Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (3): 685-696    DOI: 10.1016/S2095-3119(21)63748-6
Special Issue: 园艺-分子生物合辑Horticulture — Genetics · Breeding
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Nodulin 26-like intrinsic protein CsNIP2;2 is a silicon influx transporter in Cucumis sativus L.
DUAN Yao-ke1, SU Yan1, HAN Rong1, SUN Hao1, 2, GONG Hai-jun1
1 Shaanxi Engineering Research Center for Vegetables/College of Horticulture, Northwest A&F University, Yangling 712100, P.R.China 
2 Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450000, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      

Nodulin 26-like intrinsic proteins (NIPs)是一类跨膜蛋白,主要介导水和其他小分子的跨膜运输。NIP中的一类能够介导硅的跨膜运输,这一类NIP通常具有由甘氨酸、丝氨酸、甘氨酸和精氨酸构成的选择性滤器。黄瓜是消费广泛的蔬菜之一,目前对黄瓜中大部分NIP的功能仍不太清楚。该研究发现CsNIP2;2是CsNIP2;1的串联重复基因,而CsNIP2;1已经证明是一种硅内向转运基因。CsNIP2;2具有由半胱氨酸、丝氨酸、甘氨酸和精氨酸组成的选择性过滤器,它不同于目前高等植物中已经验证功能的硅内向转运蛋白。注射CsNIP2;2 cRNA的非洲爪蟾卵母细胞中硅的吸收量高于对照组,且对硅的吸收不受低温的影响。CsNIP2;2在黄瓜根、茎、叶片和叶柄中均有表达,外源硅处理降低其在茎中的表达,但在其他组织中表达不变。CsNIP2;2-eGFP融合序列在洋葱表皮细胞的瞬时表达表明,CsNIP2;2定位于细胞核、质膜和细胞内未知结构。该研究表明CsNIP2;2是黄瓜中的硅内向转运蛋白,其亚细胞定位和选择性滤器的构成与高等植物中以前发现的硅内向转运蛋白不同。这些发现可能有助于我们更好地了解NIPs在黄瓜中的功能。

Abstract  Nodulin 26-like intrinsic proteins (NIPs) are a family of channel-forming transmembrane proteins that function in the transport of water and other small molecules.  Some NIPs can mediate silicon transport across plasma membranes and lead to silicon accumulation in plants, which is beneficial for the growth and development of plants.  Cucumber is one of the most widely consumed vegetables; however, the functions of NIPs in this crop are still largely unknown.  Here, we report the functional characteristics of CsNIP2;2.  It was found that CsNIP2;2 is a tandem repeat of CsNIP2;1, which had been demonstrated to be a silicon influx transporter gene.  CsNIP2;2 has a selectivity filter composed of cysteine, serine, glycine and arginine (CSGR), which is different from all previously characterized silicon influx transporters in higher plants at the second helix position.  Xenopus laevis oocytes injected with CsNIP2;2 cRNA demonstrated a higher uptake of silicon than the control, and the uptake remained unchanged under low temperature.  CsNIP2;2 was found to be expressed in the root, stem, lamina and petiole, and exogenous silicon treatment decreased its expression in the stem but not in other tissues.  Transient expression of CsNIP2;2-eGFP fusion sequence in onion epidermal cells showed that CsNIP2;2 was localized to the cell nucleus, plasma membrane and an unknown structure inside the cell.  The results suggest that CsNIP2;2 is a silicon influx transporter in cucumber, and its subcellular localization and the selectivity filter are different from those of the previously characterized silicon influx transporters in other plants.  These findings may be helpful for understanding the functions of NIPs in cucumber plants.
Keywords:  cucumber (Cucumis sativus L.)       nodulin 26-like intrinsic membrane protein (NIP)       silicon influx transporter       aromatic/arginine selectivity filter  
Received: 25 September 2020   Accepted: 21 May 2021
Fund: This work was supported by the National Key Research and Development Program of China (2018YFD1000800) and the National Natural Science Foundation of China (32072561 and 31772290).
About author:  DUAN Yao-ke, E-mail:; Correspondence SUN Hao, Tel: +86-371-67785095, E-mail:; GONG Hai-jun, Tel: +86-29-87082613, E-mail:

Cite this article: 

DUAN Yao-ke, SU Yan HAN Rong, SUN Hao, GONG Hai-jun. 2022. Nodulin 26-like intrinsic protein CsNIP2;2 is a silicon influx transporter in Cucumis sativus L.. Journal of Integrative Agriculture, 21(3): 685-696.

