Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (11): 3737-3750    DOI: 10.1016/j.jia.2024.04.002
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Suppression of CsFAD3 in a JA-dependent manner, but not through the SA pathway, impairs drought stress tolerance in tea

Na Chang*, Xiaotian Pi*, Ziwen Zhou, Yeyun Li#, Xianchen Zhang#

State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China 

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
干旱胁迫严重限制着茶树生长以及产量。脂肪酸去饱和酶(FADs)通过调节细胞膜流动性应对不同胁迫,然而,关于ω-3脂肪酸去饱和酶(ω-3 FADs)在缓解茶树干旱胁迫的作用机制尚不清楚。本研究发现干旱胁迫处理后显著增加C18:3 (亚麻酸)百分含量和CsFAD3表达量;通过酵母实验证明CsFAD3 具有将C18:2 转化为C18:3功能,亚细胞定位实验证明其定位于内质网。在茶树中瞬时沉默CsFAD3,其Fv/Fm减少、MDA含量增加,因此抗旱性显著降低;然而,转基因35S:CsFAD3拟南芥植株表现出抗旱的表型。此外,在干旱胁迫下,瞬时沉默茶树CsFAD3,茶树叶片中JA含量及CsLOX2CsLOX4CsAOSCsAOC3CsOPR的表达量均显著降低;然而SA含量无显著变化。对35S:CsFAD3背景下的拟南芥突变株Atcoil1 (JA受体)或AtNPR1 (SA受体)的分析进一步发现,敲除Atcoil1使过表达的CsFAD3株系的耐旱表型受损。因此,我们的研究结果表明,CsFAD3通过介导JA通路在抗旱性中发挥了至关重要的作用。


Abstract  
The growth and yield of tea plants are seriously limited by drought stress.  Fatty acid desaturases (FADs) contribute to the mediation of membrane fluidity in response to different stresses, although the role of ω-3 FAD (Omega-3 fatty acid desaturase)-mediated damage induced by drought stress in tea plants is poorly understood.  In this study, drought stress significantly promoted the synthesis of C18:3 (linolenic acid) and the expression level of CsFAD3.  Yeast experiments further demonstrated that CsFAD3 can convert C18:2 to C18:3, and that the 35S:GFP-CsFAD3 fusion protein was localized in the endoplasmic reticulum of Nicotiana benthamiana cells.  CsFAD3-silenced tea leaves exhibited poor drought tolerance, with a lower Fv/Fm and a higher malondialdehyde (MDA) content than the control plants.  However, transgenic 35S:CsFAD3 Arabidopsis plants showed the opposite phenotypes.  In addition, the jasmonic acid (JA) content and the expression levels of CsLOX2, CsLOX4, CsAOS, CsAOC3 and CsOPR2 were significantly reduced in CsFAD3-silenced leaves under drought stress.  However, no substantial difference in the salicylic acid (SA) content was detected under normal or drought conditions.  An analysis of Atcoi1 (JA receptor) or Atnpr1 (SA receptor) mutant Arabidopsis plants in 35S:CsFAD3 backgrounds further revealed that knockout of Atcoi1 impaired the drought-tolerant phenotypes of CsFAD3 overexpression lines.  Therefore, this study demonstrated that CsFAD3 plays a crucial role in drought tolerance by mediating JA pathways.


Keywords:  tea plants       CsFAD3        drought stress        jasmonic acid  
Received: 22 August 2023   Accepted: 25 January 2024
Fund: 
This work was supported by the Science Foundation for Anhui Province, China (2022AH050919), the Anhui Provincial Key Research and Development, China (2022l07020019), the Anhui Province Science and Technology Major Project, China (202203a06020014), the National Key Research and Development Program of China (2021YFD1601103), and the Anhui University Collaborative Innovation Project, China (GXXT-2020-080).
About author:  #Correspondence Yeyun Li, E-mail: Liyeyun360@163.com; Xianchen Zhang, E-mail: zhangxianchen360@163.com * These authors contributed equally to this study.

