Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Sodium propionate supplementation improves the negative energy balance in postpartum dairy cattle through regulation of glycolipid metabolism

Maocheng Jiang1, 2, Zitong Meng1, Dejin Tan1, Zhiqiang Cheng1, Zhenwu Wei1, Miao Lin1, 3, 4, Guoqi Zhao1, 3, 4, Kang Zhan1, 3,4#

1 Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China

2 College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China

3 Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China

4 Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou 225009, China

 Highlights 

1. The milk proportions of 4:0, 8:0, 10:0, 13:0, 16:0, total odd-chain FA, and de novo FA increased in cows fed NaPr.

2. Supplementing with NaPr in the diet significantly increased the concentrations of triglycerides (TG), glucose, and insulin in the plasma of postpartum dairy cattle.

3. Supplementing with NaPr in the diet alleviates NEB in postpartum dairy cattle by increasing plasma glucose levels and promoting lipid deposition in adipose tissue.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

本研究旨在确定日粮中补充丙酸钠(NaPr)对围产后期奶牛泌乳性能、乳脂肪酸谱、血浆糖脂代谢物和脂肪组织脂质沉积的影响。本研究选取了24头产次相同(3胎)、预产期相似、产后身体状况良好的奶牛,随机分为两组。两组处理分别是:(1)对照组为基础日粮(Control);(2NaPr组为基础日粮+246 g d-1 NaPrNaPr)。本研究表明,日粮中补充NaPr对围产后期奶牛干物质摄入量(DMI)和乳成分组成没有显著影响。与对照组相比,日粮补充NaPr对围产后期奶牛乳中短链脂肪酸(C4:0)、中链脂肪酸(C8:0C10:0)、长链脂肪酸(C13:0C16:015:1、顺-13、顺-16 C22:2)、总奇链脂肪酸和从头合成脂肪酸的比例显著增加,其余饱和脂肪酸的比例显著降低。研究发现,日粮补充NaPr显著增加了围产后期奶牛血浆中甘油三酯(TG)、葡萄糖和胰岛素的浓度。这表明产后补充NaPr可以为奶牛提供能量,有利于身体的葡萄糖和脂质平衡。与对照组相比,补充NaPr奶牛的脂肪组织(AT)中TGPerilipin-1PLIN1)蛋白表达和脂滴沉积显著增加。同时,NaPr显著上调了脂肪组织中ACCα和ACSS2mRNA表达,CPT1ACPT2基因的mRNA表达下调。这表明在日粮中补充NaPr可以促进围产后期奶牛乙酰辅酶A的产生,从而上调脂肪酸合成途径并减少脂肪酸氧化。综上所述,日粮中补充NaPr通过改善奶牛机体糖脂代谢,乳中脂肪酸含量和促进脂肪组织脂质沉积,从而缓解围产后期奶牛的能量负平衡(NEB)。本研究为NaPr作为饲料添加剂缓解围产后期奶牛能量负平衡提供理论基础。



Abstract  

The study goal was to determine the effects of sodium propionate (NaPr) during the postpartum on lactation performance, milk fatty acid (FA) profile, blood metabolites, and fat mobilization. This study selected twenty-four cows with the same parity (3 parity), similar due date, and physical condition in the postpartum and randomly allocated into two groups. The constituents of the two treatments were (1) a normal diet for the Control group, and (2) a normal diet containing 246 g d-1 of NaPr for the NaPr group. This study has demonstrated that the supplementation of NaPr to dairy cows in postpartum had no significant impact on dry matter intake (DMI) and milk compositions. The milk proportions of 4:0, 8:0, 10:0, 13:0, 16:0, cis-10 15:1, cis-13, cis-16 22:2, total odd-chain FA, and de novo FA increased, and those of all remaining individual SFA, and preformed FA decreased in cows fed NaPr versus the Control diet. It was found that supplementing with NaPr significantly increased the concentrations of triglyceride (TG), glucose, and insulin in the plasma of cows. This indicates that supplementing with NaPr in the postpartum can provide energy for cows, which is beneficial for the body's glucose and lipid balance. The adipose tissue (AT) of TG, Perilipin-1 (PLIN1) protein expression, and the orange-red lipid droplet deposition were increased in cows fed NaPr versus the Control diet. The mRNA expression of ACCα and ACSS2 in adipose tissue was up-regulated, and the expression of CPT1A and CPT2 genes was down-regulated. This indicates that supplementing with NaPr in the diet promotes the generation of acetyl CoA, thereby up-regulating the FA synthesis pathway and reducing FA oxidation. In conclusion, dietary supplementation with NaPr promotes cow body energy deposition, improves milk quality, fat accumulation, and alleviates negative energy balance (NEB) during the postpartum dairy cattle.

