Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Machine learning-driven prediction of nitrogen loss in organic solid waste composting

Haoran Mi1, Dawei Gao2, Deling Yuan1, Xiao Liu3, Lili Gao4, Shengping Li5#, Yuanwang Liu1#

1 Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering/State Key Laboratory of Metastable Materials Science and TechnologyYanshan University, Qinhuangdao 066004, China

2 School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China

3 Earth & Environment Strasbourg (EES), University of Strasbourg, Strasbourg 67084, France

4 State Key Laboratory of Efficient Utilization of Agricultural Water Resource, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China

5 State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China

 Highlights 

l Machine learning algorithms were utilized to predict nitrogen loss during manure composting.

l The adaptive boosting model achieved an R² of 0.847 for nitrogen loss prediction.

l Model performance enhanced following Bayesian optimization of hyperparameters.

l Redundant features (e.g., scale and C/N) were eliminated to optimize input variables.

Shapley additive explanation (SHAP) analysis revealed time stages and bulking agents as critical factors.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

堆肥是可持续废弃物管理的关键环节,能够显著实现资源回收并带来环境效益。然而,氮素损失始终是堆肥过程中的主要难题,亟需建立氮损失预测模型。本研究基于307组涵盖堆肥策略、理化性质及堆肥时间阶段的实验数据,采用五种机器学习算法对有机固废堆肥过程中的氮损失进行预测。结果表明,AdaBoost 算法在剔除冗余特征(规模和碳氮比)后表现最优,决定系数达到 0.847。进一步通过Shapley分析发现,堆肥时间阶段、膨松剂、原料类型及铵态氮含量是影响氮损失的关键因素。其中,堆肥初期是氮损失最敏感的时期;以锯末、稻壳和玉米秸秆为膨松剂可提升氮保留率;采用静态通风并辅以化学添加剂亦能有效降低氮损失。上述发现为优化堆肥条件、最大限度减少氮损失提供了科学依据,并为实际操作中的最佳实践给予了明确指导。



Abstract  

Composting represents a crucial component of sustainable waste management, providing significant resource recovery and environmental advantages. However, nitrogen loss during composting remains a significant challenge, necessitating the development of a predictive model for nitrogen loss during the composting process. This investigation implemented five machine learning models, utilizing 307 data points encompassing composting strategies, physicochemical properties, and composting time stages, to predict nitrogen loss during organic solid waste composting. The findings demonstrated that the adaptive boosting (AdaBoost) algorithm achieved optimal performance with a coefficient of determination of 0.847 after eliminating redundant features (scale and C/N). Moreover, Shapley additive explanation analysis identified several key factors significantly influencing nitrogen losses during composting, including composting time stages, bulking agents, raw materials, and ammonium nitrogen levels. Notably, the initial phase of composting emerged as the most critical period for nitrogen loss. The utilization of sawdust, rice husk, and corn stalk as bulking agents enhanced nitrogen retention in compost. Furthermore, implementing static aeration for ventilation and applying chemical additives effectively reduced nitrogen losses during the composting process. These results provide a scientific foundation for identifying optimal composting conditions to minimize nitrogen loss, thereby offering practical guidance for effective composting operations.

Keywords:  machine learning       composting       adaptive boosting       nitrogen loss       feature selection  
Online: 04 September 2025  
Fund: 

This study was financially supported by the National Key R&D Program of China (2021YFD1900700), the National Natural Science Foundation of China (52400188), and the Youth Innovation Program of the Chinese Academy of Agricultural Sciences (Y2025QC09).

About author:  Haoran Mi, Mobile: +86-13643122038, Email: mhr1120800322@163.com; #Correspondence Shengping Li, Mobile: +86-18511339881, E-mail: lishengping@caas.cn; Yuanwang Liu, Mobile: +86-15624955445, E-mail: liuyuanwang@ysu.edu.cn

Cite this article: 

Haoran Mi, Dawei Gao, Deling Yuan, Xiao Liu, Lili Gao, Shengping Li, Yuanwan Liu. 2025. Machine learning-driven prediction of nitrogen loss in organic solid waste composting. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.09.002

Adegoke T O, Ku H H. 2023. Temperature response of ammonia emission from sandy loam soil amended with manure compost and urea. Environmental Technology & Innovation, 31, 103226.

