Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Differential energy pathways are required for rapid long-term memory formation in the oriental fruit fly, Bactrocera dorsalis
Jinxin Yu, Jiayi He, Xuefeng Zhang, Chuxiao LinShiyan Liu, Xin Gong, Xinnian Zeng#, Jiali Liu#

State Key Laboratory of Green Pesticide/Guangdong Engineering Research Center for Insect Behavior Regulation/College of Plant Protection, South China Agricultural University, Guangzhou 510642, China

 Highlights 

Bactrocera dorsalis can rapidly form long-term memory.

l Long-term memory formation is an energy-consuming process.

l Early long-term memory formation requires energy from the TCA cycle, while late long-term memory formation requires energy from oxidative phosphorylation.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

为了确保获取的信息的可靠性,大多数昆虫在将信息存储为长期记忆之前需要经历多个间隔的体验,这一观点在昆虫的行为和分子层面上均得到证实。近期的研究表明,一些昆虫在一次经历后就能形成长期记忆。然而,单次经历形成长期记忆的机制尚不清楚。因此,了解昆虫快速学习和随后形成偏好的机制至关重要。我们在这里发现了农业害虫桔小实蝇能够迅速形成依赖于蛋白质合成的长期记忆,并且形成长期记忆需要高能量的支持,代价是降低了存活率。此外,我们采用液相色谱-质谱代谢组学方法发现,与长期记忆相关的过程依次与两种能量生成过程相关联,即三羧酸循环和氧化磷酸化。通过阻断这些能量生成过程进一步证实了这一点。我们的研究结果为针对桔小实蝇的能量生成中间代谢物的行为调节剂的开发提供了理论依据,同时也为昆虫快速形成长期记忆提供了新的视角。



Abstract  

To ensure the reliability of learned information, most insects require multiple intervals of experience before storing the information as Long-term memory (LTM), and this requirement has been validated in insects from the behavioral to the molecular level. Recent studies have shown that some insects can form LTM after a single experience, although the mechanisms underlying one-trial LTM formation are not well understood. Therefore, understanding the mechanisms underlying rapid learning and subsequent preference formation in insects is crucial. Here we show that the agricultural pest Bactrocera dorsalis can rapidly form LTM, which is dependent on protein synthesis, and that the formation of LTM requires high energy support at the cost of reduced survival. Furthermore, based on a liquid chromatography-mass spectrometry (LC-MS) metabolomics approach, we found that LTM-related processes are sequentially coupled to two processes for energy generation, the TCA cycle and oxidative phosphorylation. This was further confirmed by blocking these energy generation processes. Our results provide a theoretical basis for the development of behavioral modulators in oriental fruit flies that target energy generation intermediate metabolites, as well as a new perspective on the rapid formation of LTM in insects.

Keywords:  Bactrocera dorsalis       rapid learning       long-term memory       protein synthesis       energy generation  
Online: 13 December 2024  
Fund: 

This study was funded by the National Natural Science Foundation of China (32072486 and 31971424) and the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation (GZC20240511).

About author:  Jinxin Yu, E-mail: jinxinyu1994@163.com; #Correspondence Xinnian Zeng, E-mail: zengxn@scau.edu.cn; Jiali Liu, E-mail: shirley4461@scau.edu.cn

Cite this article: 

Jinxin Yu, Jiayi He, Xuefeng Zhang, Chuxiao Lin, Shiyan Liu, Xin Gong, Xinnian Zeng, Jiali Liu. 2024. Differential energy pathways are required for rapid long-term memory formation in the oriental fruit fly, Bactrocera dorsalis. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2024.12.015

Adam E, Hansson B S, Knaden M. 2022. Fast learners: One trial olfactory learning in insects. Frontiers in Ecology and Evolution, 10, 876596.

Alberini C M, Kandel E R. 2015. The regulation of transcription in memory consolidation. Cold Spring Harbor Perspectives in Biology, 7, a021741.