Keywords:  Sodium propionate       negative energy balance              fat mobilization              fatty acid profile              postpartum  
Online: 18 July 2025  
Fund: 

This study was supported by the Research Project of Natural Science Foundation of Jiangsu Province (BK20190898), the National Natural Science Foundation of China (No. 32372903) and supported by the earmarked fund for CARS (CARS-36).

Cite this article: 

Maocheng Jiang, Zitong Meng, Dejin Tan, Zhiqiang Cheng, Zhenwu Wei, Miao Lin, Guoqi Zhao, Kang Zhan. 2025. Sodium propionate supplementation improves the negative energy balance in postpartum dairy cattle through regulation of glycolipid metabolism. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.07.019

Allen M S, Piantoni P. 2013. Metabolic control of feed intake: implications for metabolic disease of fresh cows. Veterinary Clinics of North America: Food Animal Practice, 29, 279-297.

Aschenbach J R, Kristensen N B, Donkin S S, Hammon H M, and Penner G B. 2010. Gluconeogenesis in dairy cows: the secret of making sweet milk from sour dough. IUBMB Life, 62, 869-877.

AOAC. Official Methods of Analysis. 18th ed. Gaithersburg, MD: Association of Official Analytical Chemists, 2006.

Sun B, Cao Y, Cai C, Chao Y, Xiang L, and Yao J. 2020. Temporal dynamics of nutrient balance, plasma biochemical and immune traits, and liver function in transition dairy cows. Journal of Integrative Agriculture, 19, 820-837.

Brickner A E, Pires J A, Gressley T F, and Grummer R R. 2009. Effects of abomasal lipid infusion on liver triglyceride accumulation and adipose lipolysis during fatty liver induction in dairy cows. Journal of Dairy Science, 92, 4954-4961.

Contreras G A, Strieder-Barboza C, and De Koster J. 2018. Symposium review: Modulating adipose tissue lipolysis and remodeling to improve immune function during the transition period and early lactation of dairy cows. Journal of Dairy Science, 101, 2737-2752.

DiCostanzo A, Williams J E, and Keisler D H. 1999. Effects of short- or long-term infusions of acetate or propionate on luteinizing hormone, insulin, and metabolite concentrations in beef heifers. Journal of Animal Science, 77, 3050-3056.

Gross J, van Dorland H A, Bruckmaier R M, and Schwarz F J. 2011. Performance and metabolic profile of dairy cows during a lactational and deliberately induced negative energy balance with subsequent realimentation. Journal of Dairy Science, 94, 1820-1830.

Herdt T H and Emery R S. 1992. Therapy of diseases of ruminant intermediary metabolism. Veterinary Clinics of North America: Food Animal Practice, 8, 91-106.

Horwitz W and Latimer G W. 2000. AOAC official methods of analysis. Gaithersburg, MD: Association of Official Analytical Chemists International. Sections, 50, 992.905.

Hosseini A, Behrendt C, Regenhard P, Sauerwein H, and Mielenz M. 2012. Differential effects of propionate or beta-hydroxybutyrate on genes related to energy balance and insulin sensitivity in bovine white adipose tissue explants from a subcutaneous and a visceral depot. Journal of animal physiology and animal nutrition, 96, 570-580.

Jiang M, Hu Z, Wang K, Yang T, Lin M, Zhan K, and Zhao G. 2023. CRISPR/Cas9-mediated knockout of SLC15A4 gene involved in the immune response in bovine rumen epithelial cells. Journal of Integrative Agriculture, 22, 3148-3158.

Jiang M C, Datsomor O, Cheng Z Q, Meng Z T, Zhan K, Yang T Y, Huang Y H, Yan Q, and Zhao G Q. 2022. Partial Substitution of Alfalfa Hay by Stevia (Stevia rebaudiana) Hay Can Improve Lactation Performance, Rumen Fermentation, and Nitrogen Utilization of Dairy Cows. Frontiers in Veterinary Science, 9, 899148.

