|
|
|
Early selection of bread wheat genotypes using morphological and photosynthetic attributes conferring drought tolerance |
Hafiz Ghulam Muhu-Din Ahmed1, Abdus Salam khan1, LI Ming-ju2, Sultan Habibullah Khan3, Muhammad Kashif1 |
1 Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
2 Institute of Agricultural Environment and Resources, Yunnan Academy of Agricultural Sciences, Kunming 650205, P.R.China
3 Center of Agricultural Biotechnology and Biochemistry, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan |
|
|
Abstract Genetic diversity is the base of any genetic improvement breeding program aimed at stress breeding. The variability among breeding materials is of primary importance in the achievements of a good crop production. Herein, 105 wheat genotypes were screened against drought stress using factorial completely randomized design at seedling stage to determine the genetic diversity and traits association conferring drought tolerance. Analysis of variances revealed that all the studied parameters differed significantly among all genotypes, indicating the significance genetic variability existed among all genotypes for studied indices. The 10 best performance genotypes G1, G6, G11, G16, G21, G26, G39, G44, G51, and G61 were screened as drought tolerant, while five lowest performance genotypes G3, G77, G91, G98, and G105 were screened as drought susceptible. Root length, chlorophyll a, chlorophyll b, and carotenoid contents were significantly correlated among themselves which exhibited the importance of these indices for rainfed areas in future wheat breeding scheme. Shoot length exhibited non-significant and negative association with other studied traits, and its selection seems not to be a promising criteria for this germplasm for drought stress. Best performance genotypes under drought stress conditions will be useful in future wheat breeding program and early selection will be effective for developing high yielding and drought tolerant wheat varieties.
|
Received: 02 March 2018
Accepted:
|
Fund: The authors gratefully acknowledge the National Key R&D Program of China (2018YFD0200500) for the financial support. |
Corresponding Authors:
Correspondence Hafiz Ghulam Muhu-Din Ahmed, E-mail: ahmedbreeder@gmail.com; LI Ming-ju, E-mail: lily69618@163.com
|
Cite this article:
Hafiz Ghulam Muhu-Din Ahmed, Abdus Salam khan, LI Ming-ju, Sultan Habibullah Khan, Muhammad Kashif .
2019.
Early selection of bread wheat genotypes using morphological and photosynthetic attributes conferring drought tolerance. Journal of Integrative Agriculture, 18(11): 2483-2491.
|
Adnan M. 2013. Effect of drought stress on the physiology and yield of the Pakistani wheat germplasm. International Journal of Advanced Research and Technology, 2, 419–430.
Ahmad H, Mohammad F, Hassan G, Gul R. 2006. Evaluation of the heterotic and heterobeltiotic potential of wheat genotypes for improved yield. Pakistan Journal of Botany, 38, 1159–1167.
Ahmad M, Shabbir G, Minhas N M, Shah M K. 2013. Identification of drought tolerant wheat genotypes based on seedling traits. Sarhad Journal of Agriculture, 29, 21–27.
Ahmed H G M D, Khan A S, Kashif M, Khan S H. 2018. Genetic analysis of yield and physical traits of spring wheat grain. Journal of the National Science Foundation of Sri Lanka, 46, 23–30.
Ahmed H G M D, Khan A S, Khan S H, Kashif M. 2017. Genome wide allelic pattern and genetic diversity of spring wheat genotypes through SSR markers. International Journal of Agriculture and Biology, 19, 1559–1565.
Anjum S A, Xie X Y, Wang L C, Saleem M F, Man C, Lei W. 2011. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6, 2026–2032.
Ashfaq W, Ul-Allah S, Kashif M, Sattar A, Nabi H G. 2016. Genetic variability study among wheat genotypes under normal and drought conditions. Journal of Global Innovations in Agricultural and Social Sciences, 4, 111–116.
Chachar N A, Chachar M H, Chachar Q I, Chachar Z, Chachar G A, Nadeem F. 2014. Exploration of genetic diversity between six wheat genotypes for drought tolerance. Climate Change Outlook and Adaptation, 2, 27–33.
Dhanda S S, Sethi G S, Behl R K. 2004. Indices of drought tolerance in wheat genotypes at early stages of plant growth. Journal of Agronomy and Crop Science, 190, 612–618.
de Dorlodot S, Forster B, Pagès L, Price A, Tuberosa R, Draye X. 2007. Root system architecture: Opportunities and constraints for genetic improvement of crops. Trends in Plant Sciences, 12, 474–481.
Faisal S, Mujtaba S, Khan M, Mahboob W. 2017. Morpho-physiological assessment of wheat (Triticum aestivum L.) genotypes for drought stress tolerance at seedling stage. Pakistan. Journal of Botany, 49, 445–452.
Farshadfar E, Amiri R. 2105. Genetic analysis of physiological indicators of drought tolerance in bread wheat using diallel technique. Genetika, 47, 107–118.
Ghafoor G, Hassan G, Ahmad I, Khan S N, Suliman S. 2013. Correlation analysis for different parameters of F2 bread wheat population. Pure and Applied Biology, 2, 28–31.
Gugino B K, Abawi G S, Idowu O J, Schindelbeck R R, Smith L L, Thies J E, Wolfe D W, Van Es H M. 2009. Cornell soil health assessment training manual. Cornell University College of Agriculture and Life Sciences, USA.