Akdeniz N. 2019. A systematic review of biochar use in animal waste composting. Waste Management, 88, 291-300.

Aldrees A, Khan M, Taha A T B, Ali M. 2024. Evaluation of water quality indexes with novel machine learning and SHapley Additive ExPlanation (SHAP) approaches. Journal of Water Process Engineering, 58, 104789.

Anand G, Koniusz P, Kumar A, Golding L A, Morgan M J, Moghadam P. 2024. Graph neural networks-enhanced relation prediction for ecotoxicology (GRAPE). Journal of Hazardous Materials, 472, 134456.

Arnold V H, Dennis G O. 2017. The environmental sustainability of insects as food and feed. A review. Agronomy for Sustainable Development, 37, 43.

Bao J F, Lv Y F, Qv M, Li Z, Li T R, Li S X, Zhu L D. 2022. Evaluation of key microbial community succession and enzyme activities of nitrogen transformation in pig manure composting process through multi angle analysis. Bioresource Technology, 362, 127797.

Cai B Z, Li M T, Yang H W, Wang C S, Chen Y G, Costa C M. 2023. State of charge estimation of lithium-ion battery based on back propagation neural network and adaboost algorithm. ‌‌Energies, 16, 7824.

Chen J, Jin C X, Sun S Q, Yang D H, He Y K, Gan P M, Nalume W G, Ma Y D, He W Z, Li G M. 2023. Recognizing the challenges of composting: Critical strategies for control, recycling, and valorization of nitrogen loss. Resources Conservation and Recycling, 198, 107172.

Chen K S, Yu C X, Cai L Q, Zhang W M, Xing Y H, Yang Y X. 2023. Bacterial community succession in aerobic-anaerobic-coupled and aerobic composting with mown hay affected C and N losses. Environmental Science and Pollution Research, 30, 74153-74165.

Chen X M, Zhao Y, Yang L, Yang Y A, Wang L Q, Wei Z M, Song C H. 2023. Identifying the specific pathways to improve nitrogen fixation of different straw biochar during chicken manure composting based on its impact on the microbial community. Waste Management, 170, 8-16.

Core Writing Team, Lee H, Romero J. 2023. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change, Geneva, Switzerland. p. 184.

Ding S, Huang W, Xu W, Wu Y, Zhao Y, Fang P, Hu B, Lou L. 2022. Improving kitchen waste composting maturity by optimizing the processing parameters based on machine learning model. Bioresource Technology, 360, 127606.

Esmaeili-Falak M, Benemaran R S. 2024. Application of optimization-based regression analysis for evaluation of frost durability of recycled aggregate concrete. Structural Concrete, 25, 716-737.

Farek L, Benaidja A. 2023. Feature redundancy removal for text classification using correlated feature subsets. Computational Intelligence, 40, 12621.

Feng D C, Wang W J, Mangalathu S, Hu G, Wu T. 2021. Implementing ensemble learning methods to predict the shear strength of RC deep beams with/without web reinforcements. Engineering Structures, 235, 111979.

Guo H B, Du E, Terrer C, Jackson R B. 2024. Global distribution of surface soil organic carbon in urban greenspaces. Nature Communications, 15, 806.

Hoang H G, Thuy B T P, Lin C, Vo D V N, Tran H T, Bahari M B, Le V G, Vu C T. 2022. The nitrogen cycle and mitigation strategies for nitrogen loss during organic waste composting: A review. Chemosphere, 300, 134514.

Huang G F, Wong J W C, Wu Q T, Nagar B B. 2004. Effect of C/N on composting of pig manure with sawdust. Waste Management, 24, 805-813.

Huang N, Gao K, Yang W M, Pang H, Yang G, Wu J, Zhang S R, Chen C, Long L L. 2022. Assessing sediment organic pollution via machine learning models and resource performance. Bioresource Technology, 361, 127710.

