Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (8): 2842-2852    DOI: 10.1016/j.jia.2023.12.006
Agricultural Economics and Management Advanced Online Publication | Current Issue | Archive | Adv Search |
The potential impact of increased whole grain consumption among Chinese adults on reducing healthcare costs and carbon footprint
Xin Zhang, Jingjing Wang#, Fuli Tan, Haixiu Gao, Shenggen Fan
Academy of Global Food Economics and Policy, China Agricultural University, Beijing 100083, China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

当前,对精制谷物的过度消费危及人类健康和生态系统的可持续性,而使用全谷物替代部分精制谷物对居民健康与环境可持续都有积极意义。一方面,相对于精加工谷物,全谷物中富含的膳食纤维、B族维生素和生物活性物质对居民健康有益;另一方面,全谷物加工过程中粮食与营养损失更小,能耗更低,进而碳排放水平较低。然而,很少有研究试图评估增加全谷物摄入量所带来的经济和社会效益。本文估计了按照中国居民膳食指南(CDG)推荐的方式增加全谷物摄入量可能节约的医疗成本和减少的食物碳排放量。如果一定比例(从5%100%)的中国成年人(大于20岁)平均全谷物摄入量从19.8g/d增加至中国居民膳食指南推荐摄入量下线标准50g/d,根据估计,相关疾病包括二型糖尿病(T2DM)、心血管疾病(CVD)和结肠直肠癌(CRC)的医疗成本将大幅降低,下降幅度为28.2亿美元至563.7亿美元,碳排放预计也将减少24万吨至572万吨。本研究结果表明增加全谷物摄入量可以为居民健康、环境和社会带来显著的益处。



Abstract  
Excessive consumption of refined grains harms human health and ecosystem viability.  Whole grains, as a healthy and sustainable alternative to refined grains, can benefit individual health by providing dietary fiber, B vitamins, and bioactive substances.  Additionally, they aid in improving the environment due to their higher extraction rate and lower carbon emission during the processing stage.  However, few studies have attempted to evaluate the economic and social benefits of increasing the amount of whole grain in grain intake.  This paper estimates the potential savings in healthcare costs and reduced food carbon footprints (CFs) that could result from a shift toward whole grain consumption following the Chinese Dietary Guidelines (CDG).  We investigate hypothetical scenarios where a certain proportion (5–100%) of Chinese adults could increase their whole grain intakes as proposed by CDG to meet the average shortfall of 30.2 g.  In that case, the healthcare costs for associated diseases (e.g., type 2 diabetes mellitus (T2DM), cardiovascular disease (CVD), and colorectal cancer (CRC)) are expected to reduce by a substantial amount, from USD 2.82 to 56.37 billion; the carbon emission levels are also projected to decrease by 0.24–5.72 million tons.  This study provides compelling evidence that advocating for the transition towards greater consumption of whole grain products could benefit individual health, the environment, and society, by reducing both healthcare costs and carbon emissions.  
Keywords:  whole grains       cost analysis        public health        life cycle assessment (LCA)        carbon footprint  
Received: 21 February 2023   Accepted: 13 November 2023
Fund: 
This work was supported by the National Natural Science Foundation of China (72203214 and 72061147002), and China Scholarship Council (CSC) (201913043).
About author:  Xin Zhang, E-mail: zhangxin9407@163.com; #Correspondence Jingjing Wang, Tel: +86-10-62737177, E-mail: jwang010@cau.edu.cn

Cite this article: 

Xin Zhang, Jingjing Wang, Fuli Tan, Haixiu Gao, Shenggen Fan. 2024. The potential impact of increased whole grain consumption among Chinese adults on reducing healthcare costs and carbon footprint. Journal of Integrative Agriculture, 23(8): 2842-2852.

Abdullah M M H, Hughes J, Grafenauer S. 2021. Healthcare cost savings associated with increased whole grain consumption among Australian adults. Nutrients13, 1855.

