Please wait a minute...
Journal of Integrative Agriculture
Advanced Online Publication | Current Issue | Archive | Adv Search
Canopy microenvironment and hormonal coordination meditate defoliation dynamics under altered sink-source in high-density cotton

Zhenwang Zhang1, Kexin Li1, Keke Yu2#, Mingfeng Yang3, Yukun Wang1, Qinghua Liao1, Jiaqi Zhang1, Xuelian Tang4, Guodong Chen5, Sumei Wan5, Shanwei Lou6, Fangjun Li1, Xiaoli Tian1, Zhaohu Li1, Mingwei Du1, 5, 6#

1 Engineering Research Center of Plant Growth Regulator, Ministry of Education/State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
2 Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
3 Wulanwusu Special Test Field base of National Integrated Meteorological Observation, Wulanwusu Ecology and Agrometeorology Observation and Research Station of Xinjiang, Wulanwusu Agrometeorological Experiment Station, Shawan 832199, China
4 College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
5 Key Laboratory of Genetic Improvement and Efficient Production for Specialty Crops in Arid Southern Xinjiang of Xinjiang Corps/College of Agriculture, Tarim University, Alar 843300, China
6 Cotton Research Institute of Xinjiang Uyghur Autonomous Region Academy of Agricultural Sciences/National Cotton Engineering Technology Research Center, Urumqi 830091, China

 Highlights 

1 Boll removal suppresses the formation of abscission zones by reducing cellulase and polygalacturonase activity in abscission zones and increasing petiole break strength.

2 Sink-source imbalance delays defoliation via coordination of canopy microenvironment and hormonal antagonism.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

-源平衡对棉花(Gossypium hirsutum L.)的脱叶过程具有关键调节作用,然而如何针对性调控库-源平衡以优化棉花的脱叶仍有待深入研究。本研究以新陆早78XLZ78)和源棉11YM11)为材料,开展了为期两年的田间试验,设置了四种库源处理:不剪叶不剪库(CK)、剪除每株1/2果枝叶(1/2L)、剪除每株1/2库器官(1/2B)以及剪除每株全部库器官(0B)。同时,在XLZ78品种上设置了三种灌溉处理(亏缺灌溉:2970 m³·ha¹;常规灌溉:3420 m³·ha¹;补充灌溉:4095 m³·ha¹),以探讨其对棉花保铃效果的影响。主要结果表明:与CK处理相比,减库处理(1/2B0B)通过提高叶片相对含水量(LRWC)及植物激素(IAAZR)水平,同时降低脱落酸(ABA)含量及冠层温度,最终抑制了脱落区纤维素酶(CEL)和多聚半乳糖醛酸酶(PG)活性,从而延缓了叶片脱落。具体而言,1/2B0B处理下XLZ78两年平均脱叶率平均分别降低了7.3%13.4%YM11两年平均脱叶率平均分别降低了0.8%9.2%。减源处理(1/2L)的结果与减库处理类似。相反,与亏缺灌溉(2970 m³·ha¹)相比,补充灌溉(4095 m³·ha¹)提高了棉铃的数量、库源比及冠层温度,最终使叶片脱落率提高了14.0%。从机制上看,在库器官受限条件下,较低的冠层温度与植物激素的协同变化共同抑制了离层的形成。上述结果证实,在优化棉铃数量的同时尽量减少叶片损伤的库-源平衡管理策略,能够通过冠层微环境-激素互作途径精调控棉花的脱叶效率。本研究为高密度棉花种植系统中协调机械采收效率与确保产量稳定性的精准脱叶策略提供了生理学框架。



