Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (10): 3866-3879    DOI: 10.1016/j.jia.2025.06.011
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Integrated transcriptomic and metabolomic analyses reveal the mechanisms for red fruit coloration in peach cv. ‘Zhongyoupan 9’ under artificial darkness

Tiyu Ding1, Xinxin Ma1, Xueli Yu1, Lirong Wang2, Ruijin Zhou1, Xiaojin Hou1, Yalin Zhao1#

1 School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology/Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants/Xinxiang Key Laboratory of Germplasm Resources and Genetic Breeding in Pomology, Xinxiang 453003, China

2 Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China

 Highlights 
The research demonstrated that ‘Zhongyoupan 9’ peach fruits displayed light-independent anthocyanin biosynthesis under artificial darkness.
PpHY5 exhibited upregulation, and its expression pattern correlated positively with color development in ‘Zhongyoupan 9’.
The silencing of PpHY5 demonstrated its positive regulation of anthocyanin biosynthesis in peach fruits.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
套袋生产的蟠桃越来越受到消费者的喜爱,但套袋抑制多数品种果实花色苷积累和着色。然而,发展迅速的‘中油蟠9号’和其他几个品种能够在套袋条件下积累花色苷,表现为非光依赖型花色苷合成模式,但其中的分子机制尚不明确。本研究以表现为光依赖型花色苷合成模式的‘中蟠17号’和非光依赖型花青素合成模式的‘中油蟠9号’为研究对象,发现‘中油蟠9号’外果皮中的花色苷含量显著高于‘中蟠17号’。代谢组学分析表明,花色苷(特别是花色苷-3-O-葡萄糖苷)的显著增加是黑暗条件下‘中油蟠9号’着红色的直接原因。转录组分析表明,PpHY5(long hypocotyl 5)在‘中油蟠9号’中上调表达,在‘中蟠17号’中下调表达,表达规律与两品种的色泽变化正相关。VIGS介导的PpHY5沉默载体转染桃果实后,花色苷含量显著下降,说明PpHY5正向调控花色苷生物合成。结果表明,人工黑暗条件下,PpHY5正向调控‘中油蟠9号’果皮红色变化。




Abstract  

While bagged flat peaches gain increasing consumer preference, the bagging process inhibits anthocyanin production and fruit coloration in most peach cultivars.  Certain peach cultivars, including the rapidly expanding ‘Zhongyoupan 9’, demonstrate a light-independent anthocyanin biosynthesis pattern and accumulate anthocyanins under artificial darkness.  The underlying molecular mechanisms, however, remain unelucidated.  This study examined two flat peach varieties: ‘Zhongpan 17’, exhibiting light-dependent anthocyanin biosynthesis, and ‘Zhongyoupan 9’, displaying light-independent anthocyanin biosynthesis.  The pericarp of ‘Zhongyoupan 9’ contained substantially higher anthocyanin levels compared to ‘Zhongpan 17’.  Metabolomic analysis identified the marked increase in anthocyanins, particularly cyanidin-3-O-glucoside, as the primary factor in ‘Zhongyoupan 9’ coloration under artificial darkness.  Transcriptomic analyses revealed that PpHY5 (long hypocotyl 5) showed upregulation in ‘Zhongyoupan 9’ but downregulation in ‘Zhongpan 17’, with its expression pattern correlating positively with color changes in both varieties.  The role of PpHY5 in positively regulating anthocyanin biosynthesis was confirmed through reduced anthocyanin levels in peach fruits treated with a PpHY5 virus-induced gene-silencing construct.  These findings suggest that the PpHY5 regulates red color development in ‘Zhongyoupan 9’ under artificial darkness.

Keywords:  Zhongyoupan 9       light independence       anthocyanin       PpHY5       artificial darkness  
Received: 29 November 2024   Online: 09 June 2025   Accepted: 29 April 2025
Fund: 

This work was supported by the National Natural Science Foundation of China (32402523), the Science and Technology Program of Henan Province, China (232102111083, 242102111120), and the Natural Science Foundation of Henan Province, China (252300420179).

