Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (11): 3657-3671    DOI: 10.1016/j.jia.2024.03.079
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Genome-wide association study dissecting drought resistance-associated loci based on physiological traits in common bean

Lei Wu1, 2, Yujie Chang2, Lanfen Wang2, Shumin Wang2, Jing Wu2, 3#

1 Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education/College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China

2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China

3 SXAU–ICS (Shanxi Agricultural University–Institute of Crop Sciences) Joint Research Center of Minor Crops, Shanxi Agricultural University, Taiyuan 030031, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
抗旱性遗传改良是普通菜豆育种的主要目标之一,因此,亟需挖掘与抗旱性相关的分子标记,通过分子辅助育种技术促进普通菜豆抗旱育种。本研究测定了210份普通菜豆的脯氨酸、海藻糖、棉子糖和水苏糖含量,发现不同处理条件下的脯氨酸、海藻糖、棉子糖和水苏糖含量变化较大。对照条件下脯氨酸含量的变异系数最小(21.21%),水苏糖含量的变异系数最大(78.69%),干旱条件下海藻糖含量的变异系数最大(50.08%),脯氨酸含量的变异系数最小(20.11%)。通过全基因组关联分析鉴定出32个数量性状位点与抗旱性相关,其中7个与已知抗旱相关遗传位点重叠。在染色体Pv01、Pv07和Pv11上发现了4个热点区域。结合基因功能注释、同源基因功能研究以及基因表达谱数据,在候选区段中鉴定出多个候选基因,包括编码MYB、bZIP、bHLH、ERF和蛋白激酶的基因。其中Phvul.001G189400Phvul.007G273000Phvul.008G270500分别被注释为bZIP、ERF和WRKY,这些基因参与拟南芥的干旱胁迫反应,在普通菜豆中受干旱胁迫诱导。基于候选基因区域的显著SNP,可以将供试材料分成不同的单倍型,表型分析结果表明不同单倍型之间存在显著差异。这些结果丰富了普通菜豆抗旱性遗传信息,鉴定出来的候选基因和优良的自然变异将有助于普通菜豆抗旱性改良。


Abstract  
Genetic improvement of drought resistance is one of the main breeding goals for common bean, so molecular markers must be identified to facilitate drought resistance breeding.  In this study, we evaluated the proline, trehalose, raffinose, and stachyose contents of 210 common bean accessions under two watering conditions and found large variations in all four.  The coefficients of variation ranged from 21.21% for proline content to 78.69% for stachyose content under well-watered conditions, and from 20.11% for proline content to 50.08% for trehalose content under drought stress.  According to our genome-wide association analysis, 32 quantitative trait loci were associated with drought resistance, seven of which overlapped with known loci.  Four hotspot regions were identified at Pv01, Pv07 and Pv11.  A set of candidate genes was identified, including genes encoding MYB, bZIP, bHLH, ERF, and protein kinases.  Among these genes, Phvul.001G189400, Phvul.007G273000 and Phvul.008G270500 were annotated as bZIP, ERF and WRKY, respectively.  These genes are reportedly involved in drought stress responses in Arabidopsis thaliana and were induced by drought stress in common bean.  Significant SNPs in six candidate gene regions formed different haplotypes, and phenotypic analysis revealed significant differences among the haplotypes.  These results provide new insight into the genetic basis of drought resistance in common bean and reveal candidate genes and superior natural variations that will be useful for improving common bean.


Keywords:  common bean        drought resistance        GWAS        physiological trait  
Received: 28 December 2023   Accepted: 07 March 2024
Fund: 
This work was supported by the National Key Research and Development Program of China (2019YFD1001300 and 2019YFD1001305), the Fundamental Research Funds for the Central Universities, China (SWU-KQ22042), the China Agriculture Research System of MOF and MARA (CARS-08), and the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences.
About author:  #Correspondence Jing Wu, Tel: +86-10-62175628, E-mail: wujing@caas.cn

Cite this article: 

Lei Wu, Yujie Chang, Lanfen Wang, Shumin Wang, Jing Wu. 2024. Genome-wide association study dissecting drought resistance-associated loci based on physiological traits in common bean. Journal of Integrative Agriculture, 23(11): 3657-3671.

