Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (6): 1551-1562    DOI: 10.1016/S2095-3119(20)63602-4
Special Issue: 麦类遗传育种合辑Triticeae Crops Genetics · Breeding · Germplasm Resources
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
A major and stable QTL for wheat spikelet number per spike validated in different genetic backgrounds
DING Pu-yang1*, MO Zi-qiang1*, TANG Hua-ping1*, MU Yang1, DENG Mei1, JIANG Qian-tao1, LIU Ya-xi1, CHEN Guang-deng2, CHEN Guo-yue1, WANG Ji-rui1, LI Wei3, QI Peng-fei1, JIANG Yun-feng1, KANG Hou-yang1, YAN Gui-jun4, Wei Yu-ming1, ZHENG You-liang1, LAN Xiu-jin1, MA Jian1
1 State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology/Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, P.R.China 
2 College of Resources, Sichuan Agricultural University, Chengdu 611130, P.R.China 
3 College of Agronomy, Sichuan Agricultural University, Chengdu 611130, P.R.China 
4 University of Western Australia School of Agriculture and Environment and the UWA Institute of Agriculture, Faculty of Science, University of Western Australia, Crawley 6009, Australia
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

本研究基于小麦Wheat55K SNP芯片鉴定到两个主效且稳定表达的小穗数QTL。其中,QSns.sau-2SY-2D.1在之前的研究中已经被报道,而本研究中新鉴定到一个QTL(QSns.sau-2SY-7A),我们对其进行了深入分析。QSns.sau-2SY-7A的LOD值较高,介于4.46至16.00之间,解释10.21-40.78%的表型变异。QSns.sau-2SY-7A位于染色体臂7AL上4.75-cM的区间,侧翼标记为AX-110518554AX-110094527。我们对两个主效QTL的贡献和相互作用进行了深入的分析和讨论。我们进一步开发一个与QSns.sau-2SY-7A紧密连锁的KASP标记,在一个F2:3群体和一个包含101个小麦高代育种品系的自然群体中对该QTL的效应进行了验证。此外,在QSns.sau-2SY-7A定位区间中,预测到一个水稻中报道的调控小穗数的同源基因WAPO1,结合前人报道,该基因很有可能是该位点的候选基因。综上所述,本研究系统揭示了被广泛用于育种亲本的品系‘20828’的多小穗数遗传基础,并开发获得紧密连锁标记,有助于后续主效QTL的精细定位和育种利用




Abstract  The spikelet number per spike (SNS) contributes greatly to grain yield in wheat.  Identifying various genes that control wheat SNS is vital for yield improvement.  This study used a recombinant inbred line population genotyped by the Wheat55K single-nucleotide polymorphism array to identify two major and stably expressed quantitative trait loci (QTLs) for SNS.  One of them (QSns.sau-2SY-2D.1) was reported previously, while the other (QSns.sau-2SY-7A) was newly detected and further analyzed in this study.  QSns.sau-2SY-7A had a high LOD value ranging from 4.46 to 16.00 and explained 10.21–40.78% of the phenotypic variances.  QSns.sau-2SY-7A was flanked by the markers AX-110518554 and AX-110094527 in a 4.75-cM interval on chromosome arm 7AL.  The contributions and interactions of both major QTLs were further analyzed and discussed.  The effect of QSns.sau-2SY-7A was successfully validated by developing a tightly linked kompetitive allele specific PCR marker in an F2:3 population and a panel of 101 high-generation breeding wheat lines.  Furthermore, several genes including the previously reported WHEAT ORTHOLOG OF APO1 (WAPO1), an ortholog of the rice gene ABERRANT PANICLE ORGANIZATION 1 (APO1) related to SNS, were predicted in the interval of QSns.sau-2SY-7A.  In summary, these results revealed the genetic basis of the multi-spikelet genotype of wheat line 20828 and will facilitate subsequent fine mapping and breeding utilization of the major QTLs.
Keywords:  yield potential       QTL detection       QTL validation       predicated genes       tightly linked KASP marker  
Received: 23 September 2020   Accepted: 17 December 2020
Fund: This work was supported by the projects from the Applied Basic Research Programs of Science and Technology Department of Sichuan Province, China (2020YJ0140 and 2021YJ0503), the International Science and Technology Cooperation and Exchanges Program of Science and Technology Department of Sichuan Province, China (2021YFH0083 and 2022YFH0053), the National Natural Science Foundation of China (31971937 and 31970243), and the Key Projects of Scientific and Technological Activities for Overseas Students of Sichuan Province, China. 