Abstract  

The sink-source balance critically regulates leaf abscission dynamics in cotton (Gossypium hirsutum L.), yet its targeted manipulation to optimize defoliation efficiency remains unexplored.  Here, we conducted a two-year field experiment with cultivars ‘Xinluzao 78’ (XLZ78) and ‘Yuanmian 11’ (YM11) under four sink-source treatments: no cutting source and sink treatment (CK), cutting 1/2 leaves per plant (1/2L), cutting 1/2 bolls per plant (1/2B) and cutting all bolls per plant.  Concurrently, XLZ78 received differential irrigation regimes (deficit: 2970 m³ ha-¹; conventional: 3,420 m³ ha-¹; supplementary: 4,095 m³ ha-¹) to probe boll retention effects.  Key findings revealed that sink reduction (1/2B, 0B) delayed defoliation by elevating leaf relative water content (LRWC) and phytohormones (IAA and ZR), while suppressing ABA, and canopy temperature, compared to CK.  This ultimately reduces the activity of cellulase (CEL) and polygalacturonase (PG) in the abscission zone.  Specifically, 1/2B and 0B reduced defoliation rates by 7.3 and 13.4% (XLZ78) and 0.8 and 9.2% (YM11), over the two-year average.  The 1/2L treatment had a similar effect to the cutting boll treatment. Conversely, supplementary irrigation (I4095) enhanced boll retention, sink-source ratios and canopy temperature during the defoliant application period, which increased the leaf abscission rate by 14.0% over deficit irrigation (I2970).  Mechanistically, under sink limitation conditions, the combination of lower canopy temperature and hormonal changes suppresses the activation of abscission zones.  These results demonstrate that managing sink-source equilibrium by minimizing leaf damage while optimizing boll load fine-tunes defoliation efficiency through microenvironment-hormone crosstalk.  Our work advances the physiological framework for precision defoliation strategies in high-density cotton systems, reconciling mechanical harvesting efficiency with yield preservation.

Keywords:  cotton       defoliation       phytohormones       canopy temperature       sink-source ratio  
Online: 14 July 2025  
Fund: 

This work was jointly funded by the Finance science and technology project of Xinjiang Uyghur Autonomous Region, China (2022B02052-2), the Science and Technology Planning Projects of the Xinjiang Production and Construction Corps, China (2024AB030), the Tianshan Talent Training Program, China (2023TSYCTD004), and the Tarim University President's Fund Program, China (TDZKCX202403).

About author:  #Correspondence Keke Yu E-mail: yukeke@caas.cn; Mingwei Du, E-mail: dumingwei@cau.edu.cn

Cite this article: 

Zhenwang Zhang, Kexin Li, Keke Yu, Mingfeng Yang, Yukun Wang, Qinghua Liao, Jiaqi Zhang, Xuelian Tang, Guodong Chen, Sumei Wan, Shanwei Lou, Fangjun Li, Xiaoli Tian, Zhaohu Li, Mingwei Du. 2025. Canopy microenvironment and hormonal coordination meditate defoliation dynamics under altered sink-source in high-density cotton. Journal of Integrative Agriculture, Doi:10.1016/j.jia.2025.07.016

Agustí J, Merelo P, Cercós M, Tadeo F R, Talón M. 2008. Ethylene-induced differential gene expression during abscission of citrus leaves. Journal of Experimental Botany59, 2717–2733.

Bleecker A B, Patterson S E. 1997. Last exit: Senescence, abscission, and meristem arrest in Arabidopsis. Plant Cell, 9, 1169–1179.

Burns J K, Pozo L V, Arias C R, Hockema B, Rangaswamy V, Bender C R. 2003. Coronatine and abscission in citrus. Journal of the American Society for Horticultural Science, 128, 309–315.

Cathey G W. 1986. Physiology of defoliation in cotton production. In: Mauney J R, Stewart J M, eds., Cotton Physiology. The Cotton Foundation, Memphis, TN. pp. 143–154.

Dai J L, Dong H Z. 2014. Intensive cotton farming technologies in China: Achievements, challenges and countermeasures. Field Crops Research, 155, 99–110.

Dai J L, Li W J, Tang W, Zhang D M, Li Z H, Lu H Q, Eneji A E, Dong H Z. 2015. Manipulation of dry matter accumulation and partitioning with plant density in relation to yield stability of cotton under intensive management. Field Crops Research, 180, 207–215.

Du M W, Li Y, Tian X L, Duan L S, Zhang M C, Tan W M, Xu D X, Li Z H. 2014. The phytotoxin coronatine induces abscission-related gene expression and boll ripening during defoliation of cotton. PLoS ONE, 9, e97652.

Du M W, Ren X M, Tian X L, Duan L S, Zhang M C, Tan W M, Li Z H. 2013. Evaluation of harvest aid chemicals for the cotton-winter wheat double cropping system. Journal of Integrative Agriculture, 12, 273–282.

Gan S S. 2003. Mitotic and postmitotic senescence in plants. Science of Aging Knowledge Environment, 38, RE7.

Guinn G, Brummett D L. 1992. Influence of defruiting on the abscisic acid and indole-3-acetic acid contents of cotton leaves. Field Crops Research, 28, 257–262.