Boulesteix A L, Strimmer K. 2007. Partial least squares: A versatile tool for the analysis of high-dimensional genomic data. Briefings in Bioinformatics, 8, 32-44.

Bourouliti A, Skoulakis E M C. 2022. Anesthesia resistant memories in Drosophila, a working perspective. International Journal of Molecular Sciences, 23, 8527.

Brennan L. 2013. Metabolomics in nutrition research: Current status and perspectives. Biochemical Society Transactions, 41, 670-673.

Burns J G, Foucaud J, Mery F. 2011. Costs of memory: Lessons from 'mini'brains. Proceedings of the Royal Society (B: Biological Sciences), 278, 923-929.

Chatterjee N, Perrimon N. 2021. What fuels the fly: Energy metabolism in Drosophila and its application to the study of obesity and diabetes. Science Advances, 7, eabg4336.

Chen C, Jiang Z Y, Fu X, Yu D K, Huang H, Tasker J G. 2019. Astrocytes amplify neuronal dendritic volume transmission stimulated by norepinephrine. Cell Reports, 29, 4349-4361.

Christiansen I C, Szin S, Schausberger P. 2016. Benefit-cost trade-offs of early learning in foraging predatory mites Amblyseius swirskii. Scientific Reports, 6, 23571.

Dudai Y. 2004. The neurobiology of consolidations, or, how stable is the engram? Annual Review of Psychology, 55, 51-86.

Eisenhardt D. 2014. Molecular mechanisms underlying formation of long-term reward memories and extinction memories in the honeybee (Apis mellifera). Learning & Memory, 21, 534-542.

Gampala S, Shah F, Lu X, Moon H R, Babb O, Umesh Ganesh N, Sandusky G, Hulsey E, Armstrong L, Mosely A L, Han B , Ivan M, Yeh J R J, Kelley M R, Zhang C, Fishel M L. 2021. Ref-1 redox activity alters cancer cell metabolism in pancreatic cancer: Exploiting this novel finding as a potential target. Journal of Experimental & Clinical Cancer Research, 40, 251.

Giurfa M, Sandoz J C. 2012. Invertebrate learning and memory: Fifty years of olfactory conditioning of the proboscis extension response in honeybees. Learning & Memory, 19, 54-66.

Hosono S, Matsumoto Y, Mizunami M. 2016. Interaction of inhibitory and facilitatory effects of conditioning trials on long-term memory formation. Learning & Memory, 23, 669-678.

Ibba M, Söll D. 2000. Aminoacyl-tRNA synthesis. Annual Review of Biochemistry, 69, 617-650.

Jaumann S, Scudelari R, Naug D. 2013. Energetic cost of learning and memory can cause cognitive impairment in honeybees. Biology Letters, 9, 20130149.

Kauffman A L, Ashraf J M, Corces-Zimmerman M R, Landis J N, Murphy C T. 2010. Insulin signaling and dietary restriction differentially influence the decline of learning and memory with age. Plos Biology, 8, e1000372.

Kerr S E. 1936. The carbohydrate metabolism of brain. 1. The determination of glycogen in nerve tissue. Journal of Biological Chemistry, 116, 1-7.

Krashes M J, Waddell S. 2008. Rapid consolidation to a radish and protein synthesis-dependent long-term memory after single-session appetitive olfactory conditioning in Drosophila. Journal of Neuroscience, 28, 3103-3113.

Kruidhof H M, Roberts A L, Magdaraog P, Muñoz D, Gols R, Vet L E M, Hoffmeister T S, Harvey J A. 2015. Habitat complexity reduces parasitoid foraging efficiency, but does not prevent orientation towards learned host plant odours. Oecologia, 179, 353-361.

Liu J L, Chen X Y, Zeng X N. 2015. Classical olfactory conditioning in the oriental fruit fly, Bactrocera dorsalis. PLoS ONE, 10, e0122155.

Manjunath M J, Muralidhara. 2015. Standardized extract of Withania somnifera (Ashwagandha) markedly offsets rotenone-induced locomotor deficits, oxidative impairments and neurotoxicity in Drosophila melanogaster. Journal of Food Science and Technology, 52, 1971-1981.