Cite this article: 

Na Chang, Xiaotian Pi, Ziwen Zhou, Yeyun Li, Xianchen Zhang. 2024. Suppression of CsFAD3 in a JA-dependent manner, but not through the SA pathway, impairs drought stress tolerance in tea. Journal of Integrative Agriculture, 23(11): 3737-3750.

An C F, Mou Z L. 2011. Salicylic acid and its function in plant immunity. Journal of Integrative Plant Biology53, 412–428.

Avila C A, Arévalo-Soliz L M, Jia L L, Navarre D A, Chen Z, Howe G A, Meng Q W, Smith J E, Goggin F L. 2012. Loss of function of FATTY ACID DESATURASE7 in tomato enhances basal aphid resistance in a salicylate-dependent manner. Plant Physiology158, 2028–2041.

Chang N, Zhou Z W, Li Y Y, Zhang X C. 2022. Exogenously applied Spd and Spm enhance drought tolerance in tea plants by increasing fatty acid desaturation and plasma membrane H+-ATPase activity. Plant Physiology and Biochemistry170, 225–233.

Chen D, Yu Y, Yue C, Wang P J, Chen J, Chen G X, Ye N X. 2017. Cloning and expression analysis of Δ12-fatty acid desaturase in tea plants. Tea Science37, 541–550. (in Chinese)

Choudhary A K, Mishra G. 2021. Functional characterization and expression profile of microsomal FAD2 and FAD3 genes involved in linoleic and α-linolenic acid production in Leucas cephalotesPhysiology Molecular Biology Plants27, 1233–1244.

Ding Q, Ma C L. 2022. A new gain-of-function OsGS2/GRF4 allele generated by CRISPR/Cas9 genome editing increases rice grain size and yield. The Crop Journal10, 1207–1212.

Ding Z T, Ma QP, Wang Y. 2016. The differences between two tea varieties in their response to natural cold conditions. The Journal of Horticultural Science and Biotechnology, 91, 506–513.

Fu J, Chu J, Sun X, Wang J, Yan C. 2012. Simple, rapid, and simultaneous assay of multiple carboxyl containing phytohormones in wounded tomatoes by UPLC-MS/MS using single SPE purification and isotope dilution. Analytical Sciences28, 1081–1087.

Griffiths G. 2020. Jasmonates: Biosynthesis, perception and signal transduction. Essays Biochemistry64, 501–512.

Han M, Wu W, Wu W H, Wang Y. 2016. Potassium transporter KUP7 is involved in K+ acquisition and translocation in Arabidopsis root under K+-limited conditions. Molecular Plant9, 437–446.

Hajiahmadi Z, Abedi A, Wei H, Sun W B, Ruan H H, Zhuge Q, Movahedi A. 2020. Identification, evolution, expression, and docking studies of fatty acid desaturase genes in wheat (Triticum aestivum L.). BMC Genomics21, 778.

He M, Ding N Z. 2020. Plant unsaturated fatty acids: Multiple roles in stress response. Frontier in Plant Science11, 562785.

Huang F F, Yang P D, Bai S L, Liu Z H, Li J, Huang J A, Xiong L G. 2024. Lipids: A noteworthy role in better tea quality. Food Chemistry431, 137071.

Janda T, Szalai G, Pál M. 2020. Salicylic acid signalling in plants. International Journal of Molecular Science21, 2655.

Klinkenberg J, Faist H, Saupe S, Lambertz S, Krischke M, Stingl N, Fekete A, Mueller M J, Feussner I, Hedrich R, Deeken R. 2014. Two fatty acid desaturases, STEAROYL-ACYL CARRIER PROTEIN Δ9-DESATURASE6 and FATTY ACID DESATURASE3, are involved in drought and hypoxia stress signaling in arabidopsis crown galls. Plant Physiology164, 570–583.