Gwathmey C O, Clement J D. 2010. Alteration of cotton sink-source relations with plant population density and mepiquat chloride. Field Crops Research, 116, 101–107.

Hake K, Cathe G, Suttle J. 1990. Cotton defoliation. In: Hake K, Cathe G, Suttle J, eds., Cotton Physiology Today. National Cotton Council, Memphis, TN. pp. 1–4.

Hake S J, Hake K D, Kerby T A. 1996. Preharvest/harvest decisions. In: Hake S J, Hake K D, Kerby T A, eds., Cotton Production Manual. University of California-Division of Agriculture and Natural Resources Publication, Oakland. pp. 73–81.

Heitholt J J. 1994. Canopy characteristics associated with deficient and excessive cotton plant population densities. Crop Science, 34, 1291–1297.

Jin D S, Xu Y C, Gui H P, Zhang H S, Dong Q, Sikder R K, Wang X R, Yang G, Song M Z. 2021. Evaluation of cotton (Gossypium hirsutum L.) leaf acission snsitivity tiggered by tidiazuron through mmbership fnction. Value Plants, 10, 49.

Kaggwa-Asiimwe R, Andrade-Sanchez P, Wang G Y. 2013. Plant architecture influences growth and yield response of upland cotton to population density. Field Crops Research, 145, 52–59.

Kerby T A, Buxton D R. 1981. Competition between adjacent fruiting forms in cotton. Agronomy Journal, 73, 867–871.

Kim J H, Chung K M, Woo H R. 2011. Three positive regulators of leaf senescence in Arabidopsis, ORE1, ORE3 and ORE9, play roles in crosstalk among multiple hormone-mediated senescence pathways. Genes and Genomics, 33, 373–381.

Li F J, Wu Q, Liao B P, Yu K K, Huo Y N, Meng L, Wang S M, Wang B M, Du M W, Tian X L, Li Z H. 2022. Thidiazuron promotes leaf abscission by regulating the crosstalk complexities between ethylene, auxin, and cytokinin in cotton. International Journal of Molecular Sciences, 23, 2696.

Li H, Wan H L, Tian L W, Liu L T, Zhang Y J, Bai Z Y, Zhang K, Wang G P, Sun H C, Li C D. 2020. The effects of lncreased-density on canopy apparent photosynthesis, dry matter accumulation and distribution of cotton under late-sown condition. Cotton Science, 32, 339–347. (in Chinese)

Liu Y T, Dai Y Y, Liu Z Y, Sun S Q, Wu S J, Du J N, Chen Y, Zhang X, Chen D H, Chen Y. 2024. Boll/leaf ratio improves the source–sink relationship and lint yield during the boll setting stage of cotton. Field Crops Research, 310, 109342.

Logan J, Gwathmey O. 2002. Effects of weather on cotton responses to harvest-aid chemicals. Journal of Cotton Science, 6, 1–12.

Luo H H, Zhao R H, Li J H, Zhang Y L, Zhang W F. 2011. Effects of source and sink manipulation on distribution of 14C-assimilate and endogenous hormone contents of high-yield cotton in Xinjiang. Journal of Nuclear Agricultural Sciences25, 331-336. (in Chinese)

Meng L, Yu K K, Wei Z X, Li K X, Dai J L, Li F, Qi H K, Sun L, Zhang L Z, Dong H Z, Zhang M C, Du M W, Tian X L, Li Z H. 2023. High dosage of mepiquat chloride delays defoliation of harvest aids in cotton. Industrial Crops and Products, 202, 116998.

Mishra A, Khare S, Trivedi P K, Nath P. 2008. Effect of ethylene, 1-MCP, ABA and IAA on break strength, cellulase and polygalacturonase activities during cotton leaf abscission. South African Journal of Botany, 74, 282–287.

Monteith J L, Szeicz G. 1962. Radiative temperature in the heat balance of natural surfaces. Quarterly Journal of the Royal Meteorological Society, 88, 496–507.

National Bureau of Statistics of the People’s Republic of China. China Statistical Yearbook. Beijing: China Statistics Press, 2013. (in Chinese)

Oh S A, Sang Y L, Chung I K, Lee C H, Nam H G. 1996. A senescence-associated gene of Arabidopsis thaliana is distinctively regulated during natural and artificially induced leaf senescence. Plant Molecular Biology, 30, 739–754.

