2024, 23(3): 824-835.

[15] Shuliang Jiao, Qinyan Li, Fan Zhang, Yonghong Tao, Yingzhen Yu, Fan Yao, Qingmao Li, Fengyi Hu, Liyu Huang.

Artificial selection of the Green Revolution gene Semidwarf 1 is implicated in upland rice breeding [J]. >Journal of Integrative Agriculture, 2024, 23(3): 769-780.

No Suggested Reading articles found!