Please wait a minute...
Journal of Integrative Agriculture  2019, Vol. 18 Issue (11): 2483-2491    DOI: 10.1016/S2095-3119(18)62083-0
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Early selection of bread wheat genotypes using morphological and photosynthetic attributes conferring drought tolerance
Hafiz Ghulam Muhu-Din Ahmed1, Abdus Salam khan1, LI Ming-ju2, Sultan Habibullah Khan3, Muhammad Kashif1
1 Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
2 Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming 650205, P.R.China
3 Center of Agricultural Biotechnology and Biochemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  
Genetic diversity is the base of any genetic improvement breeding program aimed at stress breeding.  The variability among breeding materials is of primary importance in the achievements of a good crop production.  Herein, 105 wheat genotypes were screened against drought stress using factorial completely randomized design at seedling stage to determine the genetic diversity and traits association conferring drought tolerance.  Analysis of variances revealed that all the studied parameters differed significantly among all genotypes, indicating the significance genetic variability existed among all genotypes for studied indices. The 10 best performance genotypes G1, G6, G11, G16, G21, G26, G39, G44, G51, and G61 were screened as drought tolerant, while five lowest performance genotypes G3, G77, G91, G98, and G105 were screened as drought susceptible.  Root length, chlorophyll a, chlorophyll b, and carotenoid contents were significantly correlated among themselves which exhibited the importance of these indices for rainfed areas in future wheat breeding scheme.  Shoot length exhibited non-significant and negative association with other studied traits, and its selection seems not to be a promising criteria for this germplasm for drought stress.  Best performance genotypes under drought stress conditions will be useful in future wheat breeding program and early selection will be effective for developing high yielding and drought tolerant wheat varieties.
 
Keywords:  drought        photosynthesis        chlorophyll        wheat       seedling        carotenoid  
Received: 02 March 2018   Accepted:
Fund: The authors gratefully acknowledge the National Key R&D Program of China (2018YFD0200500) for the financial support.
Corresponding Authors:  Correspondence Hafiz Ghulam Muhu-Din Ahmed, E-mail: ahmedbreeder@gmail.com; LI Ming-ju, E-mail: lily69618@163.com   

Cite this article: 

Hafiz Ghulam Muhu-Din Ahmed, Abdus Salam khan, LI Ming-ju, Sultan Habibullah Khan, Muhammad Kashif . 2019. Early selection of bread wheat genotypes using morphological and photosynthetic attributes conferring drought tolerance. Journal of Integrative Agriculture, 18(11): 2483-2491.

Adnan M. 2013. Effect of drought stress on the physiology and yield of the Pakistani wheat germplasm. International Journal of Advanced Research and Technology, 2, 419–430.
Ahmad H, Mohammad F, Hassan G, Gul R. 2006. Evaluation of the heterotic and heterobeltiotic potential of wheat genotypes for improved yield. Pakistan Journal of Botany, 38, 1159–1167.
Ahmad M, Shabbir G, Minhas N M, Shah M K. 2013. Identification of drought tolerant wheat genotypes based on seedling traits. Sarhad Journal of Agriculture, 29, 21–27.
Ahmed H G M D, Khan A S, Kashif M, Khan S H. 2018. Genetic analysis of yield and physical traits of spring wheat grain. Journal of the National Science Foundation of Sri Lanka, 46, 23–30.
Ahmed H G M D, Khan A S, Khan S H, Kashif M. 2017. Genome wide allelic pattern and genetic diversity of spring wheat genotypes through SSR markers. International Journal of Agriculture and Biology, 19, 1559–1565.
Anjum S A, Xie X Y, Wang L C, Saleem M F, Man C, Lei W. 2011. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6, 2026–2032.
Ashfaq W, Ul-Allah S, Kashif M, Sattar A, Nabi H G. 2016. Genetic variability study among wheat genotypes under normal and drought conditions. Journal of Global Innovations in Agricultural and Social Sciences, 4, 111–116.
Chachar N A, Chachar M H, Chachar Q I, Chachar Z, Chachar G A, Nadeem F. 2014. Exploration of genetic diversity between six wheat genotypes for drought tolerance. Climate Change Outlook and Adaptation, 2, 27–33.