Alvarez M E, Savouré A, Szabados L. 2022. Proline metabolism as regulatory hub. Trends in Plant Science27, 39–55.

Asfaw A, Blair M W. 2012. Quantitative trait loci for rooting pattern traits of common beans grown under drought stress versus non-stress conditions. Molecular Breeding30, 681–695.

Asfaw A, Blair M W, Struik P C. 2012. Multienvironment quantitative trait loci analysis for photosynthate acquisition, accumulation, and remobilization traits in common bean under drought stress. G3 Genes|Genomes|Genetics2, 579–595.

Berny Mier y Teran J C, Konzen E R, Palkovic A, Tsai S M, Rao I M, Beebe S, Gepts P. 2019. Effect of drought stress on the genetic architecture of photosynthate allocation and remobilization in pods of common bean (Phaseolus vulgaris L.), a key species for food security. BMC Plant Biology19, 171.

Blair M W, Galeano C H, Tovar E, Muñoz Torres M C, Castrillón A V, Beebe S E, Rao I M. 2012. Development of a Mesoamerican intra-genepool genetic map for quantitative trait loci detection in a drought tolerant × susceptible common bean (Phaseolus vulgaris L.) cross. Molecular Breeding29, 71–88.

Briñez B, Perseguini J M K C, Rosa J S, Bassi D, Gonçalves J G R, Almeida C, Paulino J F C, Blair M W, Chioratto A F, Carbonell S A M, Valdisser P A M R, Vianello R P, Benchimol-Reis L L. 2017. Mapping QTLs for drought tolerance in a SEA 5×AND 277 common bean cross with SSRs and SNP markers. Genetics and Molecular Biology40, 813–823.

Chen L, Yang H, Fang Y, Guo W, Chen H, Zhang X, Dai W, Chen S, Hao Q, Yuan S, Zhang C, Huang Y, Shan Z, Yang Z, Qiu D, Liu X, Tran L P, Zhou X, Cao D. 2020. Overexpression of GmMYB14 improves high-density yield and drought tolerance of soybean through regulating plant architecture mediated by the brassinosteroid pathway. Plant Biotechnology Journal19, 702–716.

Chen J B, Cao Y N, Zhang Z Y, Wang S M, Wu J, Wang L F. 2016. Cloning of the OAT gene and the correlation between its expression and drought tolerance in Phaseolus vulgaris L. Journal of Integrative Agriculture15, 973–982.

Crowe J H, Crowe L M, Chapman D. 1984. Preservation of membranes in anhydrobiotic organisms: The role of trehalose. Science223, 701–703.

Deng D, Wu W, Duan C, Sun S, Zhu Z. 2024. A novel pathogen Fusarium cuneirostrum causing common bean (Phaseolus vulgaris) root rot in China. Journal of Integrative Agriculture23, 166–176.

Diaz S, Ariza-Suarez D, Izquierdo P, Lobaton J D, de la Hoz J F, Acevedo F, Duitama J, Guerrero A F, Cajiao C, Mayor V, Beebe S E, Raatz B. 2020. Genetic mapping for agronomic traits in a MAGIC population of common bean (Phaseolus vulgaris L.) under drought conditions. BMC Genomics21, 799.

Dramadri I O, Nkalubo S T, Kramer D M, Kelly J D. 2021. Genome-wide association analysis of drought adaptive traits in common bean. Crop Science61, 3232–3253.

Du L, Huang X, Ding L, Wang Z, Tang D, Chen B, Ao L, Liu Y, Kang Z, Mao H. 2023. TaERF87 and TaAKS1 synergistically regulate TaP5CS1/TaP5CR1-mediated proline biosynthesis to enhance drought tolerance in wheat. New Phytologist237, 232–250.