Parra-Lobato M C, Gomez-Jimenez M C. 2011. Polyamine-induced modulation of genes involved in ethylene biosynthesis and signalling pathways and nitric oxide production during olive mature fruit abscission. Journal of Experimental Botany62, 4447–4465.

Patharkar O R, Walker J C. 2018. Advances in abscission signaling. Journal of Experimental Botany, 69, 733–740.

Patterson S E, Bolivar-Medina J L, Falbel T G, Hedtcke J L, Nevarez-McBride D, Maule A F, Zalapa J E. 2016. Are we on the right track: Can our understanding of abscission in model systems promote or derail making improvements in less studied crops? Front in Plant Science, 6, 1268.

Patterson S E. 2001. Cutting loose. Abscission and dehiscence in Arabidopsis. Plant Physiology, 126, 494–500.

Sakakibara H. 2006. Cytokinins: Activity, biosynthesis, and translocation. Annual Review of Plant Biology57, 431–449.

Sakamoto M, Munemura I, Tomita R, Kobayashi K. 2008. Involvement of hydrogen peroxide in leaf abscission signaling, revealed by analysis with an in vitro abscission system in Capsicum plants. Plant Journal, 56, 1327.

Sehgal A, Sita K, Bhandari K, Kumar S, Kumar J, Prasad P V V, Siddique K H M, Nayyar H. 2018. Influence of drought and heat stress, applied independently or in combination during seed development, on qualitative and quantitative aspects of seeds of lentil (Lens culinaris Medikus) genotypes, differing in drought sensitivity. Plant Cell and Environment, 42, 198211.

Snipes C E, Wills G D. 1994. Influence of temperature and adjuvants on thidiazuron activity in cotton leaves. Weed Science, 42, 13–17.

Song X H, Zhang L J, Zhao W C, Du D Q, Eneji A, Zhang X, Han H Y, Cao L L, Zhang W F, Lu Z Y, Huang X L, Wang H Z, Xu D X, Luo Z, Chen H Z, Zhang L Z, Du M W, Tian X L, Li Z H. 2022. The relationship between boll retention and defoliation of cotton at the fruiting site level. Crop Science, 62, 1333-1347.

Supak J R, Snipes C E. 2001. Cotton harvest management: Use and influence of harvest aids. In: Supak J R, Snipes C E, eds., In Fluence of Environment on Cotton dethe Cotton Foundation. Memphis, TN. pp. 51–72.

Tian J S, Zhang X Y, Hu X B, Sui L L, Zhang P P, Wang W M, Gou L, Zhang W F. 2018. Cellulose deposition characteristics of high strength cotton fiber and optimal temperature requirements in Xinjiang region. Scientia Agricultural Sinica, 51, 4252–4263. (in Chinese)

Wang F Y, Han H Y, Lin H, Chen B, Kong X H, Ning X Z, Wang X W, Yu Y, Liu J D. 2019a. Effects of planting patterns on yield, quality, and defoliation in machine-harvested cotton. Journal of Integrative Agriculture, 18, 2019–2028.

Wang H M, Gao K, Fang S, Zhou Z G. 2019b. Cotton yield and defoliation efficiency in response to nitrogen and harvest aids. Agronomy Journal, 111, 250–256.

Wang L, Wang Y P. 2013. Characteristics of stem sap flow of apple trees in loess tableland. Transactions of the Chinese Society for Agricultural Machinery44, 152158. (in Chinese)

Wilmowicz E, Frankowski K, Kucko A, Swidzinski M, Alche J D, Nowakowska A, Kopcewicz J, 2016. The influence of abscisic acid on the ethylene biosynthesis pathway in the functioning of the flower abscission zone in Lupinus luteus. Journal of Plant Physiology, 206, 4958.

WNBS (National bureau of statistics), PRC (People’s republic of China). 2023. Online statistical database. https://www.stats.gov.cn/sj/zxfb/202312/t20231225_1945745.html. (in Chinese)

Wright S D, Hutmacher R B. 2015. Impact of early defoliation on California Pima Cotton boll opening, lint yield, and quality. Journal of Crop Improvement, 29, 528–541.

Xu J, Chen L, Sun H, Wusiman N, Sun W N, Li B Q, Gao Y, Kong J, Zhang D W, Zhang X L, Xu H J, Yang X Y. 2019. Crosstalk between cytokinin and ethylene signaling pathways regulates leaf abscission in cotton in response to chemical defoliants. Journal of Experimental Botany, 70, 1525–1538.