About author:  Correspondence MA Jian, Tel: +86-28-86293115, Fax: +86-28-82650350, E-mail: jianma@sicau.edu.cn; LAN Xiu-jin, E-mail: lanxiujin@163.com * These authors contributed equally to this study.

Cite this article: 

DING Pu-yang, MO Zi-qiang, TANG Hua-ping, MU Yang, DENG Mei, JIANG Qian-tao, LIU Ya-xi, CHEN Guang-deng, CHEN Guo-yue, WANG Ji-rui, LI Wei, QI Peng-fei, JIANG Yun-feng, KANG Hou-yang, YAN Gui-jun, Wei Yu-ming, ZHENG You-liang, LAN Xiu-jin, MA Jian. 2022. A major and stable QTL for wheat spikelet number per spike validated in different genetic backgrounds. Journal of Integrative Agriculture, 21(6): 1551-1562.

Avni R, Nave M, Barad O, Baruch K, Twardziok S O, Gundlach H, Hale I, Mascher M, Spannagl M, Wiebe K. 2017. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science, 357, 93–97.
Beales J, Turner A, Griffiths S, Snape J W, Laurie D A. 2007. A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 115, 721–733.
Belknap J K, Mitchell S R, O’Toole L A, Helms M L, Crabbe J C. 1996. Type I and type II error rates for quantitative trait loci (QTL) mapping studies using recombinant inbred mouse strains. Behavior Genetics, 26, 149–160.
Bernardo R. 2004. What proportion of declared QTL in plants are false? Theoretical and Applied Genetics, 109, 419–424.
Boden S A, Cavanagh C, Cullis B R, Ramm K, Greenwood J, Finnegan E J, Trevaskis B, Swain S M. 2015. Ppd-1 is a key regulator of inflorescence architecture and paired spikelet development in wheat. Nature Plants, 1, 14016.
Bonke M, Thitamadee S, Mähönen A P, Hauser M T, Helariutta Y. 2003. APL regulates vascular tissue identity in Arabidopsis. Nature, 426, 181.
Bustos D V, Hasan A K, Reynolds M P, Calderini D F. 2013. Combining high grain number and weight through a DH-population to improve grain yield potential of wheat in high-yielding environments. Field Crops Research, 145, 106–115.
Cui F, Ding A, Li J, Zhao C, Lin W, Wang X, Qi X, Li X, Li G, Gao J. 2012. QTL detection of seven spike-related traits and their genetic correlations in wheat using two related RIL populations. Euphytica, 186, 177–192.
Dixon L E, Greenwood J R, Bencivenga S, Zhang P, Cockram J, Mellers G, Ramm K, Cavanagh C, Swain S M, Boden S A. 2018. TEOSINTE BRANCHED1 regulates inflorescence architecture and development in bread wheat (Triticum aestivum). The Plant Cell, 30, 563–581.
Dobrovolskaya O, Caroline P, Richard S, Petr M, Ekaterina M, Florent M, Audrey C, Nobuyoshi W, Elisa P, Nadine G. 2015. FRIZZY PANICLE drives supernumerary spikelets in bread wheat. Plant Physiology, 167, 189–199.
Echeverry-Solarte M, Kumar A, Kianian S, Simsek S, Alamri M S, Mantovani E E, McClean P E, Deckard E L, Elias E, Schatz B. 2015. New QTL alleles for quality-related traits in spring wheat revealed by RIL population derived from supernumerary×non-supernumerary spikelet genotypes. Theoretical and Applied Genetics, 128, 893–912.
Fan X, Cui F, Zhao C, Zhang W, Yang L, Zhao X, Han J, Su Q, Ji J, Zhao Z. 2015. QTLs for flag leaf size and their influence on yield-related traits in wheat (Triticum aestivum L.). Molecular Breeding, 35, 24.
FAO (Food and Agriculture Organization). 2015. Online statistical database: Food balance. FAOSTAT. [2015-12-02]. http://www.fao.org/faostat
Fu Y, Xu Y, Zhu L, Wen M, Yang Z. 2009. A ROP GTPase signaling pathway controls cortical microtubule ordering and cell expansion in Arabidopsis. Current Biology, 19, 1827–1832.
García G A, Hasan A K, Puhl L E, Reynolds M P, Calderini D F, Miralles D J. 2013. Grain yield potential strategies in an elite wheat double-haploid population grown in contrasting environments. Crop Science, 53, 2577–2587.
Greenwood J R, Finnegan E J, Watanabe N, Trevaskis B, Swain S M. 2017. New alleles of the wheat domestication gene Q reveal multiple roles in growth and reproductive development. Development, 144, 1959–1965.