Bienert G P, Thorsen M, SchuÈssler M D, Nilsson H R, Wagner A, Tamas M J, John T P. 2008. A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biology, 6, 26.
Chiba Y, Mitani N, Yamaji N, Ma J F. 2009. HvLsi1 is a silicon influx transporter in barley. The Plant Journal, 57, 810–818.
Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. 2020. TBtools - an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 13, 1194–1202.
Choi W G, Robert D M. 2007. Arabidopsis NIP2;1: A major intrinsic protein transporter of lactic acid induced by anoxic stress. Journal of Biological Chemistry, 282, 24209–24218.
Dean R M, Rivers R L, Zeidel M L, Roberts D M. 1999. Purification and functional reconstitution of soybean nodulin 26. An aquaporin with water and glycerol transport properties. Biochemistry, 38, 347–353.
Deshmukh R K, Vivancos J, Guerin V, Sonah H, Labbe C, Belzile F, Belanger R R. 2013. Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice. Plant Molecular Biology, 83, 303–315.
Fu D, Libson A, Miercke L J, Weitzman C, Nollert P, Krucinski J, Stroud R M. 2000. Structure of a glycerol-conducting channel and the basis for its selectivity. Science, 290, 481–486.
Gomezsoto D, Galvan S, Rosales E, Bienert P, Abreu I, Bonilla I, Bolanos L, Reguera M. 2019. Insights into the role of phytohormones regulating pAtNIP5;1 activity and boron transport in Arabidopsis thaliana. Plant Science, 287, 110198.
Hanaoka H, Uraguchi S, Takano J, Tanaka M, Fujiwara T. 2014. OsNIP3;1, a rice boric acid channel, regulates boron distribution and is essential for growth under boron-deficient conditions. The Plant Journal, 78, 890–902.
Hoagland D R, Arnon D I. 1950. The water-culture method for growing plants without soil. California Agricultural Experiment Station Circular, 347, 1–32. 
Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas W J, Wang X, Xie B, Ni P, Ren Y, Zhu H, Li J, Lin K, Jin W, Fei Z, Li G, Staub J, Kilian A, van der Vossen E A G, et al. 2009. The genome of the cucumber, Cucumis sativus L. Nature Genetics, 41, 1275–1281.
Isayenkov S V, Maathuis F J M. 2008. The Arabidopsis thaliana aquaglyceroporin AtNIP7;1 is a pathway for arsenite uptake. FEBS Letters, 582, 1625–1628.
Jones D T, Taylor W R, Thornton J M. 1992. The rapid generation of mutation data matrices from protein sequences. Computer Applications in the Biosciences, 8, 275–282.
Kamiya T, Fujiwara T. 2009. Arabidopsis NIP1;1 transports antimonite and determines antimonite sensitivity. Plant and Cell Physiology, 50, 1977–1981.
Kamiya T, Tanaka M, Mitani N, Ma J F, Maeshima M, Fujiwara T. 2009. NIP1;1, an aquaporin homolog, determines the arsenite sensitivity of Arabidopsis thaliana. Journal of Biological Chemistry, 284, 2114–2120.
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35, 1547–1549.
Le S Q, Gascuel O. 2008. An improved general amino acid replacement matrix. Molecular Biology and Evolution, 25, 1307–1320.
Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, De Peer Y V, Rouze P, Rombauts S. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30, 325–327.
Li B, Merrick M, Li S, Li H, Zhu S, Shi W, Su Y. 2009. Molecular basis and regulation of ammonium transporter in rice. Rice Science, 16, 314–322.
Li T, Choi W G, Wallace I S, Baudry J, Roberts D M. 2011. Arabidopsis thaliana NIP7;1: An anther-specific boric acid transporter of the aquaporin superfamily regulated by an unusual tyrosine in helix 2 of the transport pore. Biochemistry, 50, 6633–6641.
Li Z, Zhang Z, Yan P, Huang S, Fei Z, Lin K. 2011. RNA-Seq improves annotation of protein-coding genes in the cucumber genome. BMC Genomics, 12, 540–540.
Ma J F, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M. 2006. A silicon transporter in rice. Nature, 440, 688–691.
