Akyon F C, Onur Altinuc S, Temizel A. 2022. Slicing aided hyper inference and fine-tuning for small object detection. In: Proceedings of 2022 IEEE International Conference on Image Processing. Institute of Electrical and Electronic Engineers Computer Society, Bordeaux, France. pp. 966-970.
Alfarisy A A, Chen Q, Guo M. 2018. Deep learning based classification for paddy pests and diseases recognition. In: Proceedings of 2018 International Conference on Mathematics and Artificial Intelligence. Association for Computing Machinery, New York, USA. pp. 21-25.
Bjerge K, Nielsen J B, Sepstrup M V, Helsing-Nielsen F, Hoye T T. 2021. An automated light trap to monitor moths (Lepidoptera) using computer vision-based tracking and deep learning. Sensors, 21, 343.
Caron M, Misra I, Mairal J, Goyal P, Bojanowski P, Joulin A. 2020. Unsupervised learning of visual features by contrasting cluster assignments. In: Proceedings of the 34th International Conference on Neural Information Processing Systems. Curran Associates, Vancouver, Canada. pp. 9912-9924.
Caron M, Touvron H, Misra I, Jégou H, Mairal J, Bojanowski P, Joulin A. 2021. Emerging properties in self-supervised vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. Institute of Electrical and Electronic Engineers Computer Society, Montreal, Canada. pp. 9650-9660.
Chen K, Liu C, Chen H, Zhang H, Li W, Zou Z, Shi Z. 2023. RSPrompter: Learning to prompt for remote sensing instance segmentation based on visual foundation model. IEEE Transactions on Geoscience and Remote Sensing, 62 1-17.
Chen T, Zhu L, Ding C, Cao R, Wang Y, Li Z, Sun L, Mao P, Zang Y. 2023. SAM fails to segment anything?-SAM-adapter: Adapting SAM in underperformed scenes: Camouflage, shadow, medical image segmentation, and more. arXiv, doi: https://doi.org/10.48550/arXiv.2304.09148.
Chen X, Yang X, Hu H, Li T, Zhou Z, Li W. 2025. DAMI-YOLOv8l: A multi-scale detection framework for light-trapping insect pest monitoring. Ecological Informatics, 86, 103067.
Cheng W, Zheng X, Wang P, Lei C, Wang X. 2011. Sexual difference of insect phototactic behavior and related affecting factors. Chinese Journal of Applied Ecology, 22, 3351-3357. (in Chinese)
Cohen-addad V, Kanade V, Mallmann-trenn F, Mathieu C. 2019. Hierarchical clustering: Objective functions and algorithms. Journal of the ACM, 66, 1-42.
Feng H, Yao Q. 2018. Automatic identification and monitoring technologies of agricultural pest insects. Plant Protection, 44, 127-133. (in Chinese)
Feng H, Yao Q, Hu C, Huang W, Hu X, Liu J, Zhang Y, Zhang Z, Qiao H, Liu W. 2023. Recent advances in intelligent techniques for monitoring and prediction of crop diseases and insect pests in China. Plant Protection, 49, 229-242. (in Chinese)
Gharaee Z, Gong Z, Pellegrino N, Zarubiieva I, Haurum J B, Lowe S, McKeown J, Ho C, McLeod J, Wei Y Y, Agda J, Ratnasingham S, Steinke D, Chang A, Taylor G W, Fieguth P. 2023. A step towards worldwide biodiversity assessment: The BIOSCAN-1M insect dataset. Advances in Neural Information Processing Systems, 36, 43593-43619.
Guan B, Zhang L, Zhu J, Li R, Kong J, Wang Y, Dong W. 2023. The key issues and evaluation methods for constructing agricultural pest and disease image datasets: A review. Smart Agriculture, 5, 17-34. (in Chinese)
He K, Fan H, Wu Y, Xie S, Girshick R. 2020. Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Institute of Electrical and Electronic Engineers Computer Society, Seattle, USA. pp. 9729-9738.
Islam T, Sarker T T, Ahmed K R, Lakhssassi N. 2024. Detection and classification of cannabis seeds using RetinaNet and faster R-CNN. Seeds, 3, 456-478.
Jiang Y, Liu J, Zeng J, Huang C, Zhang T. 2021. Occurrence of, and damage caused by, major migratory pests and techniques for monitoring and forecasting these in China. Chinese Journal of Applied Entomology, 58, 542-551. (in Chinese)
Khanam R, Hussain M. 2024. YOLOv11: An overview of the key architectural enhancements. arXiv, doi: https://doi.org/10.48550/arXiv.2410.17725.