Jocken J W E, Gonzalez Hernandez M A, Hoebers N T H, van der Beek C M, Essers Y P G, Blaak E E, and Canfora E E. 2017. Short-Chain Fatty Acids Differentially Affect Intracellular Lipolysis in a Human White Adipocyte Model. Front Endocrinol (Lausanne), 8, 372.

Kersten S. 2014. Physiological regulation of lipoprotein lipase. Biochim Biophys Acta, 1841, 919-933.

Lean I J, Van Saun R, and Degaris P J. 2013. Energy and protein nutrition management of transition dairy cows. Veterinary Clinics of North America: Food Animal Practice, 29, 337-366.

Liu S, Zhang R, Kang R, Meng J, and Ao C. 2016. Milk fatty acids profiles and milk production from dairy cows fed different forage quality diets. Animal Nutrition, 2, 329-333.

Lopreiato V, Mezzetti M, Cattaneo L, Ferronato G, Minuti A, and Trevisi E. 2020. Role of nutraceuticals during the transition period of dairy cows: a review. J Anim Sci Biotechnol, 11, 96.

Lu Y, Fan C, Li P, Lu Y, Chang X, and Qi K. 2016. Short Chain Fatty Acids Prevent High-fat-diet-induced Obesity in Mice by Regulating G Protein-coupled Receptors and Gut Microbiota. Scientific Reports, 6, 37589.

Lukovac S, Belzer C, Pellis L, Keijser B J, de Vos W M, Montijn R C, and Roeselers G. 2014. Differential modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids. mBio, 5, doi: 10.1128/mBio.01438-14

Maldini G, Kennedy K M, and Allen M S. 2019. Temporal effects of ruminal infusion of propionic acid on hepatic metabolism in cows in the postpartum period. Journal of Dairy Science, 102, 9781-9790.

Maxin G, Glasser F, and Rulquin H. 2010. Additive effects of trans-10, cis-12 conjugated linoleic acid and propionic acid on milk fat content and composition in dairy cows. Journal of dairy research, 77, 295-301.

McCarthy M M, Yasui T, Ryan C M, Pelton S H, Mechor G D, and Overton T R. 2015. Metabolism of early-lactation dairy cows as affected by dietary starch and monensin supplementation. Journal of Dairy Science, 98, 3351-3365.

McGlory C, Calder P C, and Nunes E A. 2019. The Influence of Omega-3 Fatty Acids on Skeletal Muscle Protein Turnover in Health, Disuse, and Disease. Frontiers in Nutrition, 6, 144.

McNamara J P and Valdez F. 2005. Adipose tissue metabolism and production responses to calcium propionate and chromium propionate. Journal of Dairy Science, 88, 2498-2507.

Muller M, Hernandez M A G, Goossens G H, Reijnders D, Holst J J, Jocken J W E, van Eijk H, Canfora E E, and Blaak E E. 2019. Circulating but not faecal short-chain fatty acids are related to insulin sensitivity, lipolysis and GLP-1 concentrations in humans. Scientific Reports, 9, 12515.

Natori Y, Nasui M, and Kihara-Negishi F. 2017. Neu1 sialidase interacts with perilipin 1 on lipid droplets and inhibits lipolysis in 3T3-L1 adipocytes. Genes Cells, 22, 485-492.

NRC. 2021. Nutrient Requirements of Dairy Cattle10.17226/25806. National Academies Press, DC, USA.

Razzaghi A, Drackley J K, and Malekkhahi M. 2021. Concentrate allowance and corn grain processing influence milk production, body reserves, milk fatty acid profile, and blood metabolites of dairy cows in the early postpartum period. Journal of Dairy Science, 104, 5479-5492.

Schoenberg K M, Ehrhardt R M, and Overton T R. 2012. Effects of plane of nutrition and feed deprivation on insulin responses in dairy cattle during late gestation. Journal of Dairy Science, 95, 670-682.

Silva A S, Cortinhas C S, Acedo T S, Morenz M J F, Lopes F C F, Arrigoni M B, Ferreira M H, Jaguaribe T L, Ferreira L D, Gouvea V N, and Pereira L G R. 2022. Effects of feeding 25-hydroxyvitamin D(3) with an acidogenic diet during the prepartum period in dairy cows: Mineral metabolism, energy balance, and lactation performance of Holstein dairy cows. Journal of Dairy Science, 105, 5796-5812.