Fang Y, Xiong L. 2015. General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences72, 673–689.

Gao H, Cui J, Liu S, Wang S, Lian Y, Bai Y, Zhu T, Wu H, Wang Y, Yang S, Li X, Zhuang J, Chen L, Gong Z, Qin F. 2022. Natural variations of ZmSRO1d modulate the trade-off between drought resistance and yield by affecting ZmRBOHC-mediated stomatal ROS production in maize. Molecular Plant15, 1558–1574.

Gaur A, Jindal Y, Singh V, Tiwari R, Kumar D, Kaushik D, Singh J, Narwal S, Jaiswal S, Iquebal M A, Angadi U B, Singh G, Rai A, Singh G P, Sheoran S. 2022. GWAS to identify novel QTNs for WSCs accumulation in wheat peduncle under different water regimes. Frontiers in Plant Science13, 825687.

Guo Q, Li X, Niu L, Jameson P E, Zhou W. 2021. Transcription-associated metabolomic adjustments in maize occur during combined drought and cold stress. Plant Physiology186, 677–695.

Guo Z, Liu X, Zhang B, Yuan X, Xing Y, Liu H, Luo L, Chen G, Xiong L. 2021. Genetic analyses of lodging resistance and yield provide insights into post-Green-Revolution breeding in rice. Plant Biotechnology Journal19, 814–829.

Guo Z, Yang W, Chang Y, Ma X, Tu H, Xiong F, Jiang N, Feng H, Huang C, Yang P, Zhao H, Chen G, Liu H, Luo L, Hu H, Liu Q, Xiong L. 2018. Genome-wide association studies of image traits reveal genetic architecture of drought resistance in rice. Molecular Plant11, 789–805.

Gupta A, Rico-Medina A, Caño-Delgado A I. 2020. The physiology of plant responses to drought. Science368, 266–269.

Gupta A, Sarkar A K, Senthil-Kumar M. 2016. Global transcriptional analysis reveals unique and shared responses in Arabidopsis thaliana exposed to combined drought and pathogen stress. Frontiers in Plant Science7, 686.

Hao Y, Kong F, Wang L, Zhao Y, Li M, Che N, Li S, Wang M, Hao M, Zhang X, Zhao Y. 2024. Genome-wide association study of grain micronutrient concentrations in bread wheat. Journal of Integrative Agriculture23, 1468–1480.

Hoekstra F A, Golovina E A, Buitink J. 2001. Mechanisms of plant desiccation tolerance. Trends in Plant Science6, 431–438.

Hoermiller I I, Naegele T, Augustin H, Stutz S, Weckwerth W, Heyer A G. 2017. Subcellular reprogramming of metabolism during cold acclimation in Arabidopsis thalianaPlantCell and Environment40, 602–610.

Hoyos-Villegas V, Song Q, Kelly J D. 2017. Genome-wide association analysis for drought tolerance and associated traits in common bean. Plant Genome10, 1–17.

Kamruzzaman M, Beyene M A, Siddiqui M N, Ballvora A, Léon J, Naz A A. 2022. Pinpointing genomic loci for drought-induced proline and hydrogen peroxide accumulation in bread wheat under field conditions. BMC Plant Biology22, 584.

Kishor P, Hong Z, Miao GH, Hu C, Verma D. 1995. Overexpression of [delta]-pyrroline–5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiology108, 1387–1394.

Li C X, Song Y F, Zhu Y, Cao M N, Han X, Fan J S, Lv Z C, Xu Y, Zhou Y, Zeng X, Zhang L, Dong L, Sun D Q, Wang Z H, Di H. 2025. GWAS analysis reveals candidate genes associated with dense tolerance (ear leaf structure) in maize (Zea mays L.). Journal of Integrative Agriculture, doi:10.1016/j.jia.2024.01.023.

Li L, Mao X, Wang J, Chang X, Reynolds M, Jing R. 2019. Genetic dissection of drought and heat-responsive agronomic traits in wheat. PlantCell and Environment42, 2540–2553.