Marter K, Grauel M K, Lewa C, Morgenstern L, Buckemüller C, Heufelder K, Ganz M, Eisenhardt D. 2014. Duration of the unconditioned stimulus in appetitive conditioning of honeybees differentially impacts learning, long-term memory strength, and the underlying protein synthesis. Learning & Memory, 21, 676-685.

Matsumoto Y, Noji S, Mizunami M. 2003. Time course of protein synthesis-dependent phase of olfactory memory in the cricket Gryllus bimaculatus. Zoological Science, 20, 409-416.

Menzel R. 1999. Memory dynamics in the honeybee. Journal of Comparative Physiology A, 185, 323-340.

Menzel R. 2012. The honeybee as a model for understanding the basis of cognition. Nature Reviews Neuroscience, 13, 758-768.

Menzel R, Manz G, Menzel R, Greggers U. 2001. Massed and spaced learning in honeybees: The role of CS, US, the intertrial interval, and the test interval. Learning & Memory, 8, 198-208.

Mery F, Kawecki T J. 2004. An operating cost of learning in Drosophila melanogasterAnimal Behaviour, 68, 589-598.

Mery F, Kawecki T J. 2005. A cost of long-term memory in Drosophila. Science, 308, 1148.

Nishijima S, Maruyama I N. 2017. Appetitive olfactory learning and long-term associative memory in Caenorhabditis elegans. Frontiers in Behavioral Neuroscience, 11, 80.

Padamsey Z, Rochefort N L. 2023. Paying the brain's energy bill. Current Opinion in Neurobiology, 78, 102668.

Piqueret B, Sandoz J C, d'Ettorre P. 2019. Ants learn fast and do not forget: Associative olfactory learning, memory and extinction in Formica fusca. Royal Society Open Science, 6, 190778.

Plaçais P Y, Preat T. 2013. To favor survival under food shortage, the brain disables costly memory. Science, 339, 440-442.

Plaçais P Y, de Tredern É, Scheunemann L, Trannoy S, Goguel V, Han K A, Isabel G, Preat T. 2017. Upregulated energy metabolism in the Drosophila mushroom body is the trigger for long-term memory. Nature Communications, 8, 15510. 

De Rijk M, Sanchez V C, Smid H M, Engel B, Vet L E M, Poelman E H. 2018. Associative learning of host presence in non-host environments influences parasitoid foraging. Ecological Entomology, 43, 318-325.

Roselli C, Ramaswami M, Boto T, Cervantes-Sandoval I. 2021. The making of long-lasting memories: A fruit fly perspective. Frontiers in Behavioral Neuroscience15, 662129.

Schneider-Poetsch T, Ju J H, Eyler D E, Dang Y J, Bhat S, Merrick W C, Green R, Shen B, Liu J O. 2010. Inhibition of eukaryotic translation elongation by cycloheximide and lactimidomycin. Nature Chemical Biology, 6, 209-217.

Silva B, Mantha O L, Schor J, Pascual A, Plaçais P Y, Pavlowsky A, Preat T. 2022. Glia fuel neurons with locally synthesized ketone bodies to sustain memory under starvation. Nature Metabolism, 4, 213-224.

Horgan D J, Singer T P, Casida J E. 1968. Studies on the respiratory chain-linked reduced nicotinamide adenine dinucleotide dehydrogenase. XIII. Binding sites of rotenone, piericidin A, and amytal in the respiratory chain. Journal of Biological Chemistry, 243, 834-843.

Smid H M, Vet L E M. 2016. The complexity of learning, memory and neural processes in an evolutionary ecological context. Current Opinion in Insect Science, 15, 61-69.

Smid H M, Wang G H, Bukovinszky T, Steidle J L M, Bleeker M A K, van Loon J J A, Vet L E M. 2007. Species-specific acquisition and consolidation of long-term memory in parasitic wasps. Proceedings of the Royal Society (B: Biological Sciences), 274, 1539-1546.