Kirillov A, Mintun E, Ravi N, Mao H, Rolland C, Gustafson L, Xiao T, Whitehead S, Berg A C, Lo W Y, Dollar P, Girshick R. 2023. Segment anything. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. Institute of Electrical and Electronic Engineers Computer Society, Paris, France. pp. 4015-4026.
Li C, Yang J, Zhang P, Gao M, Xiao B, Dai X, Yuan L, Gao J. 2022. Efficient self-supervised vision transformers for representation learning. arXiv, doi: https://doi.org/10.48550/arXiv.2106.09785.
Li J, Chen D, Qi X, Li Z, Huang Y, Morris D, Tan X. 2023. Label-efficient learning in agriculture: A comprehensive review. Computers and Electronics in Agriculture, 215, 108412.
Lin T Y, Goyal P, Girshick R, He K, Dollar P. 2017. Focal loss for dense object detection. In: Proceedings of 2017 IEEE International Conference on Computer Vision. Institute of Electrical and Electronic Engineers Computer Society, Venice, Italy. pp. 2999-3007.
Liu L. 2021. Research and applications on agricultural crop pest detection techniques based on deep learning. Ph D thesis, University of Science and Technology of China, China. (in Chinese)
Liu L, Wang R, Xie C, Yang P, Wang F, Sudirman S, Liu W. 2019. PestNet: An end-to-end deep learning approach for large-scale multi-class pest detection and classification. IEEE Access, 7, 45301-45312.
Liu S, Zeng Z, Ren T, Li F, Zhang H, Yang J, Jiang Q, Li C, Yang J, Su H, Zhu J, Zhang L. 2024. Grounding DINO: Marrying DINO with grounded pre-training for open-set object detection. In: Proceedings of the European Conference on Computer Vision. Springer, Zurich, Switzerland. pp. 38-55.
Liu Z, Gao J, Yang G, Zhang H, He Y. 2016. Localization and classification of paddy field pests using a saliency map and deep convolutional neural network. Scientific Reports, 6, 20410.
Liu Z, Wang F, Li Y, Guan Y, Song Z, Cui C, Li S. 2022. Application effect of intelligent pest monitoring lamps in the monitoring of vegetable pests. China Plant Protection, 42, 37-41. (in Chinese)
Lv J, Li W, Fan M, Zheng T, Yang Z, Chen Y, He G, Yang X, Liu S, Sun C. 2022. Detecting pests from light-trapping images based on improved YOLOv3 model and instance augmentation. Frontiers in Plant Science, 13, 939498.
Ma B, Xu W. 2023. Efficient fine tuning for fashion object detection. Sensors, 23, 6083.
Peng Z, Wang W, Dong L, Hao Y, Huang S, Ma S, Wei F. 2023. Kosmos-2: Grounding multimodal large language models to the world. arXiv, doi: https://doi.org/10.48550/arXiv.2306.14824.
Qin M, Liu Z, Zhang J, Song W, Li Z, Ceng S, Yin Y. 2024. Research on the application of insect scouting lamps in monitoring and forecasting of forestry pests. Journal of Wildland Fire Science, 42, 105-107. (in Chinese)
Qu R, Meng W, Li J, Ding A, Jin Y. 2008. Effects of environmental moisture and precipitation on insects: A review. Chinese Journal of Ecology, 27, 619. (in Chinese)
Ren S, He K, Girshick R, Sun J. 2017. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149.
Savary S, Willocquet L, Pethybridge S J, Esker P, McRoberts N, Nelson A. 2019. The global burden of pathogens and pests on major food crops. Nature Ecology & Evolution, 3, 430-439.
Shao S, Li Z, Zhang T, Peng C, Yu G, Zhang X, Li J, Sun J. 2019. Objects365: A large-scale, high-quality dataset for object detection. In: Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Institute of Electrical and Electronic Engineers Computer Society, Seoul, South Korea. pp. 8429-8438.
Son J, Jung H. 2024. Teacher-student model using Grounding DINO and you only look once for multi-sensor-based object detection. Applied Sciences, 14, 2232.
Stevens S, Wu J, Thompson M J, Campolongo E G, Song C H, Carlyn D E, Dong L, Dahdul W M, Stewart C, Berger-Wolf T, Chao W L, Su Y. 2024. BioCLIP: A vision foundation model for the tree of life. In: Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Institute of Electrical and Electronic Engineers Computer Society, Seattle, USA. pp. 19412-19424.
Sultan R I, Li C, Zhu H, Khanduri P, Brocanelli M, Zhu D. 2024. GeoSAM: Fine-tuning SAM with sparse and dense visual prompting for automated segmentation of mobility infrastructure. arXiv, doi: https://doi.org/10.48550/arXiv.2311.11319.