Jaleel C A, Manivannan P A, Wahid A, Farooq M, Al-Juburi H J, Somasundaram R A, Panneerselvam R. 2009. Drought stress plants: A review on morphological characteristics and pigments composition. International Journal of Agriculture and Biology, 11, 100–105.
Kalaji H M, Jajoo A, Oukarroum A, Brestic M, Zivcak M, Samborska I A, Cetner M D, ?ukasik I, Goltsev V, Ladle R J. 2016. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiologiae Plantarum, 38, 102–112.
Khan A S, Allah S U, Sadique S A. 2010. Genetic variability and correlation among seedling traits of wheat (Triticum aestivum L.) under water stress. International Journal of Agriculture and Biology, 12, 247–250.
Khan M I, Shabbir G, Akram Z, Shah M K, Ansar M, Cheema N M, Iqbal M S. 2013. Character association studies of seedling traits in different wheat genotypes under moisture stress conditions. SABRAO Journal of Breeding and Genetics, 45, 458–467.
Khan M Q, Anwar S, Khan M I. 2002. Genetic variability for seedling traits in wheat (Triticum aestivum L.) under moisture stress conditions. Asian Journal of Plant Sciences, 1, 588–590.
Kumar N, Markar S, Kumar V. 2014. Studies on heritability and genetic advance estimates in timely sown bread wheat (Triticum aestivum L.). Bioscience Discovery, 5, 64–69.
Leishman M R, Westoby M. 1994. The role of seed size in seedling establishment in dry soil conditions-experimental evidence from semi-arid species. Journal of Ecology, 82, 249–258.
Lichtenthaler H K, Wellburn A R. 1983. Determination of total carotenoids and chlorophyll a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11, 591–592.
Livingston D P, Hincha D K, Heyer A G. 2009. Fructan and its relationship to abiotic stress tolerance in plants. Cellular and Molecular Life Sciences, 66, 2007–2023.
Lohithaswa H C, Desai S A, Hanchinal R R, Patil B N, Math K K, Kalappanavar I K, Bandivadder T T, Chandrashekhara C P. 2013. Combining ability in tetraploid wheat for yield, yield attributing traits, quality and rust resistance over environments. Journal of Agricultural Sciences, 26, 190–193.
Mir R R, Zaman-Allah M, Sreenivasulu N, Trethowan R, Varshney R K. 2012. Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theoretical and Applied Genetics, 125, 625–645.
Noorka I R, Khaliq I. 2007. An efficient technique for screening wheat (Triticum aestivum L.) germplasm for drought tolerance. Pakistan Journal of Botany, 39, 1539–1546.
Noorka I R, da Silva J A. 2012. Mechanistic insight of water stress induced aggregation in wheat (Triticum aestivum L.) quality: The protein paradigm shift. Notulae Scientia Biologicae, 4, 32–38.
Ogunbayo S A, Ojo D K, Guei R G, Oyelakin O O, Sanni K L. 2005. Phylogenetic diversity and relationship among 40 rice accessions using morphological and RAPDs techniques. African Journal of Biotechnology, 4, 1234–1244.
Pour-Aboughadareh A, Ahmadi J, Mehrabi A A, Etminan A, Moghaddam M, Siddique K H. 2017. Physiological responses to drought stress in wild relatives of wheat: implications for wheat improvement. Acta Physiologiae Plantarum, 39, 106–114.
Robbelen G. 1957. Untersuchungen an strahlen-induzierten blattfarbmutanten von Arabidopsis thaliana (L.) Heynh. Z. Induktive Abstammungs-Vererbungslehre, 88, 189–252.
Seher G S, Rasheed A, Kazi A G, Mahmood T, Mujeeb-Kazi A B. 2015. Performance of diverse wheat genetic stocks under moisture stress condition. Pakistan Journal of Botany, 4, 21–26.
Shahbazi H, Bihamta M R, Taeb M, Darvish F. 2012. Germination characters of wheat under osmotic stress: Heritability and relation with drought tolerance. International Journal of Research and Review, 2, 689–698.
Steel R G, Torrie J H, Dickey D A. 1997. Principles and Procedures of Statistics: A Biometrical Approach. McGraw Hill Book Company, New York, USA.
Toker C, Canci H, Yildirim T. 2007. Evaluation of perennial wild Cicer species for drought resistance. Genetic Resources and Crop Evolution, 54, 1781–1786.
Tuberosa R, Salvi S. 2006. Genomics approaches to improve drought tolerance in crops. Trends in Plant Sciences, 11, 405–412.
Ul-Allah S, Khan A S, Saeed M F, Ashfaq W, Iqbal M. 2014. Genetic variability and correlation studies for seedling traits of wheat (Triticum aestivum L.) genotypes under normal and water stress conditions. Journal of Agricultural and Crop Research, 2, 173–180.
Waqas M, Noorka I R, Khan A S, Tahir M A. 2013. Heritable variations the base of effective selection in wheat (Triticum aestivum L.) to ensure food security. Climate Change Outlook and Adaptation, 1, 14–18.
Zeng F, Zhang B, Lu Y. 2016. Morpho-physiological responses of Alphagi sparsifolia SHAP (Leguminosae) seedlings to progressive drought stress. Pakistan Journal of Botany, 48, 429–438.
Zhong H, Wang H. 2012. Evaluation of drought tolerance from a wheat recombination inbred line population at the early seedling growth stage. African Journal of Agricultural Research, 7, 6167–6172. |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|