Li M Y, Yu G H, Cao C L, Liu P. 2021. Metabolism, signaling, and transport of jasmonates. Plant Communication2, 100231.

Lim G H, Singhal R, Kachroo A, Kachroo P. 2017. Fatty acid and lipid-mediated signaling in plant defense. Annual Review of Phytopathology, 55, 505–536.

Liu S C, Yao M Z, Ma C L, Jin J Q, Li C F, Chen L. 2015. Physiological changes and differential gene expression of tea plant under dehydration and rehydration conditions. Scientia Horticulturae184, 129–141.

Liu T T. 2018. The relationship between membrane lipids alteration and drought adaptation in leaves of maize seedlings. MSc thesis, University of Chinese Academy of Sciences, China. (in Chinese)

Liu X Y, Wang J Y, Fan B L, Shang Y T, Sun Y F, Dang C, Xie C J, Wang Z Y, Peng Y K. 2018. A COI1 gene in wheat contributes to the early defence response against wheat powdery mildew. Journal of Phytopathology166, 116–122.

Luo J, Wei K, Wang S, Zhao W Y, Ma C R, Hettenhausen C, Wu J S, Cao G Y, Sun G L, Baldwin I T, Wu J Q, Wang L. 2016. COI1-regulated hydroxylation of jasmonoyl-l-isoleucine impairs Nicotiana attenuata’s resistance to the generalist herbivore spodoptera litura. Journal of Agricultural Food Chemistry64, 2822–2831.

Lv Z D, Zhang C Y, Shao C Y, Liu B G, Liu E S, Yuan D N, Zhou Y B, Shen C W. 2021. Research progress on the response of tea catechins to drought stress. Journal of the Science of Food and Agriculture101, 5305–5313.

Ma Q P, You E, Wang J, Wang Y, Ding Z T. 2014. Isolation and expression of CsFAD7 and CsFAD8, two genes encoding ω-3 fatty acid desaturase from Camellia sinensisActa Physiologiae Plantarum36, 2345–2352.

Okazaki Y, Saito K. 2014. Roles of lipids as signaling molecules and mitigators during stress response in plants. The Plant Journal79, 584–596.

Peng Z Y, Ruan J, Tian H Y, Shan L, Meng J J, Guo F, Zhang Z M, Ding H, Wan S B, Li X G. 2020. The family of peanut fatty acid desaturase genes and a functional analysis of four ω-3 AhFAD3 members. Plant Molecular Biology Reporter38, 209–221.

Pi X T, Chang N, Zhou Z W, Li Y Y, Zhang X C. 2023. CsFAD2 and CsFAD5 are key genes for C18:2 fatty acid pathway-mediated cold tolerance in tea (Camellia sinensis). Environmental and Experimental Botany210, 105317.

Routaboul J M, Skidmore C, Wallis J G, Browse J. 2012. Arabidopsis mutants reveal that short- and long-term thermotolerance have different requirements for trienoic fatty acids. Journal of Experimental Botany63, 1435–1443.

Shao C Y, Chen J J, Lv Z D, Gao X Z, Guo S N, Xu R, Deng Z Y, Yao S H, Chen Z D, Kang Y K, Huang J N, Liu Z H, Shen C W. 2023. Staged and repeated drought-induced regulation of phenylpropanoid synthesis confers tolerance to a water deficit environment in Camellia sinensisIndustrial Crops & Products201, 116843.

Sheard L B, Tan X, Mao H B, Withers J, Ben-Nissan G, Hinds T R, Kobayashi Y, Hsu F F, Sharon M, Browse J, He S Y, Rizo J R, Howe G A, Zheng N. 2010. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature468, 400–405.

Shi J, Wang J T, Lv H P, Peng Q H, Schreiner M, Baldermann S, Lin Z. 2021. Integrated proteomic and metabolomic analyses reveal the importance of aroma precursor accumulation and storage in methyl jasmonate-primed tea leaves. Horticulture Research8, 95.