AGFEP (Academy of Global Food Economics and Policy, Chnia Agricultural University), CARD (China Academy of Rural Development, Zhejiang University), CIFAE (Center for International Food and Agricultural Economics, Nanjing Agricultural University), IAED (Institute of Agricultural Economics and Development, Chinese Academy of Agricultural Sciences), IFPRI (International Food Policy Research Institute). 2022. Reforming agricultural support policy for transforming agrifood systems. pp.17–18. [2023-2-10]. http://agfep.cau.edu.cn/art/2022/5/24/art_39031_861011.html

BSI (British Standards Institution). 2008. Specification for the assessment of the life cycle greenhouse gas emissions of goods and services. [2023-2-10]. https://shop.bsigroup.com/upload/shop/download/pas/pas2050.pdf

Chaudhary A, Marinangeli C P F, Tremorin D, Mathys A. 2018. Nutritional combined greenhouse gas life cycle analysis for incorporating Canadian yellow pea into cereal-based food products. Nutrients10, 49.

Cheng K, Yan M, Nayak D, Pan G X, Smith P, Zheng J F, Zheng J W. 2015. Carbon footprint of crop production in China: An analysis of national statistics data. The Journal of Agricultural Science153, 422–431.

CNS (Chinese Nutrition Society). 2021. Report on science research on dietary guidelines for Chinese residents. Nutrition Journal43, 18. (in Chinese)

CNS (Chinese Nutrition Society). 2022. Chinese Dietary Guidelines. People Health Publishing Company, Beijing, China. p. 85. (in Chinese)

Doran-Browne N A, Eckard R J, Behrendt R, Kingwell R S. 2015. Nutrient density as a metric for comparing greenhouse gas emissions from food production. Climatic Change129, 73–87.

Espinoza-Orias N, Stichnothe H, Azapagic A. 2011. The carbon footprint of bread. The International Journal of Life Cycle Assessment16, 351–365.

Fang Y, Xia J, Lian Y, Zhang M, Kang Y, Zhao Z, Wang L, Yin P, Wang Z, Ye C, Zhou M, He Y. 2023. The burden of cardiovascular disease attributable to dietary risk factors in the provinces of China, 2002–2018: A nationwide population-based study. The Lancet Regional Health (Western Pacific), 37, 100784.

Fu Z B, Wang J, Yu H M, Hu X B, Wang N B, Shao Q Y. 2014. Comparative analysis of economic benefits of moderate and excessive rice processing. Grain Processing39, 25–27. (in Chinese)

Fulgoni V L, Keast D R, Drewnowski A. 2009. Development and validation of the nutrient-rich foods index: A tool to measure nutritional quality of foods. The Journal of Nutrition139, 1549–1554.

GBD 2017 Diet Collaborators. 2019. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the global burden of disease study 2017. Lancet393, 1958–1972.

GBD 2019 Cancer Collaboration. 2022. Cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life years for 29 cancer groups from 2010 to 2019: A systematic analysis for the global burden of disease study 2019. JAMA Oncology8, 420–444.

Ghanbari-Gohari F, Mousavi S M, Esmaillzadeh A. 2022. Consumption of whole grains and risk of type 2 diabetes: A comprehensive systematic review and dose-response meta-analysis of prospective cohort studies. Food Science & Nutrition10, 1950–1960.

Hansen R G, Wyse B W, Sorenson A W. 1979. Nutrition Quality Index of Food. AVI Publishing Co., Westport, USA.

Heller M C, Keoleian G A, Willett W C. 2013. Toward a life cycle-based, diet-level framework for food environmental impact and nutritional quality assessment: A critical review. Environmental Science & Technology47, 12632–12647.

ISO 14040. 2006. Environmental management - Life cycle assessment - Principles and framework. International Organization for Standardization, Geneva, Switzerland.

Kramer G F H, Martinez E V, Espinoza-Orias N D, Cooper K A, Tyszler M, Blonk H. 2018. Comparing the performance of bread and breakfast cereals, dairy, and meat in nutritionally balanced and sustainable diets. Frontiers in Nutrition5, 51.