Li M, Liu Y, Ma J, Zhang P, Wang C, Su J, Yang D. 2020. Genetic dissection of stem WSC accumulation and remobilization in wheat (Triticum aestivum L.) under terminal drought stress. BMC Genetics21, 50.

Li T, Zhang Y, Liu Y, Li X, Hao G, Han Q, Dirk L M A, Downie A B, Ruan Y L, Wang J, Wang G, Zhao T. 2020. Raffinose synthase enhances drought tolerance through raffinose synthesis or galactinol hydrolysis in maize and Arabidopsis plants. Journal of Biological Chemistry295, 8064–8077.

Lim C, Kang K, Shim Y, Yoo S C, Paek N C. 2022. Inactivating transcription factor OsWRKY5 enhances drought tolerance through abscisic acid signaling pathways. Plant Physiology188, 1900–1916.

Liu Y, Li T, Zhang C, Zhang W, Deng N, Dirk L M A, Downie A B, Zhao T. 2023. Raffinose positively regulates maize drought tolerance by reducing leaf transpiration. Plant Journal114, 55–67.

Lopez-Molina L, Mongrand S, Chua N H. 2001 A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in ArabidopsisProceedings of the National Academy of Sciences of the United States of America98, 4782–4787.

Mao H, Li S, Chen B, Jian C, Mei F, Zhang Y, Li F, Chen N, Li T, Du L, Ding L, Wang Z, Cheng X, Wang X, Kang Z. 2022. Variation in cis-regulation of a NAC transcription factor contributes to drought tolerance in wheat. Molecular Plant15, 276–292.

Meng X, Liu S, Zhang C, He J, Ma D, Wang X, Dong T, Guo F, Cai J, Long T, Li Z, Zhu M. 2023. The unique sweet potato NAC transcription factor IbNAC3 modulates combined salt and drought stresses. Plant Physiology191, 747–771.

Mukeshimana G, Butare L, Cregan P B, Blair M W, Kelly J D. 2014. Quantitative trait loci associated with drought tolerance in common bean. Crop Science54, 923–938.

Nabateregga M, Mukankusi C, Raatz B, Edema R, Nkalubo S, Alladassi B M E. 2019. Quantitative trait loci (QTL) mapping for intermittent drought tolerance in BRB 191 × SEQ 1027 Andean intragene cross recombinant inbred line population of common bean (Phaseolus vulgaris L.). African Journal of Biotechnology18, 452–461.

Ozturk M, Turkyilmaz Unal B, García-Caparrós P, Khursheed A, Gul A, Hasanuzzaman M. 2021. Osmoregulation and its actions during the drought stress in plants. Physiologia Plantarum172, 1321–1335.

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M A, Bender D, Maller J, Sklar P, de Bakker P I, Daly M J, Sham P C. 2007. PLINK: A tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics81, 559–575.

Rolly N K, Imran Q M, Shahid M, Imran M, Khan M, Lee S U, Hussain A, Lee I J, Yun B W. 2020. Drought-induced AtbZIP62 transcription factor regulates drought stress response in ArabidopsisPlant Physiology and Biochemistry156, 384–395.

Sánchez-reinoso A D, Ligarreto-moreno G A, Restrepo-díaz H. 2020. Evaluation of drought indices to identify tolerant genotypes in common bean bush (Phaseolus vulgaris L.). Journal of Integrative Agriculture19, 99–107.

Schmutz J, McClean P E, Mamidi S, Wu G A, Cannon S B, Grimwood J, Jenkins J, Shu S, Song Q, Chavarro C, Torres-Torres M, Geffroy V, Moghaddam S M, Gao D, Abernathy B, Barry K, Blair M, Brick M A, Chovatia M, Gepts P, et al. 2014. A reference genome for common bean and genome-wide analysis of dual domestications. Nature Genetics46, 707–713.

Seki M, Umezawa T, Urano K, Shinozaki K. 2007. Regulatory metabolic networks in drought stress responses. Current Opinion in Plant Biology10, 296–302.