Dhanda S S, Sethi G S, Behl R K. 2004. Indices of drought tolerance in wheat genotypes at early stages of plant growth. Journal of Agronomy and Crop Science, 190, 612–618.
de Dorlodot S, Forster B, Pagès L, Price A, Tuberosa R, Draye X. 2007. Root system architecture: Opportunities and constraints for genetic improvement of crops. Trends in Plant Sciences, 12, 474–481.
Faisal S, Mujtaba S, Khan M, Mahboob W. 2017. Morpho-physiological assessment of wheat (Triticum aestivum L.) genotypes for drought stress tolerance at seedling stage. Pakistan. Journal of Botany, 49, 445–452.
Farshadfar E, Amiri R. 2105. Genetic analysis of physiological indicators of drought tolerance in bread wheat using diallel technique. Genetika, 47, 107–118.
Ghafoor G, Hassan G, Ahmad I, Khan S N, Suliman S. 2013. Correlation analysis for different parameters of F2 bread wheat population. Pure and Applied Biology, 2, 28–31.
Gugino B K, Abawi G S, Idowu O J, Schindelbeck R R, Smith L L, Thies J E, Wolfe D W, Van Es H M. 2009. Cornell soil health assessment training manual. Cornell University College of Agriculture and Life Sciences, USA.
Jaleel C A, Manivannan P A, Wahid A, Farooq M, Al-Juburi H J, Somasundaram R A, Panneerselvam R. 2009. Drought stress plants: A review on morphological characteristics and pigments composition. International Journal of Agriculture and Biology, 11, 100–105.
Kalaji H M, Jajoo A, Oukarroum A, Brestic M, Zivcak M, Samborska I A, Cetner M D, ?ukasik I, Goltsev V, Ladle R J. 2016. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiologiae Plantarum, 38, 102–112.
Khan A S, Allah S U, Sadique S A. 2010. Genetic variability and correlation among seedling traits of wheat (Triticum aestivum L.) under water stress. International Journal of Agriculture and Biology, 12, 247–250.
Khan M I, Shabbir G, Akram Z, Shah M K, Ansar M, Cheema N M, Iqbal M S. 2013. Character association studies of seedling traits in different wheat genotypes under moisture stress conditions. SABRAO Journal of Breeding and Genetics, 45, 458–467.
Khan M Q, Anwar S, Khan M I. 2002. Genetic variability for seedling traits in wheat (Triticum aestivum L.) under moisture stress conditions. Asian Journal of Plant Sciences, 1, 588–590.
Kumar N, Markar S, Kumar V. 2014. Studies on heritability and genetic advance estimates in timely sown bread wheat (Triticum aestivum L.). Bioscience Discovery, 5, 64–69.
Leishman M R, Westoby M. 1994. The role of seed size in seedling establishment in dry soil conditions-experimental evidence from semi-arid species. Journal of Ecology, 82, 249–258.
Lichtenthaler H K, Wellburn A R. 1983. Determination of total carotenoids and chlorophyll a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11, 591–592.
Livingston D P, Hincha D K, Heyer A G. 2009. Fructan and its relationship to abiotic stress tolerance in plants. Cellular and Molecular Life Sciences, 66, 2007–2023.
Lohithaswa H C, Desai S A, Hanchinal R R, Patil B N, Math K K, Kalappanavar I K, Bandivadder T T, Chandrashekhara C P. 2013. Combining ability in tetraploid wheat for yield, yield attributing traits, quality and rust resistance over environments. Journal of Agricultural Sciences, 26, 190–193.
Mir R R, Zaman-Allah M, Sreenivasulu N, Trethowan R, Varshney R K. 2012. Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theoretical and Applied Genetics, 125, 625–645.
Noorka I R, Khaliq I. 2007. An efficient technique for screening wheat (Triticum aestivum L.) germplasm for drought tolerance. Pakistan Journal of Botany, 39, 1539–1546.
Noorka I R, da Silva J A. 2012. Mechanistic insight of water stress induced aggregation in wheat (Triticum aestivum L.) quality: The protein paradigm shift. Notulae Scientia Biologicae, 4, 32–38.