Shi Y L, An L Z, Li X R, Huang C H, Chen G X. 2011. The octadecanoid signaling pathway participates in the chilling-induced transcription of ω-3 fatty acid desaturases in ArabidopsisPlant Physiology and Biochemistry49, 208–215.

Shi Y L, Yue X L, An L Z. 2018. Integrated regulation triggered by a cryophyte ω-3 desaturase gene confers multiple-stress tolerance in tobacco. Journal of Experimental Botany69, 2131–2148.

Singh A K, Raina S K, Kumar M, Aher L, Ratnaparkhe M B, Rane1 J, Kachroo A. 2022. Modulation of GmFAD3 expression alters abiotic stress responses in soybean. Plant Molecular Biology110, 199–218.

Singh P, Arif Y, Miszczuk E, Bajguz A, Hayat S. 2022. Specific roles of lipoxygenases in development and responses to stress in plants. Plants11, 979.

Upchurch R G. 2008. Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnology Letters30, 967–977.

Waadt R, Seller C A, Hsu P K, Takahashi Y, Munemasa S, Schroeder J I. 2022. Plant hormone regulation of abiotic stress responses. Nature Reviews Molecular Cell Biology23, 680–694.

Wang F, Wang Y, Ying L Y, Lu H, Liu Y J, Liu Y, Xu J M, Wu Y R, Mo X R, Wu Z C, Mao C Z. 2023. Integrated transcriptomic analysis identifies coordinated responses to nitrogen and phosphate deficiency in rice. Frontier in Plant Science14, 1164441.

Wang J J, Liu Z J, Liu H, Peng D S, Zhang J P, Chen M X. 2021. Linum usitatissimum FAD2A and FAD3A enhance seed polyunsaturated fatty acid accumulation and seedling cold tolerance in Arabidopsis thalianaPlant Science311, 111014.

Wang K, Yin X R, Zhang B, Grierson D, Xu C J, Chen K S. 2017. Transcriptomic and metabolic analyses provide new insights into chilling injury in peach fruit. PlantCell & Environment, 40, 1531–1551.

Wang P J, Li X,Tang J X,Yang J Y, Ma Y P, Wu D R, Huo Z G. 2023. Determining the critical threshold of meteorological heat damage to tea plants based on MODIS LST products for tea planting areas in China. Ecological Informatics77, 102235.

Wang W, Withers J, Li H, Zwack P J, Rusnac D V, Shi H, Liu L J, Yan S P, Hinds T R, Guttman M, Dong X N, Zheng N. 2020. Structural basis of salicylic acid perception by Arabidopsis NPR proteins. Nature586, 311–316.

Wang W D, Gao T, Chen J F, Yang J K, Huang H Y, Yu Y B. 2019. The late embryogenesis abundant gene family in tea plant (Camellia sinensis): Genome-wide characterization and expression analysis in response to cold and dehydration stress. Plant Physiology and Biochemistry135, 277–286.

Wang X J, Chen Y M, Liu S T, Fu W J, Zhuang Y Q, Xu J, Lou Y G, Baldwin I T, Li R. 2023. Functional dissection of rice jasmonate receptors involved indevelopment and defense. New Phytologist238, 2144–2152.

Xia E H, Tong W, Wu Q, Wei S, Zhao J, Zhang Z Z, Wei C L, Wan X C. 2020. Tea plant genomics: Achievements, challenges and perspectives. Horticulture Research7, 7.

Xu D B, Ma Y N, Qin T F, Tang W L, Qi X W, Wang X, Liu R C, Fang H L, Chen Z Q, Liang C Y, Wu W. 2021. Transcriptome-wide identification and characterization of the JAZ Gene Family. International Journal of Molecular Science22, 8859.

Xue Y F, Chen B J, Win A N, Fu C, Lian J P, Liu X, Wang R, Zhang X C, Chai Y R. 2018. Omega-3 fatty acid desaturase gene family from two ω-3 sources, Salvia hispanica and Perilla frutescens: Cloning, characterization and expression. PLoS ONE13, e0191432.