About author:  Tiyu Ding, E-mail: dingtiyu@hist.edu.cn; #Correspondence Yalin Zhao, E-mail: zhaoyalin@hist.edu.cn

Cite this article: 

Tiyu Ding, Xinxin Ma, Xueli Yu, Lirong Wang, Ruijin Zhou, Xiaojin Hou, Yalin Zhao. 2025. Integrated transcriptomic and metabolomic analyses reveal the mechanisms for red fruit coloration in peach cv. ‘Zhongyoupan 9’ under artificial darkness. Journal of Integrative Agriculture, 24(10): 3866-3879.

Allan A C, Hellens R P, Laing W A. 2008. MYB transcription factors that colour our fruit. Trends in Plant Science13, 99–102.

An J P, Qu F J, Yao J F, Wang X N, You C X, Wang X F, Hao Y J. 2017. The bZIP transcription factor MdHY5 regulates anthocyanin accumulation and nitrate assimilation in apple. Horticulture Research4, 17023.

Bai S, Tao R, Tang Y, Yin L, Ma Y, Ni J, Yan X, Yang Q, Wu Z, Zeng Y. 2019. BBX16, a Bbox protein, positively regulates lightinduced anthocyanin accumulation by activating MYB10 in red pear. Plant Biotechnology Journal17, 1985–1997.

Ding T, Tomes S, Gleave A P, Zhang H, Dare A P, Plunkett B, Espley R V, Luo Z, Zhang R, Allan A C. 2022. MicroRNA172 targets APETALA2 to regulate flavonoid biosynthesis in apple (Malus domestica). Horticulture Research9, uhab007.

Ding T, Zhang R, Zhang H, Zhou Z, Liu C, Wu M, Wang H, Dong H, Liu J, Yao J L. 2021. Identification of gene co-expression networks and key genes regulating flavonoid accumulation in apple (Malus×domestica) fruit skin. Plant Science304, 110747.

Du J H. 2007. The change of anthocyanin and sugar and acid in peach fruit and the effect of bagging on them. MSc thesis, Nanjing Agricultural University, China. (in Chinese)

Gao J, Wang X, Zhang M, Bian M D, Deng W X, Zuo Z C, Yang Z M, Zhong D P, Lin C T. 2015. Trp triad-dependent rapid photoreduction is not required for the function of Arabidopsis CRY1. Proceedings of the National Academy of Sciences of the United States of America112, 9135–9140.

Guo S J. 2016. The analysis of VvHY5 and VvCOP1 at transcription and protein level in grape skins with sunlight exclusion. MSc thesis, Chinese Academy of Science, China. (in Chinese)

Guo X, Wang Y, Zhai Z, Huang T, Zhao D, Peng X, Feng C, Xiao Y, Li T. 2018. Transcriptomic analysis of light-dependent anthocyanin accumulation in bicolored cherry fruits. Plant Physiology and Biochemistry130, 663–677.

Hara-Kitagawa M, Unoki Y, Hihara S, Oda K. 2020. Development of simple PCR-based DNA marker for the red-fleshed trait of a blood peach ‘Tenshin-suimitsuto’. Molecular Breeding40, 5.

He Y, Chen H, Zhou L, Liu Y, Chen H. 2019. Comparative transcription analysis of photosensitive and non-photosensitive eggplants to identify genes involved in dark regulated anthocyanin synthesis. BMC Genomics20, 678.

Heijde M, Binkert M, Yin R, Ares-Orpel F, Ulm R. 2013. Constitutively active UVR8 photoreceptor variant in ArabidopsisProceedings of the National Academy of Sciences of the United States of America110, 20326–20331.

Hu J, Chen G, Zhang Y, Cui B, Yin W, Yu X, Zhu Z, Hu Z. 2015. Anthocyanin composition and expression analysis of anthocyanin biosynthetic genes in kidney bean pod. Plant Physiology and Biochemistry97, 304–312.

Hu W, Figueroa-Balderas R, Chi-Ham C, Lagarias J C. 2020. Regulation of monocot and dicot plant development with constitutively active alleles of phytochrome B. Plant Direct4, e00210.

Huang H, Li Y, Dai S. 2016. Investigation of germplasm in chrysanthemum cultivars with light-independent coloration. II International Symposium on Germplasm of Ornamentals 1185, 55–64.

Jiao Y, Lau O S, Deng X W. 2007. Light-regulated transcriptional networks in higher plants. Nature Reviews Genetics8, 217–230.