Huang Y, Chen Y H, Huang H Y, Shah G M, Lin J J, Yan M L, Guo C B, Xiao X. 2023. Hyperthermophilic pretreatment composting can reduce ammonia emissions by controlling proteolytic bacterial community and the physicochemical properties. Bioresources and Bioprocessing, 10, 37.

Huang Z, Yu J, He W, Yu J, Deng S W, Yang C, Zhu W W, Shao X. 2024. AI-enhanced chemical paradigm: From molecular graphs to accurate prediction and mechanism. Journal of Hazardous Materials, 465, 133355.

Hwang H Y, Kim S H, Kim M S, Park S J, Lee C H. 2020. Co-composting of chicken manure with organic wastes: Characterization of gases emissions and compost quality. Applied Biological Chemistry, 63, 3-162.

Jiang Y C, Li F P, Gong Y F, Yang X Y, Zhang Z M. 2024. Threshold and interaction effects of environmental variables affecting the spatial distribution of Pb. Journal of Hazardous Materials, 480, 135914.

Jiao R W, Xue B, Zhang M J. 2024. Solving multiobjective feature selection problems in classification via problem reformulation and duplication handling. IEEE Transactions on Evolutionary Computation, 28, 846-860.

Jin L, Azhar Z, Luo M Q, Gong X Q. 2025. Synergistic effects of bamboo biochar and ammonia oxidizing bacteria on nitrogen transformation and microbial dynamics during vermicomposting of green waste and chicken manure. Process Safety and Environmental Protection, 193, 115-124.

Kim S, Yoon H K. 2023. Application of classification coupled with PCA and SMOTE, for obtaining safety factor of landslide based on HRA. Bulletin of Engineering Geology and the Environment, 82, 381.

Leconte M C, Mazzarino M J, Satti P, Iglesias M C, Laos F. 2009. Co-composting rice hulls and/or sawdust with poultry manure in NE Argentina. Waste Management, 29, 2446-2453.

Li X, Xu Y C, Law R, Wang S Y. 2024. Enhancing tourism demand forecasting with a transformer-based framework. Annals of Tourism Research, 107, 103791.

Li Y, Luo W H, Li G X, Wang K, Gong X Y. 2018. Performance of phosphogypsum and calcium magnesium phosphate fertilizer for nitrogen conservation in pig manure composting. Bioresource Technology, 250, 53-59.

Li Y L, Xue Z Z, Li S Y, Sun X Y, Hao D. 2023. Prediction of composting maturity and identification of critical parameters for green waste compost using machine learning. Bioresource Technology, 385, 129444.

Li Z L, Pei S X, Chen Z Y, Huang T Y, Wang X D, Shen L, Chen X B, Wang Q Q, Wang D X, Ao Y F. 2024. Machine learning-assisted amidase-catalytic enantioselectivity prediction and rational design of variants for improving enantioselectivity. Nature Communications, 15, 8778.

Liang X L, Wen X L, Yang H M, Lu H, Wang A, Liu S P, Li Q L. 2024. Incorporating microbial inoculants to reduce nitrogen loss during sludge composting by suppressing denitrification and promoting ammonia assimilation. Science of the Total Environment, 915, 170000.

Liu B, Chen W, Wang Z, Guo Z H, Li Y M, Xu L J, Wu M X, Yin H M. 2024. The Impact of bacillus coagulans X3 on available nitrogen content, bacterial community composition, and nitrogen functional gene levels when composting cattle manure. Agronomy-basel, 14, 587.

Liu B, Liu C D, Xiao Y S, Liu L W, Li W B, Chen X D. 2022. AdaBoost-based transfer learning method for positive and unlabelled learning problem. Knowledge-based Systems, 241, 108162.

Liu B G, Liu H C, Tu J H, Xiao J, Yang J, He X, Zhang H H. 2024. An investigation of machine learning methods applied to genomic prediction in yellow-feathered broilers. Poultry Science, 104, 104489.

Liu C W, Lin Y, Ye J, Price G W, Wang Y X. 2023. Effect of bamboo vinegar on control of nitrogen loss in vegetable waste and manure composting. Agriculture-basel, 13, 1331.