Snell-Rood E C, Davidowitz G, Papaj D R. 2011. Reproductive tradeoffs of learning in a butterfly. Behavioral Ecology, 22, 291-302.

Sokoloff L. 1999. Energetics of functional activation in neural tissues. Neurochemical Research, 24, 321-329.

Strachecka A, Krauze M, Olszewski K, Borsuk G, Paleolog J, Merska M, Chobotow J, Bajda M, Grzywnowicz K. 2014. Unexpectedly strong effect of caffeine on the vitality of western honeybees (Apis mellifera). Biochemistry (Moscow), 79, 1192-1201.

Sugimachi S, Matsumoto Y, Mizunami M, Okada J. 2016. Effects of caffeine on olfactory learning in crickets. Zoological Science, 33, 513-519.

Trygg J, Wold S. 2002. Orthogonal projections to latent structures (O-PLS). Journal of Chemometrics (Journal of the Chemometrics Society), 6, 119-128.

Tully T, Preat T, Boynton S C, Del Vecchio M. 1994. Genetic dissection of consolidated memory in Drosophila. Cell, 79, 35-47.

Vasilev N, Boccard J, Lang G, Grömping U, Fischer R, Goepfert S, Rudaz S, Schillberg S. 2016. Structured plant metabolomics for the simultaneous exploration of multiple factors. Scientific Reports, 6, 37390.

Villar M E, Marchal P, Viola H, Giurfa M. 2020. Redefining single-trial memories in the honeybee. Cell Reports, 30, 2603-2613.

Want E J, Masson P, Michopoulos F, Wilson I D, Theodoridis G, Plumb R S, Shockcor J, Loftus N, Holmes E, Nicholson J K. 2013. Global metabolic profiling of animal and human tissues via UPLC-MS. Nature Protocols, 8, 17-32.

Watanabe H, Kobayashi Y, Sakura M, Matsumoto Y, Mizunami M. 2003. Classical olfactory conditioning in the cockroach Periplaneta americana. Zoological Science, 20, 1447-1454.

Wüstenberg D, Gerber B, Menzel R. 1998. Long-but not medium-term retention of olfactory memories in honeybees is impaired by actinomycin D and anisomycin. European Journal of Neuroscience, 10, 2742-2745.

Yu J X, Chen H L, He J Y, Zeng X N, Hong L, Liu J L. 2024. Dual roles of dopaminergic pathways in olfactory learning and memory in the oriental fruit fly, Bactrocera dorsalis. Pesticide Biochemistry and Physiology, 200, 105825.

Yu J X, Hui Y M, Xue J A, Qu J B, Ling S Q, Wang W, Zeng X N, Liu J L. 2023. Formation characteristics of longterm memory in Bactrocera dorsalis. Insect Science, 30, 829-843.

Yu J X, Xiang Q, Qu J B, Hui Y M, Lin T, Zeng X N, Liu J L. 2022. Octopaminergic neurons function in appetitive but not aversive olfactory learning and memory in Bactrocera dorsalis. Insect Science, 29, 1747-1760.

Yu J X, Yang W P, Zeng X N, Liu J L. 2019. The oriental fruit fly Bactrocera dorsalis learns and remembers sugar quality. Journal of Insect Physiology, 117, 103895.

Zelena E, Dunn W B, Broadhurst D, Francis-McIntyre S, Carroll K M, Begley P, O’Hagan S, Knowles J D, Halsall A, Wilson L D, Kell D B. 2009. Development of a robust and repeatable UPLC-MS method for the long-term metabolomic study of human serum. Analytical Chemistry, 81, 1357-1364.

Zeng Y Y, Reddy G V P, Li Z H, Qin Y J, Wang Y N, Pan X B, Jiang F, Gao F, Zhao Z H. 2019. Global distribution and invasion pattern of oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). Journal of Applied Entomology, 143, 165-176.

No related articles found!
No Suggested Reading articles found!