Spielman L J, Gibson D L, and Klegeris A. 2018. Unhealthy gut, unhealthy brain: The role of the intestinal microbiota in neurodegenerative diseases. Neurochem Int, 120, 149-163.

Straub B K, Stoeffel P, Heid H, Zimbelmann R, and Schirmacher P. 2008. Differential pattern of lipid droplet-associated proteins and de novo perilipin expression in hepatocyte steatogenesis. Hepatology, 47, 1936-1946.

Sun Y, Liu B, Du Y, Snetselaar L G, Sun Q, Hu F B, and Bao W. 2018. Inverse Association between Organic Food Purchase and Diabetes Mellitus in US Adults. Nutrients, 10, 1877

Sun Z, Gong J, Wu H, Xu W, Wu L, Xu D, Gao J, Wu J W, Yang H, Yang M, and Li P. 2013. Perilipin1 promotes unilocular lipid droplet formation through the activation of Fsp27 in adipocytes. Nature Communications, 4, 1594.

Xue M, Sun H, Wu X, Guan L L, and Liu J. 2018. Assessment of Rumen Microbiota from a Large Dairy Cattle Cohort Reveals the Pan and Core Bacteriomes Contributing to Varied Phenotypes. Applied and Environmental Microbiology, 84, 0978

Yost W M, Young J W, Schmidt S P, and McGilliard A D. 1977. Gluconeogenesis in ruminants: propionic acid production from a high-grain diet fed to cattle. Journal of Nutrition, 107, 2036-2043.

Zhang F, Wang Y, Wang H, Nan X, Guo Y, and Xiong B. 2022. Calcium Propionate Supplementation Has Minor Effects on Major Ruminal Bacterial Community Composition of Early Lactation Dairy Cows. Frontiers in Microbiology, 13, 847488.

Zhang F, Zhao Y, Wang H, Nan X, Wang Y, Guo Y, and Xiong B. 2022. Alterations in the Milk Metabolome of Dairy Cows Supplemented with Different Levels of Calcium Propionate in Early Lactation. Metabolites, 12, 699

Zhang Q, Koser S L, and Donkin S S. 2016. Propionate induces mRNA expression of gluconeogenic genes in bovine calf hepatocytes. Journal of Dairy Science, 99, 3908-3915.

Zhang S, Liu G, Xu C, Liu L, Zhang Q, Xu Q, Jia H, Li X, and Li X. 2018. Perilipin 1 Mediates Lipid Metabolism Homeostasis and Inhibits Inflammatory Cytokine Synthesis in Bovine Adipocytes. Frontiers in Immunology, 9, 467.

Zhao S, Torres A, Henry R A, Trefely S, Wallace M, Lee J V, Carrer A, Sengupta A, Campbell S L, Kuo Y M, Frey A J, Meurs N, Viola J M, Blair I A, Weljie A M, Metallo C M, Snyder N W, Andrews A J, and Wellen K E. 2016. ATP-Citrate Lyase Controls a Glucose-to-Acetate Metabolic Switch. Cell Reports, 17, 1037-1052.