Guan P, Lu L, Jia L, Kabir M R, Zhang J, Lan T, Zhao Y, Xin M, Hu Z, Yao Y, Ni Z, Sun Q, Peng H. 2018. Global QTL analysis identifies genomic regions on chromosomes 4A and 4B harboring stable loci for yield-related traits across different environments in wheat (Triticum aestivum L.). Frontiers in Plant Science, 9, 529.
Guo Z, Chen D, Röder M S, Ganal M W, Schnurbusch T. 2018. Genetic dissection of pre-anthesis sub-phase durations during the reproductive spike development of wheat. The Plant Journal, 95, 909–918.
Griffiths M, Atkinson J A, Gardiner L J, Swarup R, Pound M P, Wilson M H, Bennett M J, Wells D M. 2022. Identification of QTL and underlying genes for root system architecture associated with nitrate nutrition in hexaploid wheat. Journal of Integrative Agriculture, 21, 917–932.
IWGSC (International Wheat Genome Sequencing Consortium). 2018. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 36, eaar7191.
Jiang G L, Shi J, Ward R W. 2007. QTL analysis of resistance to Fusarium head blight in the novel wheat germplasm CJ 9306. I. resistance to fungal spread. Theoretical and Applied Genetics, 116, 3–13.
Kuzay S, Xu Y, Zhang J, Katz A, Pearce S, Su Z, Fraser M, Anderson J A, Brown G G, De Witt N. 2019. Identification of a candidate gene for a QTL for spikelet number per spike on wheat chromosome arm 7AL by high-resolution genetic mapping. Theoretical and Applied Genetics, 132, 2689–2705.
Li C, Tang H P, Luo W, Zhang X M, Mu Y, Deng M, Liu Y X, Jiang Q T, Chen G Y, Wang J R, Qi P F, Pu Z E, Jiang Y F, Wei Y M, Zheng Y L, Lan X J, Ma J. 2020. A novel, validated, and plant height-independent QTL for spike extension length is associated with yield-related traits in wheat. Theoretical and Applied Genetics, 133, 3381–3393.
Li S, Jia J, Wei X, Zhang X, Li L, Chen H, Fan Y, Sun H, Zhao H, Lei T. 2007. A intervarietal genetic map and QTL analysis for yield traits in wheat. Molecular Breeding, 20, 167–178.
Li X, Xia X, Xiao Y, He Z, Wang D, Trethowan R, Wang H, Chen X. 2015. QTL mapping for plant height and yield components in common wheat under water-limited and full irrigation environments. Crop & Pasture Science, 66, 660–670.
Lillemo M, Joshi A K, Prasad R, Chand R, Singh R P. 2013. QTL for spot blotch resistance in bread wheat line Saar co-locate to the biotrophic disease resistance loci Lr34 and Lr46. Theoretical and Applied Genetics, 126, 711–719.
Liu H, Tang H P, Luo W, Mu Y, Jiang Q T, Liu Y X, Chen G Y, Wang J R, Zheng Z, Qi P F, Jiang Y F, Cui F, Song Y M, Yan G J, Wei Y M, Lan X J, Zheng Y L, Ma J. 2021. Genetic dissection of wheat uppermost-internode diameter and its association with agronomic traits in five recombinant inbred line populations at various field environments. Journal of Integrative Agriculture, 20, 2849–2861.
Liu J J, Luo W, Qin N N, Ding P Y, Zhang H, Yang C C, Mu Y, Tang H P, Liu Y X, Li W, Jiang Q T, Chen G Y, Wei Y M, Zheng Y L, Liu C J, Lan X J, Ma J. 2018. A 55 K SNP array-based genetic map and its utilization in QTL mapping for productive tiller number in common wheat. Theoretical and Applied Genetics, 131, 2439–2450.
Liu J J, Tang H P, Qu X R, Liu H, Li C, Tu Y, Li S Q, Habib A, Mu Y, Dai S F, Deng M, Jiang Q T, Liu Y X, Chen G D, Wang J R, Chen G D, Li W, Jiang Y F, Wei Y M, Lan X J, Zheng Y L, Ma J. 2020. A novel, major, and validated QTL for the effective tiller number located on chromosome arm 1BL in bread wheat. Plant Molecular Biology, 104, 173–185.
Luo W, Ma J, Zhou X H, Sun M, Kong X C, Wei Y M, Jiang Y F, Qi P F, Jiang Q T, Liu Y X. 2016. Identification of quantitative trait loci controlling agronomic traits indicates breeding potential of Tibetan semiwild wheat (Triticum aestivum ssp. tibetanum). Crop Science, 56, 2410–2420.