Kong J M, Chia L S, Goh N K, Chia T F, Brouillard R. 2003. Analysis and biological activities of anthocyanins. Phytochemistry64, 923–933.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods25, 402–408.

Martin C, Butelli E, Petroni K, Tonelli C. 2011. How can research on plants contribute to promoting human health? The Plant Cell23, 1685–1699.

Nakatsuka A, Yamagishi M, Nakano M, Tasaki K, Kobayashi N. 2009. Light-induced expression of basic helix-loop-helix genes involved in anthocyanin biosynthesis in flowers and leaves of Asiatic hybrid lily. Scientia Horticulturae121, 84–91.

Nguyen N H, Jeong C Y, Kang G H, Yoo S D, Hong S W, Lee H. 2015. MYBD employed by HY5 increases anthocyanin accumulation via repression of MYBL2 in Arabidopsis. The Plant Journal84, 1192–1205.

Parkhomchuk D, Borodina T, Amstislavskiy V, Banaru M, Hallen L, Krobitsch S, Lehrach H, Soldatov A. 2009. Transcriptome analysis by strand-specific sequencing of complementary DNA. Nucleic Acids Research37, e123.

Podolec R, Lau K, Wagnon T B, Hothorn M, Ulm R. 2020. A constitutively monomeric UVR8 photoreceptor confers enhanced UV-B photomorphogenesis. Proceedings of the National Academy of Sciences of the United States of America118, e2017284118.

Rahim M A, Busatto N, Trainotti L. 2014. Regulation of anthocyanin biosynthesis in peach fruits. Planta240, 913–929.

Ramsay N A, Glover B J. 2005. MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. Trends in Plant Science10, 63–70.

Ravaglia D, Espley R V, Henry-Kirk R A, Andreotti C, Allan A C. 2013. Transcriptional regulation of flavonoid biosynthesis in nectarine (Prunus persica) by a set of R2R3 MYB transcription factors. BMC Plant Biology13, 68.

Rössner C, Lotz D, Becker A. 2022. VIGS goes viral: How VIGS transforms our understanding of plant science. Annual Review of Plant Biology73, 703–728.

Shi B, Wu H, Zheng B, Qian M, Gao A, Zhou K. 2021. Analysis of light-independent anthocyanin accumulation in mango (Mangifera indica L.). Horticulturae7, 423.

Shin D H, Choi M G, Kim K, Bang G, Cho M, Choi S B, Choi G, Park Y I. 2013. HY5 regulates anthocyanin biosynthesis by inducing the transcriptional activation of the MYB75/PAP1 transcription factor in ArabidopsisFEBS Letters587, 1543–1547.

Takos A M, Jaffe F W, Jacob S R, Bogs J, Robinson S P, Walker A R. 2006. Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiology142, 1216–1232.

Tang B, Li L, Hu Z, Chen Y, Chen G. 2020. Anthocyanin accumulation and transcriptional regulation of anthocyanin biosynthesis in purple pepper. Journal of Agricultural and Food Chemistry68, 12152–12163.

Tomás-Barberán F A, Gil M I, Cremin P, Waterhouse A L, Hess-Pierce B, Kader A A. 2001. HPLC−DAD−ESIMS analysis of phenolic compounds in nectarines, peaches, and plums. Journal of Agricultural and Food Chemistry49, 4748–4760.

Wang L R. 2021a. Current situation and development suggestions of peach industry in China. China Fruits10, 1–5. (in Chinese)

Wang L R. 2021b. History and prospect of peach breeding in China. Journal of Fruit Science38, 2178–2195. (in Chinese)

Wang X, Wang Y, Chen B, Kawabata S, Fang Z, Li Y. 2017. Construction and genetic analysis of anthocyanin-deficient mutants induced by T-DNA insertion in ‘Tsuda’ turnip (Brassica rapa). Plant Cell Tissue & Organ Culture131, 431–443.

Wei Y Z, Hu F C, Hu G B, Li X J, Huang X M, Wang H C. 2011. Differential expression of anthocyanin biosynthetic genes in relation to anthocyanin accumulation in the pericarp of Litchi chinensis Sonn. PLoS ONE6, e19455.