[1] Tengteng Xu, Mengya Zhang, Qiuchen Liu, Xin Wang, Pengfei Luo, Tong Liu, Yelian Yan, Naru Zhou, Yangyang Ma, Tong Yu, Yunsheng Li, Zubing Cao, Yunhai Zhang. 18S ribosomal RNA methyltransferase METTL5-mediated CDX2 translation regulates porcine early embryo development[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3185-3198.
[2] Jie Zhang, Han Gao, Fuhao Ren, Zehua Zhou, Huan Wu, Huahua Zhao, Lu Zhang, Mingguo Zhou, Yabing Duan. The stress regulator FgWhi2 and phosphatase FgPsr1 play crucial roles in the regulation of secondary metabolite biosynthesis and the response to fungicides in Fusarium graminearum[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3095-3111.
[3] Weiqi Guo, Di Wang, Xinyu Wang, Zhiyang Wang, Hong Zhu, Jiangang Hu, Beibei Zhang, Jingjing Qi, Mingxing Tian, Yanqing Bao, Na Li, Wanjiang Zhang, Shaohui Wang. Identification and characterization of a plasmid co-harboring blaCTX-M-55 and blaTEM-141 in Escherichia albertii from broiler in China[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3212-3221.
[4] Huaijian Xu, Ruoxuan Jiang, Xianhui Fu, Qinhu Wang, Yutong Shi, Xiaofei Zhao, Cong Jiang, Hang Jiang. A missense mutation in the Sin3 subunit of Rpd3 histone deacetylase complex bypasses the requirement for FNG1 in wheat scab fungus[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3087-3094.
[5] Yapeng Zhang, Wentao Cai, Qi Zhang, Qian Li, Yahui Wang, Ruiqi Peng, Haiqi Yin, Xin Hu, Zezhao Wang, Bo Zhu, Xue Gao, Yan Chen, Huijiang Gao, Lingyang Xu, Junya Li, Lupei Zha. Integrated analyses of genomic and transcriptomic data reveal candidate variants associated with carcass traits in Huaxi cattle[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3169-3184.
[6] Xue Wang, Hefeng Chen, Xianfeng Zhang, Zhengshuang Wu, Shuai Zhang, Lei Shuai, Lulu Wang, Weijie Li, Jinliang Wang, Wenxing Liu, Xijun Wang, Zhiyuan Wen, Jinying Ge, Yuntao Guan, Xijun He, Weiye Chen, Zhigao Bu. Establishment of goat infection model of the peste des petits ruminants virus isolated in China for vaccine efficacy evaluation[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3199-3211.
[7] Zimeng Liang, Juan Li, Jingyi Feng, Zhiyuan Li, Vinay Nangia, Fei Mo, Yang Liu. Brassinosteroids improve the redox state of wheat florets under low-nitrogen stress and alleviate degeneration[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2920-2939.
[8] Qing Li, Zhuangzhuang Sun, Zihan Jing, Xiao Wang, Chuan Zhong, Wenliang Wan, Maguje Masa Malko, Linfeng Xu, Zhaofeng Li, Qin Zhou, Jian Cai, Yingxin Zhong, Mei Huang, Dong Jiang. Time-course transcriptomic information reveals the mechanisms of improved drought tolerance by drought priming in wheat[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2902-2919.
[9] Liulong Li, Zhiqiang Mao, Pei Wang, Jian Cai, Qin Zhou, Yingxin Zhong, Dong Jiang, Xiao Wang. Drought priming enhances wheat grain starch and protein quality under drought stress during grain filling[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2888-2901.
[10] Xinhu Guo, Jinpeng Chu, Yifan Hua, Yuanjie Dong, Feina Zheng, Mingrong He, Xinglong Dai. Long-term integrated agronomic optimization maximizes soil quality and synergistically improves wheat yield and nitrogen use efficiency[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2940-2953.
[11] Chenyang Wang, Yinuo Zhang, Qiming Sun, Lin Li, Fang Guan, Yazhou He, Yidong Wu. Species-specific evolution of lepidopteran TspC5 tetraspanins associated with dominant resistance to Bacillus thuringiensis toxin Cry1Ac[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3127-3140.
[12] Min Tu, Zhongfeng Zhu, Xinyang Zhao, Haibin Cai, Yikun Zhang, Yichao Yan, Ke Yin, Zhimin Sha, Yi Zhou, Gongyou Chen, Lifang Zou. The versatile plant probiotic bacterium Bacillus velezensis SF305 reduces red root rot disease severity in the rubber tree by degrading the mycelia of Ganoderma pseudoferreum[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3112-3126.
[13] Jinxin Yu, Jiayi He, Xuefeng Zhang, Chuxiao Lin, Shiyan Liu, Xin Gong, Xinnian Zeng, Jiali Liu. Differential energy pathways are required for rapid long-term memory formation in the oriental fruit fly, Bactrocera dorsalis[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3155-3168.
[14] Yang Chen, Xuyu Feng, Xiao Zhao, Xinmei Hao, Ling Tong, Sufen Wang, Risheng Ding, Shaozhong Kang. Biochar application enhances soil quality by improving soil physical structure under particular water and salt conditions in arid region of Northwest China[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3242-3263.
[15] Xiaoqing Wang, Wenjiao Shi, Qiangyi Yu, Xiangzheng Deng, Lijun Zuo, Xiaoli Shi, Minglei Wang, Jun Li. Well-facilitated farmland improves nitrogen use efficiency and reduces environmental impacts in the Huang-Huai-Hai Region, China[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3264-3281.
No Suggested Reading articles found!