Liu Y, Tang R L, Li L Q, Zheng G N, Wang J N, Wang G Y, Bao Z Y, Yin Z M, Li G X, Yuan J. 2023. A global meta-analysis of greenhouse gas emissions and carbon and nitrogen losses during livestock manure composting: Influencing factors and mitigation strategies. Science of the Total Environment, 885, 163900.

Liu Z Z, Cao S H, He X, Liu G, Yao H, Ding S J, Fang J. 2024. Effects of crayfish shell powder and bamboo-derived biochar on nitrogen conversion, bacterial community and nitrogen functional genes during pig manure composting. Bioresource Technology, 402, 130783.

Luo H Z, Wang C L, Li C B, Meng X Z, Yang X H, Tan Q. 2024. Multi-scale carbon emission characterization and prediction based on land use and interpretable machine learning model: A case study of the Yangtze River Delta Region, China. Applied Energy, 360, 122819.

Manea E E, Bumbac C, Dinu L R, Bumbac M, Nicolescu C M. 2024. Composting as a sustainable solution for organic solid wastemanagement: Current practices and potential improvements. Sustainability, 16, 6329.

Manga M, Evans B E, Ngasala T M, Camargo-Valero M A. 2022. Recycling of faecal sludge: Nitrogen, carbon and organic matter transformation during co-composting of faecal sludge with different bulking agents. International Journal of Environmental Research and Public Health, 19, 10592.

Mendez M, Merayo M G, Nunez M. 2023. Machine learning algorithms to forecast air quality: A survey. Artificial Intelligence Review, 56, 10031-10066.

Mo J F, Xin L Q, Zhao C X, Qin Y, Nan Q, Mei Q Q, Wu W X. 2023. Reducing nitrogen loss during kitchen waste composting using a bioaugmented mechanical process with low pH and enhanced ammonia assimilation. Bioresource Technology, 372, 128664.

Muhammad W, Hashim S, Humphries U W, Ahmad S, Noor R, Shoaib M, Naseem A, Hlaing P T, Lin H. 2023. Composting processes for agricultural waste management: A comprehensive review. Processes, 11, 731.

Nguyen M K, Lin C, Hoang H G, Sanderson P, Dang B T, Bui X T, Nguyen N S H, Vo D V N, Tran H T. 2022. Evaluate the role of biochar during the organic waste composting process: A critical review. Chemosphere, 299, 134488.

Nishimura S, Ohyama J, Li X Y, Miyazato I, Taniike T, Takahashi K. 2022. Machine learning-aided catalyst modification in oxidative coupling of methane via manganese promoter. Industrial & Engineering Chemistry Research, 61, 8462-8469.

Nordahl S L, Preble C V, Kirchstetter T W, Scown C D. 2023. Greenhouse gas and air pollutant emissions from composting. Environmental Science & Technology, 57, 2235-2247.

Palansooriya K N, Li J, Dissanayake P D, Suvarna M, Li L Y, Yuan X Z, Sarkar B, Tsang D C W, Rinklebe J, Wang X N. 2022. Prediction of soil heavy metal immobilization by biochar using machine learning. Environmental Science & Technology, 56, 4187-4198.

Pan B Y, Lei J L, Pan B G, Tian H, Huang L. 2024. Dialogue between algorithms and soil: Machine learning unravels the mystery of phthalates pollution in soil. Journal of Hazardous Materials, 482, 136604.

Piao M Y, Li A, Du H S, Sun Y W, Du H X, Teng H H. 2023. A review of additives use in straw composting. Environmental Science and Pollution Research, 30, 57253-57270.

Qiu Z P, Li M X, Song L Y, Wang C, Yang S, Yan Z Y, Wang Y Q. 2021. Study on nitrogen-retaining microbial agent to reduce nitrogen loss during chicken manure composting and nitrogen transformation mechanism. Journal of Cleaner Production, 285, 124813.

Shen T, Peng H Y, Yuan X Z, Liang Y S, Liu S Q, Wu Z B, Leng L J, Qin P F. 2024. Feature engineering for improved machine-learning-aided studying heavy metal adsorption on biochar. Journal of Hazardous Materials, 466, 133442.