Ogunbayo S A, Ojo D K, Guei R G, Oyelakin O O, Sanni K L. 2005. Phylogenetic diversity and relationship among 40 rice accessions using morphological and RAPDs techniques. African Journal of Biotechnology, 4, 1234–1244.
Pour-Aboughadareh A, Ahmadi J, Mehrabi A A, Etminan A, Moghaddam M, Siddique K H. 2017. Physiological responses to drought stress in wild relatives of wheat: implications for wheat improvement. Acta Physiologiae Plantarum, 39, 106–114.
Robbelen G. 1957. Untersuchungen an strahlen-induzierten blattfarbmutanten von Arabidopsis thaliana (L.) Heynh. Z. Induktive Abstammungs-Vererbungslehre, 88, 189–252.
Seher G S, Rasheed A, Kazi A G, Mahmood T, Mujeeb-Kazi A B. 2015. Performance of diverse wheat genetic stocks under moisture stress condition. Pakistan Journal of Botany, 4, 21–26.
Shahbazi H, Bihamta M R, Taeb M, Darvish F. 2012. Germination characters of wheat under osmotic stress: Heritability and relation with drought tolerance. International Journal of Research and Review, 2, 689–698.
Steel R G, Torrie J H, Dickey D A. 1997. Principles and Procedures of Statistics: A Biometrical Approach. McGraw Hill Book Company, New York, USA.
Toker C, Canci H, Yildirim T. 2007. Evaluation of perennial wild Cicer species for drought resistance. Genetic Resources and Crop Evolution, 54, 1781–1786.
Tuberosa R, Salvi S. 2006. Genomics approaches to improve drought tolerance in crops. Trends in Plant Sciences, 11, 405–412.
Ul-Allah S, Khan A S, Saeed M F, Ashfaq W, Iqbal M. 2014. Genetic variability and correlation studies for seedling traits of wheat (Triticum aestivum L.) genotypes under normal and water stress conditions. Journal of Agricultural and Crop Research, 2, 173–180.
Waqas M, Noorka I R, Khan A S, Tahir M A. 2013. Heritable variations the base of effective selection in wheat (Triticum aestivum L.) to ensure food security. Climate Change Outlook and Adaptation, 1, 14–18.
Zeng F, Zhang B, Lu Y. 2016. Morpho-physiological responses of Alphagi sparsifolia SHAP (Leguminosae) seedlings to progressive drought stress. Pakistan Journal of Botany, 48, 429–438.
Zhong H, Wang H. 2012. Evaluation of drought tolerance from a wheat recombination inbred line population at the early seedling growth stage. African Journal of Agricultural Research, 7, 6167–6172.
[1] Dili Lai, Md. Nurul Huda, Yawen Xiao, Tanzim Jahan, Wei Li, Yuqi He, Kaixuan Zhang, Jianping Cheng, Jingjun Ruan, Meiliang Zhou. Evolutionary and expression analysis of sugar transporters from Tartary buckwheat revealed the potential function of FtERD23 in drought stress[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3334-3350.
[2] Qing Li, Zhuangzhuang Sun, Zihan Jing, Xiao Wang, Chuan Zhong, Wenliang Wan, Maguje Masa Malko, Linfeng Xu, Zhaofeng Li, Qin Zhou, Jian Cai, Yingxin Zhong, Mei Huang, Dong Jiang. Time-course transcriptomic information reveals the mechanisms of improved drought tolerance by drought priming in wheat[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2902-2919.
[3] Liulong Li, Zhiqiang Mao, Pei Wang, Jian Cai, Qin Zhou, Yingxin Zhong, Dong Jiang, Xiao Wang. Drought priming enhances wheat grain starch and protein quality under drought stress during grain filling[J]. >Journal of Integrative Agriculture, 2025, 24(8): 2888-2901.
[4] Xuehao Zhang, Qiuling Zheng, Yongjiang Hao, Yingying Zhang, Weijie Gu, Zhihao Deng, Penghui Zhou, Yulin Fang, Keqin Chen, Kekun Zhang. Physiology and transcriptome profiling reveal the drought tolerance of five grape varieties under high temperatures[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3055-3072.