Talaei Khoei T, Ould Slimane H, Kaabouch N. 2023. Deep learning: Systematic review, models, challenges, and research directions. Neural Computing and Applications, 35, 23103–23124.
Varghese R, Sambath M S. 2024. YOLOv8: A novel object detection algorithm with enhanced performance and robustness. In: Proceedings of 2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems. Institute of Electrical and Electronic Engineers Computer Society, Chennai, India. pp.1-6.
Wang A, Chen H, Liu L, Chen K, Lin Z, Han J, Ding G. 2024. YOLOv10: real-time end-to-end object detection. In: Globerson A, Mackey L, Belgrave D, Fan A, Paquet U, Tomczak J, Zhang C, eds., Advances in Neural Information Processing Systems. Curran Associates, Montreal, Canada. pp. 107984-108011.
Wang C Y, Yeh I H, Mark Liao H Y. 2024. YOLOv9: Learning what you want to learn using programmable gradient information. In: Proceedings of Computer Vision - ECCV 2024: 18th European Conference. Springer-Verlag, Milan, Italy. pp. 1-21.
Wang J, Zhang P, Chu T, Cao Y, Zhou Y, Wu T, Wang B, He C, Lin D. 2023. V3Det: Vast vocabulary visual detection dataset. In: Proceedings of 2023 IEEE/CVF International Conference on Computer Vision. Institute of Electrical and Electronic Engineers Computer Society, Paris, France. pp. 19787-19797.
Wang Q J, Zhang S Y, Dong S F, Zhang G C, Yang J, Li R, Wang H Q. 2020. Pest24: A large-scale very small object data set of agricultural pests for multi-target detection. Computers and Electronics in Agriculture, 175, 105585.
Wang R, Liu L, Xie C, Yang P, Li R, Zhou M. 2021. AgriPest: A large-scale domain-specific benchmark dataset for practical agricultural pest detection in the wild. Sensors, 21, 1601.
Wen C, Chen H, Ma Z, Zhang T, Yang C, Su H, Chen H. 2022. Pest-YOLO: A model for large-scale multi-class dense and tiny pest detection and counting. Frontiers in Plant Science, 13, 973985.
Wu J, Ji W, Liu Y, Fu H, Xu M, Xu Y, Jin Y. 2023. Medical SAM adapter: Adapting segment anything model for medical image segmentation. Medical image analysis, 102, 103547.
Wu X, Zhan C, Lai Y K, Cheng M M, Yang J. 2019. IP102: A large-scale benchmark dataset for insect pest recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Institute of Electrical and Electronic Engineers Computer Society, Long Beach, USA. pp. 8787-8796.
Wu Z, Xiong Y, Yu S X, Lin D. 2018. Unsupervised feature learning via non-parametric instance discrimination. In: Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Institute of Electrical and Electronic Engineers Computer Society, Salt Lake City, USA. pp. 3733-3742.
Yao Q, Feng J, Tang J, Xu W, Zhu X, Yang B, Lü J, Xie Y, Yao B, Wu S, Kuai N, Wang L. 2020. Development of an automatic monitoring system for rice light-trap pests based on machine vision. Journal of Integrative Agriculture, 19, 2500-2513.
Yao Q, Lv J, Tang J, Feng J, Zhu X. 2021a. Research on fine-grained image recognition of agricultural light-trap pests based on bilinear attention network. Scientia Agricultura Sinica, 54, 4562-4572. (in Chinese)
Yao Q, Wu S, Kuai N, Yang B, Tang J, Feng J, Zhu X. 2021b. Automatic detection of rice planthoppers through light-trap insect images using improved CornerNet. Transactions of the Chinese Society of Agricultural Engineering, 37, 183-189. (in Chinese)
Zhang H, Li F, Liu S, Zhang L, Su H, Zhu J, Ni L, Shum H Y. 2023. DINO: DETR with improved denoising anchor boxes for end-to-end object detection. In: Proceedings of the International Conference on Learning Representations. ICLR, Kigali, Rwanda. pp. 1-19.
Zhao X, Chen Y, Xu S, Li X, Wang X, Li Y, Huang H. 2024. An open and comprehensive pipeline for unified object grounding and detection. arXiv, doi: https://doi.org/10.48550/arXiv.2401.02361.
Zhao Y, Lv W, Xu S, Wei J, Wang G, Dang Q, Liu Y, Chen J. 2024. DETRs beat YOLOs on real-time object detection. In: Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Institute of Electrical and Electronic Engineers Computer Society, Seattle, USA. pp. 16965-16974.
Zhou J, Wei C, Wang H, Shen W, Xie C, Yuille A, Kong T. 2022. iBOT: image BERT pre-training with online tokenizer. arXiv, doi: https://doi.org/10.48550/arXiv.2111.07832.
|