Shi L, Li J, Palansooriya K N, Chen Y H, Hou D Y, Meers E, Tsang D C W, Wang X N, Ok Y S. 2023. Modeling phytoremediation of heavy metal contaminated soils through machine learning. Journal of Hazardous Materials, 441, 129904.

Shi S, Guo Z H, Bao J X, Jia X Y, Fang X Y, Tang H Y, Zhang H X, Sun Y, Xu X H. 2025. Machine learning-based prediction of compost maturity and identification of key parameters during manure composting. Bioresource Technology, 419, 132024.

Shukla P R, Skea J, Calvo Buendia E, Masson-Delmotte V, Pörtner H O, Roberts D C, Zhai P, Slade R, Connors S, Van-Diemen R, Ferrat M, Haughey E, Luz S, Neogi S, Pathak M, Petzold J, Portugal-Pereira J, Vyas P, Huntley E, Kissick K, et al. 2019. Climate Change and Land: An Intergovernmental Panel on Climate Change Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. Intergovernmental Panel on Climate Change.

Soofi Y J, Gu Y J, Liu J L. 2023. An adaptive physics-based feature engineering approach for machine learning-assisted alloy discovery. Computational Materials Science, 226, 112248.

Tang R L, Liu Y, Ma R A, Zhang L X, Li Y M, Li G X, Wang D M, Lin J C, Li Q F, Yuan J. 2023. Effect of moisture content, aeration rate, and C/N on maturity and gaseous emissions during kitchen waste rapid composting. Journal of Environmental Management, 326, 116662.

Tannouri A, Rizk Z, Daccache M, Ghanem C, Azzi V, Maroun R G, Hobaika Z, Salameh D. 2023. Study of raw material pretreatment and the microbiota selection effect on the composting process efficiency. Agronomy-basel, 13, 2048.

Tian X P, Qin W, Zhang Y Y, Liu Y, Lyu Q, Chen G K, Feng Z, Ji G S, Yan Z Y. 2024. The inoculation of thermophilic heterotrophic nitrifiers improved the efficiency and reduced ammonia emission during sewage sludge composting. Chemical Engineering Journal, 479, 147237.

Ucaroglu S, Ozbek B. 2025. Bioconversion of organic wastes: Treatment sludges, animal manures, and agricultural wastes. Biomass Conversion and Biorefinery, 15, 10319-10330.

Uddin A, Islam M, Talukder A, Hossain A A, Akhter A, Aryal S, Muntaha M. 2023. Machine learning based diabetes detection model for false negative reduction. Biomedical Materials & Devices, 2, 427-443.

Von R L, Mayer S, Beckh K, Georgiev B, Giesselbach S, Heese R, Kirsch B, Pfrommer J, Pick A, Ramamurthy R. 2023. Informed machine learning-a taxonomy and survey of integrating prior knowledge into learning systems. IEEE Transactions on Knowledge and Data Engineering, 35, 614-633.

Wang B, Zhang P, Qi X Y, Li G M, Zhang J. 2024. Predicting ammonia emissions and global warming potential in composting by machine learning. Bioresource Technology, 411, 131335.

Wang F, Wang J Y, He Y H, Yan Y X, Fu D F, Rene E R, Singh R P. 2024. Effect of different bulking agents on fed-batch composting and microbial community profile. Environmental Research, 249, 118449.

Wang H F, Guan X J, Meng Y, Wang H L, Xu H S, Liu Y, Liu M, Wu Z N. 2024. Risk prediction based on oversampling technology and ensemble model optimized by tree-structured parzed estimator. International Journal of Disaster Risk Reduction, 111, 104753.

Wang S, Zhou Y, You X X, Wang B, Du L N. 2023. Quantification of the antagonistic and synergistic effects of Pb2+, Cu2+, and Zn2+ bioaccumulation by living Bacillus subtilis biomass using XGBoost and SHAP. Journal of Hazardous Materials, 466, 130635.

Wu J P, Li M L, Wang Y, Lin S, Hu R G, Xiang R B. 2023. Impact of bentonite on greenhouse gas emissions during pig manure composting and its subsequent application. Journal of Environmental Management, 344, 118453.