[5] Yang Chen, Xuyu Feng, Xiao Zhao, Xinmei Hao, Ling Tong, Sufen Wang, Risheng Ding, Shaozhong Kang. Biochar application enhances soil quality by improving soil physical structure under particular water and salt conditions in arid region of Northwest China[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3242-3263.
[6] Xiaoli Zhang, Daolin Ye, Xueling Wen, Xinling Liu, Lijin Lin, Xiulan Lü, Jin Wang, Qunxian Deng, Hui Xia, Dong Liang. Genome-wide analysis of RAD23 gene family and a functional characterization of AcRAD23D1 in drought resistance in Actinidia[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1831-1843.
[7] Huairen Zhang, Tauseef Taj Kiani, Huabang Chen, Juan Liu, Xunji Chen. Genome wide association analysis reveals multiple QTLs controlling root development in maize [J]. >Journal of Integrative Agriculture, 2025, 24(5): 1656-1670.
[8] Yuxin Wang, Huan Zhang, Shaopei Gao, Hong Zhai, Shaozhen He, Ning Zhao, Qingchang Liu. The ABA-inducible gene IbTSJT1 positively regulates drought tolerance in transgenic sweetpotato[J]. >Journal of Integrative Agriculture, 2025, 24(4): 1390-1402.
[9] Yu Li, Shikui Dong, Qingzhu Gao, Yong Zhang, Hasbagan Ganjurjav, Guozheng Hu, Xuexia Wang, Yulong Yan, Fengcai He, Fangyan Cheng. Large herbivores increase the proportion of palatable species rather than unpalatable species in the plant community[J]. >Journal of Integrative Agriculture, 2025, 24(3): 859-870.
[10] Lulu Yu, Muhammad Ahsan Asghar, Antonios Petridis, Fei Xu. Unlocking Dendrobium officinale’s drought resistance: Insights from transcriptomic analysis and enhanced drought tolerance in tomato[J]. >Journal of Integrative Agriculture, 2025, 24(11): 4282-4293.
[11] Jiayue He, Yanhua Chen, Yanrong Hao, Dili Lai, Tanzim Jahan, Yaliang Shi, Hao Lin, Yuqi He, Md. Nurul Huda, Jianping Cheng, Kaixuan Zhang, Jinbo Li, Jingjun Ruan, Meiliang Zhou. Combining GWAS and RNA-seq approaches identifies the FtADH1 gene for drought resistance in Tartary buckwheat[J]. >Journal of Integrative Agriculture, 2025, 24(10): 3739-3756.
[12] Yufei Ling, Mengzhu Liu, Yuan Feng, Zhipeng Xing, Hui Gao, Haiyan Wei, Qun Hu, Hongcheng Zhang. Effects of increased seeding density on seedling characteristics, mechanical transplantation quality, and yields of rice with crop straw boards for seedling cultivation[J]. >Journal of Integrative Agriculture, 2025, 24(1): 101-113.
[13] Guoling Guo, Haiyan Zhang, Weiyu Dong, Bo Xu, Youyu Wang, Qingchen Zhao, Lun Liu, Xiaomei Tang, Li Liu, Zhenfeng Ye, Wei Heng, Liwu Zhu, Bing Jia. Overexpression of PbrGA2ox1 enhances pear drought tolerance through the regulation of GA3-inhibited reactive oxygen species detoxification and abscisic acid signaling[J]. >Journal of Integrative Agriculture, 2024, 23(9): 2989-3011.
[14] Mingming Wang, Jia Geng, Zhe Zhang, Zihan Zhang, Lingfeng Miao, Tian Ma, Jiewen Xing, Baoyun Li, Qixin Sun, Yufeng Zhang, Zhongfu Ni. Fine mapping and characterization of a major QTL for grain length, QGl.cau-2D.1, that has pleiotropic effects in synthetic allohexaploid wheat[J]. >Journal of Integrative Agriculture, 2024, 23(9): 2911-2922.
[15] Congcong Guo, Hongchun Sun, Xiaoyuan Bao, Lingxiao Zhu, Yongjiang Zhang, Ke Zhang, Anchang Li, Zhiying Bai, Liantao Liu, Cundong Li. Increasing root-lower characteristics improves drought tolerance in cotton cultivars at the seedling stage[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2242-2254.
No Suggested Reading articles found!