Ma J, Ding P Y, Liu J J, Li T, Zou Y Y, Habib A, Mu Y, Tang H P, Jiang Q T, Liu Y X, Chen G Y, Wang J R, Deng M, Qi P F, Li W, Pu Z E, Zheng Y L, Wei Y M, Lan X J. 2019a. Identification and validation of a major and stably expressed QTL for spikelet number per spike in bread wheat. Theoretical and Applied Genetics, 132, 155–167.
Ma J, Qin N N, Cai B, Chen G Y, Ding P Y, Zhang H, Yang C C, Liu H, Mu Y, Tang H P, Liu Y X, Wang J R, Qi P F, Jiang Q T, Zheng Y L, Liu C J, Lan X J, Wei Y M. 2019b. Identification and validation of a novel major QTL for all-stage stripe rust resistance on 1BL in the winter wheat line 20828. Theoretical and Applied Genetics, 132, 1363–1373.
Ma J, Tu Y, Zhu J, Luo W, Liu H, Li C, Li S Q, Liu J J, Ding P Y, Habib A, Mu Y, Tang H P, Liu Y X, Jiang Q T, Chen G Y, Wang J R, Li W, Pu Z E, Zheng Y L, Wei Y M, et al. 2020. Flag leaf size and posture of bread wheat: genetic dissection, QTL validation and their relationships with yield-related traits. Theoretical and Applied Genetics, 133, 297–315.
Muqaddasi Q H, Brassac J, Koppolu R, Plieske J, Ganal M W, Röder M S. 2019. TaAPO-A1, an ortholog of rice ABERRANT PANICLE ORGANIZATION 1, is associated with total spikelet number per spike in elite European hexaploid winter wheat (Triticum aestivum L.) varieties. Scientific Reports, 9, 1–12.
Murray M, Thompson W F. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8, 4321–4326.
Ollier M, Talle B, Brisset A L, Bihan Z L, Duerr S, Lemmens M, Goudemand E, Robert O, Hilbert J L, Buerstmayr H. 2020. QTL mapping and successful introgression of the spring wheat-derived QTL Fhb1 for Fusarium head blight resistance in three European triticale populations. Theoretical and Applied Genetics, 133, 457–477.
Pinthus M J, Millet E. 1978. Interactions among number of spikelets, number of grains and grain weight in the spikes of wheat (Triticum aestivum L.). Annals of Botany, 42, 839–848.
Rahman M, Wilson J. 1977. Determination of spikelet number in wheat. I. Effect of varying photoperiod on ear development. Australian Journal of Agricultural Research, 28, 265–274.
Ramasamy A, Trabzuni D, Gibbs J R, Dillman A, Hernandez D G, Arepalli S, Walker R, Smith C, Ilori G P, Shabalin A A, Li Y, Singleton A B, Cookson M R, NABEC, Hardy J, UKBEC, Ryten M, Weale M E. 2013. Resolving the polymorphism-in-probe problem is critical for correct interpretation of expression QTL studies. Nucleic Acids Research, 41, e88.
Ruan Y, Yu B, Knox R E, Singh A K, DePauw R, Cuthbert R, Zhang W, Piche I, Gao P, Sharpe A, Fobert P. 2020. High density mapping of quantitative trait loci conferring gluten strength in canadian durum wheat. Frontiers in Plant Science, 11, 170.
Sadras V O. 2007. Evolutionary aspects of the trade-off between seed size and number in crops. Field Crops Research, 100, 125–138.
Sakuma S, Golan G, Guo Z, Ogawa T, Tagiri A, Sugimoto K, Bernhardt N, Brassac J, Mascher M, Hensel G. 2019. Unleashing floret fertility in wheat through the mutation of a homeobox gene. Proceedings of the National Academy of Sciences of the United States of America, 116, 5182–5187.
Shaw L M, Lyu B, Turner R, Li C, Dubcovsky J. 2018. FLOWERING LOCUS T2 (FT2) regulates spike development and fertility in temperate cereals. Journal of Experimental Botany, 70, 193–204.
Shaw L M, Turner A S, Herry L, Griffiths S, Laurie D A. 2013. Mutant alleles of Photoperiod-1 in wheat (Triticum aestivum L.) that confer a late flowering phenotype in long days. PLoS ONE, 8, e79459.
Shpak E D, Berthiaume C T, Hill E J, Torii K U. 2004. Synergistic interaction of three ERECTA-family receptor-like kinases controls Arabidopsis organ growth and flower development by promoting cell proliferation. Development, 131, 1491–1501.