Yang J F, Chen Y Z, Saneyuki K, Li Y H, Yu W. 2017. Identification of light-independent anthocyanin biosynthesis mutants induced by ethyl methane sulfonate in turnip “Tsuda” (Brassica rapa). International Journal of Molecular Sciences18, 1288.

Yao G, Ming M, Allan A C, Gu C, Li L, Wu X, Wang R, Chang Y, Qi K, Zhang S, Wu J. 2017. Map-based cloning of the pear gene MYB114 identifies an interaction with other transcription factors to coordinately regulate fruit anthocyanin biosynthesis. The Plant Journal92, 437–451.

Yi D, Zhang H, Lai B, Liu L, Pan X, Ma Z, Wang Y, Xie J, Shi S, Wei Y. 2020. Integrative analysis of the coloring mechanism of red longan pericarp through metabolome and transcriptome analyses. Journal of Agricultural and Food Chemistry69, 1806–1815.

Zhao L, Sun J, Cai Y, Yang Q, Zhang Y, Ogutu C O, Liu J, Zhao Y, Wang F, He H. 2022. PpHYH is responsible for light-induced anthocyanin accumulation in fruit peel of Prunus persicaTree Physiology42, 1662–1677.

Zhao L, Zhang Y, Sun J, Yang Q, Cai Y, Zhao C, Wang F, He H, Han Y. 2023. PpHY5 is involved in anthocyanin coloration in the peach flesh surrounding the stone. The Plant Journal114, 951–964.

Zhao Y, Dong W, Zhu Y, Allan A C, Kui L W, Xu C. 2020. PpGST1, an anthocyaninrelated glutathione Stransferase gene, is essential for fruit coloration in peach. Plant Biotechnology Journal18, 1284–1295.

Zhou H, Kui L W, Wang F, Espley R V, Ren F, Zhao J, Ogutu C, He H, Jiang Q, Allan A C. 2019. Activatortype R2R3MYB genes induce a repressortype R2R3MYB gene to balance anthocyanin and proanthocyanidin accumulation. New Phytologist221, 1919–1934.

Zhou H, Kui L W, Wang H, Gu C, Dare A P, Espley R V, He H, Allan A C, Han Y. 2015. Molecular genetics of bloodfleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors. The Plant Journal82, 105–121.

Zhou Y, Zhou H, Lin-Wang K, Vimolmangkang S, Espley R V, Wang L, Allan A C, Han Y. 2014. Transcriptome analysis and transient transformation suggest an ancient duplicated MYB transcription factor as a candidate gene for leaf red coloration in peach. BMC Plant Biology14, 1–13.

Zhu Y F, Su J, Yao G F, Liu H N, Gu C, Qin M F, Bai B, Cai S S, Wang G M, Wang R Z, Shu Q, Wu J. 2018. Different light-response patterns of coloration and related gene expression in red pears (Pyrus L.). Scientia Horticulturae229, 240–251.

[1] Lixia Sheng, Yuqi Zhang, Xiaoke Yang, Yujia Yin, Jianqiang Yu. Functional differences between two homologous MYB transcription factors in regulating fruit color in octoploid strawberry (Fragaria×ananassa)[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3484-3493.
[2] Shuran Li, Chunqing Ou, Fei Wang, Yanjie Zhang, Omayma Ismail, Yasser S. G. Abd Elaziz, Sherif Edris, , He Li, Shuling Jiang. Ppbbx24-del mutant positively regulates light-induced anthocyanin accumulation in the ‘Red Zaosu’ pear (Pyrus pyrifolia White Pear Group)[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2619-2639.
[3] Haifeng Xu, Guifang Wang, Xinying Ji, Kun Xiang, Tao Wang, Meiyong Zhang, Guangning Shen, Rui Zhang, Junpei Zhang, Xin Chen. JrATHB-12 mediates JrMYB113 and JrMYB27 to control the anthocyanin levels in different types of red walnut[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2649-2661.
[4] Tingcheng Zhao, Aibin He, Mohammad Nauman Khan, Qi Yin, Shaokun Song, Lixiao Nie.

Coupling of reduced inorganic fertilizer with plant-based organic fertilizer as a promising fertilizer management strategy for colored rice in tropical regions [J]. >Journal of Integrative Agriculture, 2024, 23(1): 93-107.