Ma J F, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M. 2007. An efflux transporter of silicon in rice. Nature, 448, 209–212.
Ma J F, Yamaji N, Mitani N, Xu X, Su Y, McGrath S P, Zhao F. 2008. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proceedings of the National Academy of Sciences of the United States of America, 105, 9931–9935.
Maurel C, Boursiac Y, Luu D T, Santoni V, Shahzad Z, Lionel V. 2015. Aquaporins in plants. Physiological Reviews, 95, 1321–1358.
Maurel C, Verdoucq L, Luu D T, Santoni V. 2008. Plant aquaporins: Membrane channels with multiple integrated functions. Annual Review of Plant Biology, 59, 595–624.
Mitani N, Chiba Y, Yamaji N, Ma J F. 2009a. Identification and characterization of maize and barley Lsi2-like silicon efflux transporters reveals a distinct silicon uptake system from that in rice. The Plant Cell, 21, 2133–2142.
Mitani N, Yamaji N, Ago Y, Iwasaki K, Ma J F. 2011. Isolation and functional characterization of an influx silicon transporter in two pumpkin cultivars contrasting in silicon accumulation. The Plant Journal, 66, 231–240.
Mitani N, Yamaji N, Ma J F. 2008. Characterization of substrate specificity of a rice silicon transporter, Lsi1. Pflugers Archiv: European Journal of Physiology, 456, 679–686. 
Mitani N, Yamaji N, Ma J F. 2009b. Identifcation of maize silicon influx transporters. Plant and Cell Physiology, 50, 5–12.
Mitani-Ueno N, Yamaji N, Zhao F, Ma J F. 2011. The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic. Journal of Experimental Botany, 62, 4391–4398.
Montpetit J, Vivancos J, Mitani-Ueno N, Yamaji N, Remus-Borel W, Belzile F, Ma J F, Belanger R R. 2012. Cloning, functional characterization and heterologous expression of TaLsi1, a wheat silicon transporter gene. Plant Molecular Biology, 79, 35–46.
Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann J B, Engel A, Fujiyoshi Y. 2000. Structural determinants of water permeation through aquaporin-1. Nature, 407, 599–605.
Nikolic M, Nikolic N, Liang Y, Kirkby E A, Romheld V. 2007. Germanium-68 as an adequate tracer for silicon transport in plants. Characterization of silicon uptake in different crop species. Plant Physiology, 143, 495–503.
Pommerrenig B, Diehn T A, Bernhardt N, Bienert M D, Mitaniueno N, Fuge J, Bieber A, Spitzer C, Brautigam A, Ma J F, Chaumont F, Bienert G P. 2020. Functional evolution of nodulin 26-like intrinsic proteins: From bacterial arsenic detoxification to plant nutrient transport. New Phytologist, 225, 1383–1396.
Pommerrenig B, Diehn T A, Bienert G P. 2015. Metalloido-porins: Essentiality of nodulin 26-like intrinsic proteins in metalloid transport. Plant Science, 238, 212–227.
Scott A C, Wyatt S E, Tsou P, Robertson D, Allen N S. 1999. Model system for plant cell biology: GFP imaging in living onion epidermal cells. Biotechniques, 26, 1125–1132.
Sui H, Han B G, Lee J K, Walian P, Jap B K. 2001. Structural basis of water-specific transport through the AQP1 water channel. Nature, 414, 872–878.
Sun H, Duan Y, Mitani-Ueno N, Che J, Jia J, Liu J, Guo J, Ma J F, Gong H. 2020. Tomato roots have a functional silicon influx transporter but not a functional silicon efflux transporter. Plant, Cell and Environment, 43, 732–744.
Sun H, Duan Y, Qi X, Zhang L, Huo H, Gong H. 2018. Isolation and functional characterization of CsLsi2, a cucumber silicon efflux transporter gene. Annals of Botany, 122, 641–648. 
Sun H, Guo J, Duan Y, Zhang T, Huo H, Gong H. 2017. Isolation and functional characterization of CsLsi1, a silicon transporter gene in Cucumis sativus. Physiologia Plantarum, 159, 201–214.
Takano J, Wada M, Ludewig U, Schaaf G, von Wirén N, Fujiwara T. 2006. The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. The Plant Cell, 18, 1498–1509.