Lian Y Y, Fang Y H, He Y N, Yin P, Zhao Z P, Fang K H. 2023. Risk for type 2 diabetes mellitus death attributed to insufficient whole grain intake in seven regions of China, 2005–2018. Chinese Journal of Epidemiology44, 415–421. (in Chinese)

Liu J, Liu M, Chai Z, Li C, Wang Y, Shen M, Zhuang G, Zhang L. 2023. Projected rapid growth in diabetes disease burden and economic burden in China: A spatio-temporal study from 2020 to 2030. The Lancet Regional Health (Western Pacific), 33, 100700.

Liu Y, Zhang Y L, Dou B X, Wang Z Y, Zhang Z, Zhang N. 2022. Recent progress in understanding the role and molecular mechanism of whole grains in disease regulation. Food Science, (9), 317–325. (in Chinese)

Martikainen J, Jalkanen K, Heiskanen J, Lavikainen P, Peltonen M, Laatikainen T, Lindström J. 2021. Type 2 diabetes-related health economic impact associated with increased whole grains consumption among adults in Finland. Nutrients13, 3583.

McAuliffe G A, Takahashi T, Lee M R F. 2020. Applications of nutritional functional units in commodity-level life cycle assessment (LCA) of agri-food systems. The International Journal of Life Cycle Assessment25, 208–221.

Micha R, Khatibzadeh S, Shi P, Peilin S, Kathryn G A, Rebecca E E, Dariush M. 2015. Global, regional and national consumption of major food groups in 1990 and 2010: A systematic analysis including 266 country-specific nutrition surveys worldwide. BMJ Open5, e008705.

Milani P, Torres-Aguilar P, Hamaker B, Manary M, Abushamma S, Laar A, Steiner R, Ehsani M, de La Parra J, Skaven-Ruben D, de Kock H, Hawkes C, Covic N, Mitchell C, Taylor J. 2022. The whole grain manifesto: From green revolution to grain evolution. Global Food Security34, 100649.

Miller K B, Grafenauer S J, Martikainen J. 2022. Nutrition economics: Four analyses supporting the case for whole grain consumption. Journal of Cereal Science105, 103455.

Murphy M M, Schmier J K. 2020. Cardiovascular healthcare cost savings associated with increased whole grains consumption among adults in the United States. Nutrients12, 2323.

Reynolds A, Mann J, Cummings J, Winter N, Mete E, Te Morenga L. 2019. Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. Lancet393, 434–445.

Roy P, Ijiri T, Nei D, Orikasa T, Okadome H, Nakamura N, Shiina T. 2009. Life cycle inventory (LCI) of different forms of rice consumed in households in Japan. Journal of Food Engineering91, 49–55.

Sousa R D, Gouveia M, Nunes da Silva C, Rodrigues A M, Cardoso G, Antunes A F, Canhao H, de Almeida J M C. 2022. Treatment-resistant depression and major depression with suicide risk - The cost of illness and burden of disease. Frontiers in Public Health10, 898491.

Stylianou K S, Heller M C, Fulgoni V L, Ernstoff A S, Keoleian G A, Jolliet O. 2016. A life cycle assessment framework combining nutritional and environmental health impacts of diet: A case study on milk. The International Journal of Life Cycle Assessment21, 734–746.

Swaminathan S, Dehghan M, Raj J M, Thomas T, Rangarajan S, Jenkins D, Mony P, Mohan V, Lear S A, Avezum A, Lopez-Jaramillo P, Rosengren A, Lanas F, AlHabib K F, Dans A, Keskinler M V, Puoane T, Soman B, Wei L, Zatonska K, et al. 2021. Associations of cereal grains intake with cardiovascular disease and mortality across 21 countries in Prospective Urban and Rural Epidemiology study: Prospective cohort study. BMJ372, m4948.