[5] CHANG Yao-jun, CHEN Guo-song, YANG Guang-yan, SUN Cong-rui, WEI Wei-lin, Schuyler S. KORBAN, WU Jun. The PcERF5 promotes anthocyanin biosynthesis in red-fleshed pear (Pyrus communis) through both activating and interacting with PcMYB transcription factors[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2687-2704.
[6] XIE Dong-wei, LI Jing, ZHANG Xiao-yu, DAI Zhi-gang, ZHOU Wen-zhi, SU Jian-guang, SUN Jian. Systematic analysis of MYB transcription factors and the role of LuMYB216 in regulating anthocyanin biosynthesis in the flowers of flax (Linum usitatissimum L.)[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2335-2345.
[7] WANG Xue-feng, SHAO Dong-nan, LIANG Qian, FENG Xiao-kang, ZHU Qian-hao, YANG Yong-lin, LIU Feng, ZHANG Xin-yu, LI Yan-jun, SUN Jie, XUE Fei. A 2-bp frameshift deletion at GhDR, which encodes a B-BOX protein that co-segregates with the dwarf-red phenotype in Gossypium hirsutum L.[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2000-2014.
[8] XU Peng-yue, XU Li, XU Hai-feng, HE Xiao-wen, HE Ping, CHANG Yuan-sheng, WANG Sen, ZHENG Wen-yan, WANG Chuan-zeng, CHEN Xin, LI Lin-guang, WANG Hai-bo.

MdWRKY40is directly promotes anthocyanin accumulation and blocks MdMYB15L, the repressor of MdCBF2, which improves cold tolerance in apple [J]. >Journal of Integrative Agriculture, 2023, 22(6): 1704-1719.

[9] WEI Wei-lin, JIANG Fu-dong, LIU Hai-nan, SUN Man-yi, LI Qing-yu, CHANG Wen-jing, LI Yuan-jun, LI Jia-ming, WU Jun. The PcHY5 methylation is associated with anthocyanin biosynthesis and transport in ‘Max Red Bartlett’ and ‘Bartlett’ pears[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3256-3268.
[10] CHEN Yan-hui, GAO Hui-fang, WANG Sa, LIU Xian-yan, HU Qing-xia, JIAN Zai-hai, WAN Ran, SONG Jin-hui, SHI Jiang-li. Comprehensive evaluation of 20 pomegranate (Punica granatum L.) cultivars in China [J]. >Journal of Integrative Agriculture, 2022, 21(2): 434-445.
[11] SUN Hui-li, WANG Xin-yue, SHANG Ye, WANG Xiao-qian, DU Guo-dong, LÜ De-guo. Preharvest application of melatonin induces anthocyanin accumulation and related gene upregulation in red pear (Pyrus ussuriensis)[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2126-2137.
[12] LI Yong-ping, LIU Tian-jia, LUO Hui-feng, LIU Sheng-cai . The transcriptional landscape of cultivated strawberry (Fragaria×ananassa) and its diploid ancestor (Fragaria vesca) during fruit development[J]. >Journal of Integrative Agriculture, 2021, 20(6): 1540-1553.
[13] Everlyne M’mbone MULEKE, WANG Yan, ZHANG Wan-ting, XU Liang, YING Jia-li, Bernard K. KARANJA, ZHU Xian-wen, FAN Lian-xue, Zarwali AHMADZAI, LIU Li-wang. Genome-wide identification and expression profiling of MYB transcription factor genes in radish (Raphanus sativus L.)[J]. >Journal of Integrative Agriculture, 2021, 20(1): 120-131.
[14] ZHANG Da-wei, LIU Li-li, ZHOU Ding-gang, LIU Xian-jun, LIU Zhong-song, YAN Ming-li.
Genome-wide identification and expression analysis of anthocyanin biosynthetic genes in Brassica juncea
[J]. >Journal of Integrative Agriculture, 2020, 19(5): 1250-1260.
[15] LI Xiao-lan, Lü Xiang, WANG Xiao-hong, PENG Qin, ZHANG Ming-sheng, REN Ming-jian . Biotic and abiotic stress-responsive genes are stimulated to resist drought stress in purple wheat[J]. >Journal of Integrative Agriculture, 2020, 19(1): 33-50.
No Suggested Reading articles found!