Xue L, Jing R Y, Zhong N Y, Nie X Y, Du Y T, Luo J S, Huang K M. 2024. Machine learning to guide the use of plasma technology for antibiotic degradation. Journal of Hazardous Materials, 480, 135787.

Xue W T, Li M, Zhang L, Sun Q P, Liu S J, Sun H, Wu R, Zou G Y, Duan N. 2025. Contribution of acid additive to co-composting of chicken manure: Gas emission reduction and economic assessment. Agriculture-Basel, 15, 425.

Yan H L, Huang Y T, Li K C, Zhu P F, Li X L, Li Q L. 2022. Insights into influences of bamboo biochar on nitrous oxide emission and diazotrophs during cow manure and bagasse composting. Biomass Conversion and Biorefinery, 12, 4637-4648.

Yan R X, Wu H, Yang X Y, Yang C Z, Lyu H, Zhang H W, Li S Q, Liu T R, Li R H, Yao Y Q. 2023. Soil decreases N2O emission and increases TN content during combined composting of wheat straw and cow manure by inhibiting denitrification. Chemical Engineering Journal, 477, 147306.

Yang Z, Oliver C L, Furqan M, Hu J W, Xue B, Vera S R. 2024. Review of anaerobic digestion models for organic solid waste treatment with a focus on the fates of C, N, and P. Energy, Ecology and Environment10, 1-14.

Yu Y, Wu J, Tang Z R, Wan S X, Hu J K, Li B Y, Wang J, Li F. 2025. Unveiling the nitrogen metabolism mechanism for nitrogen retention in compost via in-situ ammonia recycling strategy. Journal of Environmental Management, 379, 124863.

Yuan X Z, Suvarna M, Low S, Dissanayake P D, Lee K B, Li J, Wang X N, Ok Y S. 2021. Applied machine learning for prediction of CO2 adsorption on biomass waste-derived porous carbons. Environmental Science & Technology, 55, 11925-11936.

Zeguendry A, Jarir Z, Quafafou M. 2023. Quantum machine learning: A review and case studies. Entropy, 25, 287.

Zeng G M, Zhang L H, Dong H R, Chen Y N, Zhang J C, Zhu Y, Yuan Y J, Xie Y K, Fang W. 2018. Pathway and mechanism of nitrogen transformation during composting: Functional enzymes and genes under different concentrations of PVP-AgNPs. Bioresource Technology, 253, 112-120.

Zhang H R, Ma L Q, Li Y C, Yan S, Tong Z Y, Qiu Y, Zhang X Y, Yong X Y, Luo L W, Zhou J. 2024. Control of nitrogen and odor emissions during chicken manure composting with a carbon-based microbial inoculant and a biotrickling filter. Journal of Environmental Management, 357, 120636.

Zhao F C, Miao F S, Wu Y P, Ke C, Gong S Q, Ding Y M. 2024. Refined landslide susceptibility mapping in township area using ensemble machine learning method under dataset replenishment strategy. Gondwana Research, 131, 20-37.

Zhou Y C, Wang Y, Peijnenburg W, Vijver M G, Balraadjsing S, Fan W H. 2023. Using machine learning to predict adverse effects of metallic nanomaterials to various aquatic organisms. Environmental Science & Technology, 57, 17786-17795.

[1] 