Vulavala V K R, Elbaum R, Yermiyahu U, Fogelman E, Kumar A, Ginzberg I. 2016. Silicon fertilization of potato: Expression of putative transporters and tuber skin quality. Planta, 243, 217–229.
Wallace I S, Roberts D M. 2004. Homology modeling of representative subfamilies of Arabidopsis major intrinsic proteins. Classification based on the aromatic/arginine selectivity filter. Plant Physiology, 135, 1059–1068.
Wallace I S, Roberts D M. 2005. Distinct transport selectivity of two structural subclasses of the nodulin-like intrinsic protein family of plant aquaglyceroporin channels. Biochemistry, 44, 16826–16834.
Wan H, Zhao Z, Qian C, Sui Y, Malik A, Chen J. 2010. Selection of appropriate reference genes for gene expression studies by quantitative real-time polymerase chain reaction in cucumber. Analytical Biochemistry, 399, 257–261.
Wang H, Yu C, Fan P, Bao B, Li T, Zhu Z. 2015. Identification of two cucumber putative silicon transporter genes in Cucumis sativus. Journal of Plant Growth Regulation, 34, 332–338.
Wang Y, Li R, Li D, Jia X, Zhou D, Li J, Lyi S M, Hou S, Huang Y, Kochian L V, Liu J. 2017. NIP1;2 is a plasma membrane-localized transporter mediating aluminum uptake, translocation, and tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 114, 5047–5052.
Wittkopp P J, Kalay G. 2012. Cis-regulatory elements: Molecular mechanisms and evolutionary processes underlying divergence. Nature Reviews Genetics, 13, 59–69.
Wu S, Zhang B, Keyhaninejad N, Rodríguez G R, Kim H J, Chakrabarti M, Illa-Berenguer E, Taitano N K, Gonzalo M J, Díaz A, Pan Y, Leisner C P, Halterman D, Buell C R, Weng Y, Jansky S H, van Eck H, Willemsen J, Monforte A J, Meulia T, et al. 2018. A common genetic mechanism underlies morphological diversity in fruits and other plant organs. Nature Communications, 9, 4734.
Yamaji N, Chiba Y, Mitani-Ueno N, Ma J F. 2012. Functional characterization of a silicon transporter gene implicated in silicon distribution in barley. Plant Physiology, 160, 1491–1497.
Yamaji N, Ma J F. 2007. Spatial distribution and temporal variation of the rice silicon transporter Lsi1. Plant Physiology, 143, 1306–1313.
Yamaji N, Ma J F. 2009. A transporter at the node responsible for intervascular transfer of silicon in rice. The Plant Cell, 21, 2878–2883.
Yamaji N, Ma J F. 2011. Further characterization of a rice silicon efflux transporter, Lsi2. Soil Science and Plant Nutrition, 57, 259–264.
Yamaji N, Mitatni N, Ma J F. 2008. A transporter regulating silicon distribution in rice shoots. The Plant Cell, 20, 1381–1389.
Yamaji N, Sakurai G, Mitani-Ueno N, Ma J F. 2015. Orchestration of three transporters and distinct vascular structures in node for intervascular transfer of silicon in rice. Proceedings of the National Academy of Sciences of the United States of America, 112, 11401–11406.
Zhang L, Yan J, Vatamaniuk O K, Du X. 2016. CsNIP2;1 is a plasma membrane transporter from Cucumis sativus that facilitates urea uptake when expressed in Saccharomyces cerevisiae and Arabidopsis thaliana. Plant and Cell Physiology, 57, 616–629.
Zhao F J, Ago Y, Mitani N, Li R Y, Su Y H, Yamaji N, McGrath S P, Ma J F. 2010. The role of the rice aquaporin Lsi1 in arsenite efflux from roots. New Phytologist, 186, 392–399.
Zhao X Q, Mitani N, Yamaji N, Shen R F, Ma J F. 2010. Involvement of silicon influx transporter OsNIP2;1 in selenite uptake in rice. Plant Physiology, 153, 1871–1877. 
Zhu Y, Yang L, Liu N, Yang J, Zhou X, Xia Y, He Y, He Y, Gong H, Ma D, Yin J. 2019. Genome-wide identification, structure characterization, and expression pattern profiling of aquaporin gene family in cucumber. BMC Plant Biology, 19, 345–345.

No related articles found!
No Suggested Reading articles found!