Slafer G, Miralles D. 1993. Fruiting efficiency in three bread wheat (Triticum aestivum) cultivars released at different eras. Number of grains per spike and grain weight. Journal of Agronomy and Crop Science, 170, 251–260.
Verbyla A P, Cullis B R. 2012. Multivariate whole genome average interval mapping: QTL analysis for multiple traits and/or environments. Theoretical and Applied Genetics, 125, 933–953.
Wolde G M, Trautewig C, Mascher M, Schnurbusch T. 2019. Genetic insights into morphometric inflorescence traits of wheat. Theoretical and Applied Genetics, 132, 1661–1676.
Xu Y, Wang R, Tong Y, Zhao H, Xie Q, Liu D, Zhang A, Li B, Xu H, An D. 2015. Mapping QTLs for yield and nitrogen-related traits in wheat: Influence of nitrogen and phosphorus fertilization on QTL expression. Theoretical and Applied Genetics, 127, 59–72.
Yang M J, Wang C R, Hassan M A, Wu Y Y, Xia X C, Shi S B, Xiao Y G, He Z H. 2021. QTL mapping of seedling biomass and root traits under different nitrogen conditions in bread wheat (Triticum aestivum L.). Journal of Integrative Agriculture, 20, 1180–1192.
Yao H N, Xie Q, Xue S L, Luo J, Lu J K, Kong Z X, Wang Y P, Zhai W L, Lu N, Wei R, Yang Y, Han Y Z, Zhang Y, Jia H Y, Ma Z Q. 2019. HL2 on chromosome 7D of wheat (Triticum aestivum L.) regulates both head length and spikelet number. Theoretical and Applied Genetics, 132, 1789–1797.
Zhai H, Feng Z, Li J, Liu X, Xiao S, Ni Z, Sun Q. 2016. QTL analysis of spike morphological traits and plant height in winter wheat (Triticum aestivum L.) using a high-density SNP and SSR-based linkage map. Frontiers in Plant Science, 7, 1617.

[1] LIU Guang-zhou, LIU Wan-mao, HOU Peng, MING Bo, YANG Yun-shan, GUO Xiao-xia, XIE Rui-zhi, WANG Ke-ru, LI Shao-kun. Reducing maize yield gap by matching plant density and solar radiation[J]. >Journal of Integrative Agriculture, 2021, 20(2): 363-370.
[2] LIU Hang, TANG Hua-ping, LUO Wei, MU Yang, JIANG Qian-tao, LIU Ya-xi, CHEN Guo-yue, WANG Ji-rui, ZHENG Zhi, QI Peng-fei, JIANG Yun-feng, CUI Fa, SONG Yin-ming, YAN Gui-jun, WEI Yuming, LAN Xiu-jin, ZHENG You-liang, MA Jian. Genetic dissection of wheat uppermost-internode diameter and its association with agronomic traits in five recombinant inbred line populations at various field environments[J]. >Journal of Integrative Agriculture, 2021, 20(11): 2849-2861.
[3] ZHANG Jia, HU Yong, XU Li-he, HE Qin, FAN Xiao-wei, XING Yong-zhong. The CCT domain-containing gene family has large impacts on heading date, regional adaptation, and grain yield in rice[J]. >Journal of Integrative Agriculture, 2017, 16(12): 2686-2697.
[4] WANG Fei, PENG Shao-bing. Yield potential and nitrogen use efficiency of China’s super rice[J]. >Journal of Integrative Agriculture, 2017, 16(05): 1000-1008.
[5] HUANG Min, TANG Qi-yuan, AO He-jun, ZOU Ying-bin. Yield potential and stability in super hybrid rice and its production strategies[J]. >Journal of Integrative Agriculture, 2017, 16(05): 1009-1017.
[6] WEI Huan-he, LI Chao, XING Zhi-peng, WANG Wen-ting, DAI Qi-gen, ZHOU Gui-shen, WANG Li, XU Ke, HUO Zhong-yang, GUO Bao-wei, WEI Hai-yan, ZHANG Hong-cheng. Suitable growing zone and yield potential for late-maturity type of Yongyou japonica/indica hybrid rice in the lower reaches of Yangtze River, China[J]. >Journal of Integrative Agriculture, 2016, 15(1): 50-62.
[7] Saeed Rauf, Maria Zaharieva, Marilyn L Warburton, ZHANG Ping-zhi, Abdullah M AL-Sadi, Farghama Khalil, Marcin Kozak, Sultan A Tariq. Breaking wheat yield barriers requires integrated efforts in developing countries[J]. >Journal of Integrative Agriculture, 2015, 14(8): 1447-1474.
No Suggested Reading articles found!