Xu J, Ding Z Y, Xu R, Xu L. 2003. A preliminary report on the effects of chemical defoliation on cotton ripening and its impact on seed quality. Xinjiang Agricultural Science, 40, 116–118. (in Chinese)

Yan W, Li F J, Xu D Y, Du M W, Tian X L, Li Z H. 2021. Effects of row spacings and nitrogen or mepiquat chloride application on canopy architecture, temperature and relative humity in cotton. Acta Agronomica Sinica, 47, 1654–1665. (in Chinese)

Yang G Z, Luo X J, Nie Y C, Zhang X L. 2014 Effects of plant density on yield and canopy micro-environment in hybrid cotton. Journal of Integrative Agriculture, 13, 2154–2163.

Yu K K, Li K X, Wang J D, Guo Z L, Liang Y J, Yang M F, Sun H J, Zheng J Y, Li, X Y, Wang L, Zhang L Z, Du M W, Tian X L, Li Z H. 2023. Optimizing the proportion of thidiazuron and ethephon compounds to improve the efficacy of cotton harvest aids. Industrial Crops and Products, 19, 115949.

Yu S X, Zhou Y L, He L. 2015. Development of mechanization of cotton production in the Xinjiang production and construction crop. China Cotton, 42, 1–4. (in Chinese)

Zhang J Z, Zhao K, Ai X Y, Hu C G. 2024. Involvements of PCD and changes in gene expression profile self-pruning of spring shoots in sweet orange (Citrus sinensis). BMC Genomics, 15, 892.

Zhang Z D, Zhang D L, Li J M, Zhang Z, Jiao X C, Zhang J. 2016. Environmental response of stomatal and hydraulic conductances and their effects on regulating transpiration of cucumber. Transactions of the Chinese Society of Agricultural Engineering, 47, 139–147. (in Chinese)

Zhao J, Li G, Yi G X, Wang B M, Deng A X, Nan T G, Li Z H, Li Q X. 2006. Comparison between conventional indirect competitive enzyme-linked immunosorbent assay (icELISA) and simplified icELISA for small molecules. Analytica Chimica Acta, 571, 79–85.

Zhao Y, Christensen S K, Fankhauser C, Cashman J R, Cohen J D, Weigel D, Chory J. 2001. A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science, 291, 306309.

Zhou T T, Zhang J Y, Han X Q, Duan L, Yang L, Zhao S F. 2022. Mechanism of the mixture of abscisic acid and thidiazuron in regulating cotton leaf abscission. ACS Agricultural Science and Technology, 2, 391–401.

Zhu Z J, Jiang C Y, Shi Y H, Wu W J, Chen N L. 2015. Response of yield and leaf photosynthesis to sink-source ratio altering demand in olive. Scientia Agricultural Sinica, 48, 546–554. (in Chinese) 

[1] Teame Gereziher Mehari, Marijana Skorić, Hui Fang, Kai Wang, Fang Liu, Tesfay Araya, Branislav Šiler, Dengbing Yao, Baohua Wang. Insights into the role of GhCYP and GhTPS in the gossypol biosynthesis pathway via a multiomics and functional-based approach in cotton[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1671-1687.
[2] Jianmin Zhou, Yu Fu, Uchechukwu Edna Obianwuna, Jing Wang, Haijun Zhang, Xiubo Li, Guanghai Qi, Shugeng Wu. Supplementation of serine in low-gossypol cottonseed meal-based diet improved egg white gelling and rheological properties by regulating ovomucin synthesis and magnum physiological function in laying hens[J]. >Journal of Integrative Agriculture, 2025, 24(3): 1152-1166.
[3] Yongshui Hao, Xueying Liu, Qianqian Wang, Shuxin Wang, Qingqing Li, Yaqing Wang, Zhongni Guo, Tiantian Wu, Qing Yang, Yuting Bai, Yuru Cui, Peng Yang, Wenwen Wang, Zhonghua Teng, Dexin Liu, Kai Guo, Dajun Liu, Jian Zhang, Zhengsheng Zhang. Mapping QTLs for fiber- and seed-related traits in Gossypium tomentosum CSSLs with a G. hirsutum background [J]. >Journal of Integrative Agriculture, 2025, 24(2): 467-479.
[4] Congcong Guo, Hongchun Sun, Xiaoyuan Bao, Lingxiao Zhu, Yongjiang Zhang, Ke Zhang, Anchang Li, Zhiying Bai, Liantao Liu, Cundong Li. Increasing root-lower characteristics improves drought tolerance in cotton cultivars at the seedling stage[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2242-2254.
[5] Yuting Liu, Hanjia Li, Yuan Chen, Tambel Leila. I. M., Zhenyu Liu, Shujuan Wu, Siqi Sun, Xiang Zhang, Dehua Chen.