Yan Y L, Jeong S J, Park C E, Mueller N D, Piao S L, Park H, Joo J, Chen X, Wang X H, Liu J G, Zheng C M. 2021. Effects of extreme temperature on China’s tea production. Environmental Research Letters16, 044040.

Yang J H, Chen B B, Manan S, Li P H, Liu C, She G B, Zhao S C, Zhao J. 2022. Critical metabolic pathways and SAD/FADs, WRI1s, and DGATs cooperate for high-oleic acid oil production in developing oil tea (Camellia oleifera) seeds. Horticulture Research9, uhac087.

Yang X D, Yi X Y, Ni K, Zhang Q F, Shi Y Z, Chen L B, Zhao Y Y, Zhang Y L, Ma Q X, Cai Y J, Ma L F, Ruan J Y. 2023. Patterns and abiotic drivers of soil organic carbon in perennial tea (Camellia sinensis L.) plantation system of China. Environmental Research237, 116925.

Yin D D, Xu W Z, Shu Q Y, Li S S, Wu Q, Feng C Y, Gu Z Y, Wang L S. 2018. Fatty acid desaturase 3 (PsFAD3) from Paeonia suffruticosa reveals high α-linolenic acid accumulation. Plant Science274, 212–222.

Yu L H, Zhou C, Fan J L, Shanklin J, Xu C C. 2021. Mechanisms and functions of membrane lipid remodeling in plants. The Plant Journal107, 37–53.

Zhang M, Barg R, Yin M, Gueta-Dahan Y, Leikin-Frenkel A, Salts Y, Shabtai S, Ben-Hayyim G. 2005. Modulated fatty acid desaturation via overexpression of two distinct x-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants. The Plant Journal44, 361–371.

Zhang X C, Cao X J, Xia Y H, Ban Q Y, Cao L, Li S Y, Li Y Y. 2022. CsCBF5 depletion impairs cold tolerance in tea plants. Plant Science325, 111463.

Zhang X C, Gao H J, Yang T Y, Wu H H, Zhang Z Z, Wan X C. 2016. Anion channel inhibitor NPPB-inhibited fluoride accumulation in tea plant (Camellia sinensis) is related to the regulation of Ca2+, CaM and depolarization of plasma membrane potential. International Journal of Molecular Science,17, 57.

Zhang X C, Jiang H G, Wan X C, Li Y Y. 2020. The effects of different types of mulch on soil properties and tea production and quality. Journal of the Science of Food and Agriculture, 100, 5292–5300.

Zhang X C, Wu H H, Chen L M, Liu L L,Wan X C. 2018. Maintenance of mesophyll potassium and regulation of plasma membrane H+-ATPase are associated with physiological responses of tea plants to drought and subsequent rehydration. The Crop Journal, 6, 611–620.

Zhang X C, Wu H H, Chen L M, Wan X C. 2019. Efficient iron plaque formation on tea (Camellia sinensis) roots contributes to acidic stress tolerance. Journal of Integrative Plant Biology2, 155–167.

Zhang X C, Xia Y H, Li S Y, Cao L, Zhou Z W, Chang N, Li Y Y. 2023. The arginine decarboxylase gene CsADC1, associated with the polyamine pathway, plays an important role in tea cold tolerance. Environmental and Experimental Botany214, 105473.

Zhang Z S, Jin X Y, Liu Z P, Zhang J Y, Liu W X. 2021. Genome-wide identification of FAD gene family and functional analysis of MsFAD3.1 involved in the accumulation of α-linolenic acid in alfalfa. Crop Science61, 566–579.

Zoong Lwe Z S, Welti R, Anco D, Naveed S, Rustgi S, Narayanan S. 2020. Heat stress elicits remodeling in the anther lipidome of peanut. Scientific Reports10, 22163.

No related articles found!
No Suggested Reading articles found!