Tan B, Qiao C C. 2019. The dilemma, opportunities and development thinking of China’s whole grain food industry. Biological Industry Technology, (6), 64–74. (in Chinese)

Tan B, Zhai X T, Wu N N, Wang L P, Zhang D Q, Liu M, Tian X H, Gao K, Liu Y X, Qiao C C, Ma Z Q, Liu J F, Wang M Y, Wan X Y, Zhang N, Li X Y. 2021. Whole Grains Nutrition, Health Benefits and Processing. Science Publishing Co., Beijing, China. (in Chinese)

Wang J J, Gao H X, Zhang X, Fan S G. 2023. An economic analysis of whole grain industry development in the context of agri-food system transformation. Issues in Agricultural Economy, (4), 92–104. (in Chinese)

Wang R. 2022. The basic situation of China’s grain and oil processing industry in 2020. Grain Processing47, 1–9. (in Chinese)

Willett W, Rockström J, Loken B, Springmann M, Lang T, Vermeulen S, Garnett T, Tilman D, DeClerck F, Wood A, Jonell M, Clark M, Gordon L J, Fanzo J, Hawkes C, Zurayk R, Rivera J A, de Vries W, Majele Sibanda L, Afshin A, et al. 2019. Food in the Anthropocene: The EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet393, 447–492.

Xu X, Lan Y. 2016. A comparative study on carbon footprints between plant- and animal-based foods in China. Journal of Cleaner Production112, 2581–2592.

Xu X, Lan Y. 2017. Spatial and temporal patterns of carbon footprints of grain crops in China. Journal of Cleaner Production146, 218–227.

Xu Z, Fu Z, Zhai Z, Yang X, Meng F, Feng X, Zhong J, Dai Y, Xu W, Cheng J H, Zhang Z. 2020. Comparative evaluation of carbon footprints between rice and potato food considering the characteristic of Chinese diet. Journal of Cleaner Production257, 120463.

Xu Z, Xu W, Peng Z, Yang Q, Zhang Z. 2018. Effects of different functional units on carbon footprint values of different carbohydrate-rich foods in China. Journal of Cleaner Production198, 907–916.

Yang J, Du H, Guo Y, Bian Z, Yu C, Chen Y, Yang L, Liu J, Han X, Chen J, Lv J, Li L,Chen Z. 2022. Coarse grain consumption and risk of cardiometabolic diseases: A prospective cohort study of Chinese adults. The Journal of Nutrition152, 1476–1486.

Yang Y, Han Z, Li X, Huang A, Shi J, Gu J. 2020. Epidemiology and risk factors of colorectal cancer in China. Chinese Journal of Cancer Research32, 729–741.

Yu D, Zhao L, Zhao W. 2020. Status and trends in consumption of grains and dietary fiber among Chinese adults (1982–2015). Nutrition Reviews78, 43–53.

Zhang D, Shen J, Zhang F, Li Y, Zhang W. 2017. Carbon footprint of grain production in China. Scientific Reports7, 4126.

Zhang L, Ruiz-Menjivar J, Tong Q, Zhang J, Yue M. 2021. Examining the carbon footprint of rice production and consumption in Hubei, China: A life cycle assessment and uncertainty analysis approach. Journal of Environmental Management300, 113698.

Zhou M, Wang H, Zeng X, Yin P, Zhu J, Chen W, Li X, Wang L, Wang L, Liu Y, Liu J, Zhang M, Qi J, Yu S, Afshin A, Gakidou E, Glenn S, Krish V S, Miller-Petrie M K, Mountjoy-Venning W C, et al. 2019. Mortality, morbidity, and risk factors in China and its provinces, 1990–2017: A systematic analysis for the global burden of disease study 2017. Lancet394, 1145–1158.

[1] GAO Song-juan, LI Shun, ZHOU Guo-peng, CAO Wei-dong. The potential of green manure to increase soil carbon sequestration and reduce the yield-scaled carbon footprint of rice production in southern China[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2233-2247.
[2] NIU Kunyu, GUO Hui, LIU Jing. Can food security and low carbon be achieved simultaneously? —An empirical analysis of the mechanisms influencing the carbon footprint of potato and corn cultivation in irrigation areas[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1230-1243.
No Suggested Reading articles found!