Inhibition of protein degradation increases the Bt protein concentration in Bt cotton [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1897-1909.

[6] Yunze Wen, Peng He, Xiaohan Bai, Huizhi Zhang, Yunfeng Zhang, Jianing Yu.

Strigolactones modulate cotton fiber elongation and secondary cell wall thickening [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1850-1863.

[7] Min Jiang, Zhang Chen, Yuan Li , Xiaomin Huang, Lifen Huang, Zhongyang Huo.

Rice canopy temperature is affected by nitrogen fertilizer [J]. >Journal of Integrative Agriculture, 2024, 23(3): 824-835.

[8] Changqin Yang, Xiaojing Wang, Jianan Li, Guowei Zhang, Hongmei Shu, Wei Hu, Huanyong Han, Ruixian Liu, Zichun Guo.

Straw return increases crop production by improving soil organic carbon sequestration and soil aggregation in a long-term wheat–cotton cropping system [J]. >Journal of Integrative Agriculture, 2024, 23(2): 669-679.

[9] Dian Jin, Yuting Liu, Zhenyu Liu, Yuyang Dai, Jianing Du, Run He, Tianfan Wu, Yuan Chen, Dehua Chen, Xiang Zhang. Mepiquat chloride increases the Cry1Ac protein content of Bt cotton under high temperature and drought stress by regulating carbon and amino acid metabolism[J]. >Journal of Integrative Agriculture, 2024, 23(12): 4032-4045.
[10] Wenwen Wang, Lei Chen, Yan Wu, Xin Guo, Jinming Yang, Dexin Liu, Xueying Liu, Kai Guo, Dajun Liu, Zhonghua Teng, Yuehua Xiao, Zhengsheng Zhang. Map-based cloning of qLPA01.1, a favorable allele from Gossypium tomentosum chromosome segment line[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3283-3293.
[11] Nurimanguli Aini, Yuanlong Wu, Zhenyuan Pan, Yizan Ma, Qiushuang An, Guangling Shui, Panxia Shao, Dingyi Yang, Hairong Lin, Binghui Tang, Xin Wei, Chunyuan You, Longfu Zhu, Dawei Zhang, Zhongxu Lin, Xinhui Nie. Cotton ethylene response factor GhERF91 is involved in the defense against Verticillium dahliae[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3328-3342.
[12] Hongge Li, Shurong Tang, Zhen Peng, Guoyong Fu, Yinhua Jia, Shoujun Wei, Baojun Chen, Muhammad Shahid Iqbal, Shoupu He, Xiongming Du. Genetic dissection and origin of pleiotropic loci underlying multi-level fiber quality traits in upland cotton (Gossypium hirsutum L.)[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3250-3263.
[13] Qingdi Yan, Wei Hu, Chenxu Gao, Lan Yang, Jiaxian Yang, Renju Liu, Masum Billah, Yongjun Lin, Ji Liu, Pengfei Miao, Zhaoen Yang, Fuguang Li, Wenqiang Qin. EPSPS regulates cell elongation by disrupting the balance of lignin and flavonoid biosynthesis in cotton[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3437-3456.
[14] Zhenyu Liu, Shu Dong, Yuting Liu, Hanjia Li, Fuqin Zhou, Junfeng Ding, Zixu Zhao, Yinglong Chen, Xiang Zhang, Yuan Chen, Dehua Chen. Optimizing the Bacillus thuringiensis (Bt) protein concentration in cotton: Coordinated application of exogenous amino acids and EDTA to reduce spatiotemporal variability in boll and leaf toxins[J]. >Journal of Integrative Agriculture, 2024, 23(10): 3419-3436.
[15] Huaxiang Wu, Xiaohui Song, Muhammad Waqas-Amjid, Chuan Chen, Dayong Zhang, Wangzhen Guo. Mining elite loci and candidate genes for root morphology-related traits at the seedling stage by genome-wide association studies in upland cotton (Gossypium hirsutum L.) [J]. >Journal of Integrative Agriculture, 2024, 23(10): 3406-3418.
No Suggested Reading articles found!