[1] Lihua Xie, Lingling Li, Junhong Xie, Jinbin Wang, Zechariah Effah, Setor Kwami Fudjoe, Muhammad Zahid Mumtaz. A suitable organic fertilizer substitution ratio stabilizes rainfed maize yields and reduces gaseous nitrogen loss in the Loess Plateau, China[J]. >Journal of Integrative Agriculture, 2025, 24(6): 2138-2154.
[2] Xi Tang, Lei Xie, Min Yan, Longyun Li, Tianxiong Yao, Siyi Liu, Wenwu Xu, Shijun Xiao, Nengshui Ding, Zhiyan Zhang, Lusheng Huang . Genomic selection for meat quality traits based on VIS/NIR spectral information[J]. >Journal of Integrative Agriculture, 2025, 24(1): 235-245.
[3] Xianglin Zhang, Jie Xue, Songchao Chen, Zhiqing Zhuo, Zheng Wang, Xueyao Chen, Yi Xiao, Zhou Shi. Improving model performance in mapping cropland soil organic matter using time-series remote sensing data[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2820-2841.
[4] Hui Chen, Hongxing Chen, Song Zhang, Shengxi Chen, Fulang Cen, Quanzhi Zhao, Xiaoyun Huang, Tengbing He, Zhenran Gao. Comparison of CWSI and Ts-Ta-VIs in moisture monitoring of dryland crops (sorghum and maize) based on UAV remote sensing[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2458-2475.
[5] Mansoor Sheikh, Farooq Iqra, Hamadani Ambreen, Kumar A Pravin, Manzoor Ikra, Yong Suk Chung. Integrating artificial intelligence and high-throughput phenotyping for crop improvement[J]. >Journal of Integrative Agriculture, 2024, 23(6): 1787-1802.
[6] Zhikai Cheng, Xiaobo Gu, Yadan Du, Zhihui Zhou, Wenlong Li, Xiaobo Zheng, Wenjing Cai, Tian Chang.

Spectral purification improves monitoring accuracy of the comprehensive growth evaluation index for film-mulched winter wheat [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1523-1540.

[7] Jie Song, Dongsheng Yu, Siwei Wang, Yanhe Zhao, Xin Wang, Lixia Ma, Jiangang Li. Mapping soil organic matter in cultivated land based on multi-year composite images on monthly time scales[J]. >Journal of Integrative Agriculture, 2024, 23(4): 1393-1408.
[8] Yunping Chen, Jie Hu, Zhiwen Cai, Jingya Yang, Wei Zhou, Qiong Hu, Cong Wang, Liangzhi You, Baodong Xu.

A phenology-based vegetation index for improving ratoon rice mapping using harmonized Landsat and Sentinel-2 data [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1164-1178.

[9] LI Qian-chuan, XU Shi-wei, ZHUANG Jia-yu, LIU Jia-jia, ZHOU Yi, ZHANG Ze-xi. Ensemble learning prediction of soybean yields in China based on meteorological data[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1909-1927.
[10] LIU Feng, YANG Fei, ZHAO Yu-guo, ZHANG Gan-lin, LI De-cheng. Predicting soil depth in a large and complex area using machine learning and environmental correlations[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2422-2434.
[11] HE Shu-qin, MA Rui, WANG Na-na, WANG Shuang, LI Ting-xuan, ZHENG Zi-cheng. Comparison of nitrogen losses by runoff from two different cultivating patterns in sloping farmland with yellow soil during maize growth in Southwest China [J]. >Journal of Integrative Agriculture, 2022, 21(1): 222-234.
[12] FENG Yao, WANG Gui-zhen, LIU Yuan-wang, CHENG Deng-miao, FAN Shuang-hu, ZHAO Quan-sheng, Jianming XUE, ZHANG Shu-qing, LI Zhao-jun. The impacts of oxytetracycline on humification during manure composting can be alleviated by adjusting initial moisture contents as illustrated by NMR[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2277-2288.
[13] Ebrahim SHEHATA, CHENG Deng-miao, MA Qian-qian, LI Yan-li, LIU Yuan-wang, FENG Yao, JI Zhen-yu, LI Zhao-jun . Microbial community dynamics during composting of animal manures contaminated with arsenic, copper, and oxytetracycline[J]. >Journal of Integrative Agriculture, 2021, 20(6): 1649-1659.
[14] CUI Hu, OU Yang, WANG Li-xia, YAN Bai-xing, LI Ying-xin, DING Da-wei. Phosphate rock reduces the bioavailability of heavy metals by influencing the bacterial communities during aerobic composting[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1137-1146.
[15] Shuhan LU, YE Si-jing.
Using an image segmentation and support vector machine method for identifying two locust species and instars
[J]. >Journal of Integrative Agriculture, 2020, 19(5): 1301-1313.
No Suggested Reading articles found!