Sun X, Xiong H, Jiang C, Zhang D, Yang Z, Huang Y, Zhu W, Ma S, Duan J, Wang X, Liu W, Guo H, Li G, Qi J, Liang C, Zhang Z, Li J, Zhang H, Han L, Zhou Y, et al. 2022. Natural variation of DROT1 confers drought adaptation in upland rice. Nature Communications13, 4265.

Trapp J J, Urrea C A, Cregan P B, Miklas P N. 2015. Quantitative trait loci for yield under multiple stress and drought conditions in a dry bean population. Crop Science55, 1596–1607.

Verslues P E, Lasky J R, Juenger T E, Liu T W, Kumar M N. 2014. Genome-wide association mapping combined with reverse genetics identifies new effectors of low water potential-induced proline accumulation in ArabidopsisPlant Physiology164, 144–159.

Villordo-Pineda E, González-Chavira M M, Giraldo-Carbajo P, Acosta-Gallegos J A, Caballero-Pérez J. 2015. Identification of novel drought-tolerant-associated SNPs in common bean (Phaseolus vulgaris). Frontiers in Plant Science6, 546.

Wang W, Chen Q, Xu S, Liu W C, Zhu X, Song C P. 2020. Trehalose–6-phosphate phosphatase E modulates ABA-controlled root growth and stomatal movement in ArabidopsisJournal of Integrative Plant Biology62, 1518–1534.

Wu J, Wang L, Fu J, Chen J, Wei S, Zhang S, Zhang J, Tang Y, Chen M, Zhu J, Lei L, Geng Q, Liu C, Wu L, Li X, Wang X, Wang Q, Wang Z, Xing S, Zhang H, et al. 2020. Resequencing of 683 common bean genotypes identifies yield component trait associations across a north-south cline. Nature Genetics52, 118–125.

Wu J, Wang L, Li L, Wang S. 2014. De novo assembly of the common bean transcriptome using short reads for the discovery of drought-responsive genes. PLoS ONE10, e0119369.

Wu L, Chang Y, Wang L, Ji L, Peng L, Wang S, Wu J. 2023. Genetic dissection of yield related traits in response to drought stress in common bean. Crop Journal111097–1105.

Wu L, Chang Y J, Wang L F, Wang S M, Wu J. 2022. The aquaporin gene PvXIP1;2 conferring drought resistance identified by GWAS at seedling stage in common bean. Theoretical and Applied Genetics135, 485–500.

Wu L, Chang Y J, Wang L F, Wu J, Wang S M. 2021. Genetic dissection of drought resistance based on root traits at the bud stage in common bean. Theoretical and Applied Genetics134, 1047–1061.

Xia Y, Li R, Bai G, Siddique K H M, Varshney R K, Baum M, Yan G, Guo P. 2017. Genetic variations of HvP5CS1 and their association with drought tolerance related traits in barley (Hordeum vulgare L.). Scientific Reports7, 7870.

Xu J, Chua N H. 2012. Dehydration stress activates Arabidopsis MPK6 to signal DCP1 phosphorylation. EMBO Journal31, 1975–1984.

Zhao J, Zhou H, Zhang M, Gao Y, Li L, Gao Y, Li M, Yang Y, Guo Y, Li X. 2016. Ubiquitin-specific protease 24 negatively regulates abscisic acid signalling in Arabidopsis thalianaPlantCell and Environment39, 427–440.

Zhou X, Stephens M. 2012. Genome-wide efficient mixed-model analysis for association studies. Nature Genetics44, 821–824.

[1] CHEN Ji-bao, CAO Yuan-nan, ZHANG Zhao-yuan, WANG Shu-min, WU Jing, WANG Lan-fen. Cloning of the OAT gene and the correlation between its expression and drought tolerance in Phaseolus vulgaris L.[J]. >Journal of Integrative Agriculture, 2016, 15(05): 973-982.
No Suggested Reading articles found!