Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (1): 228-238    DOI: 10.1016/j.jia.2023.05.021
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Establishment of an indirect immunofluorescence assay for the detection of African swine fever virus antibodies

Wan Wang1*, Zhenjiang Zhang1, 2*, Weldu Tesfagaber1, Jiwen Zhang1, Fang Li1, Encheng Sun1, Lijie Tang2, Zhigao Bu1, Yuanmao Zhu1#, Dongming Zhao1# #br#

1 State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China

2 College of Veterinary Medicine, Northeast Agricultural University, Harbin 150069, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

非洲猪瘟(African Swine FeverASF)给我国养猪业造成巨大的经济损失。由于没有安全有效的疫苗,所以快速准确的诊断ASF有效防控至关重要。间接免疫荧光法(Indirect Immunofluorescence AssayIFA)是世界动物卫生组织(World Organization for Animal HealthWOAH)推荐的一种ASF血清学检测金标准方法。

在本研究中,我们制备了野猪肾细胞(BK2258),该细胞能够支持非洲猪瘟病毒(African Swine Fever VirusASFVSD/DY-I/21高效复制,并表现出明显的细胞病变效应。利用BK2258建立了一种用于ASFV抗体检测的IFA方法。我们使用接种低毒力基因ISD/DY-I/21、基因IIHLJ/HRB1/20和候选疫苗HLJ/18-7GD株免疫猪只的血清样品,同时也使用现地血清样品和阴性血清样品对该方法的特性进行了评估。利用IFA检测ASFV阳性血清,显示出明亮且特异的绿色荧光灶没有因细胞衰老或其他细胞损伤因素引起的非特异性绿色荧光。与商业化的间接酶联免疫吸附方法indirect Enzyme-Linked Immunosorbent AssayiELISA)相比,检测病毒不同感染时间的血清发现,IFA可提前1-4天检测到ASFV抗体。IFAiELISA对同一份ASFV抗体阳性血清样本的检出限分别为1:256001:6400,表明IFAiELISA更敏感。新建立的IFA检测方法具有高度特异性,与其他6种重要猪病原体,包括经典猪瘟病毒(Classical Swine Fever Virus,CSFV)猪繁殖与呼吸综合征病毒(Porcine Reproductive and Respiratory Syndrome Virus,PRRSV)猪圆环病毒2型(Porcme Circovirus Type 2,PCV2)伪狂犬病病毒(Pseudorabies VirusPRV口蹄疫病毒O(Foot-and-Mouth Disease Virus Type O,FMDV/O)猪流行性腹泻病毒(Porcine Epidemic Diarrhea Virus,PEDV)的阳性血清无交叉反应。该研究提供了一种灵敏、特异且可靠的ASF血清学检测的金标准方法。



Abstract  

African swine fever (ASF) continues to cause enormous economic loss to the global pig industry.  Since there is no safe and effective vaccine, accurate and timely diagnosis of ASF is essential to implement control measures.  Indirect immunofluorescence assay (IFA) is a gold standard serological method recommended by the World Organization for Animal Health (WOAH).  In this study, we used primary fetal kidney cells to establish a wild boar cell line (BK2258) that supported the efficient replication of ASF virus (ASFV) SD/DY-I/21 and showed visible cytopathic effect (CPE).  Moreover, using BK2258, we established a sensitive and specific IFA for ASFV antibody detection.  To standardize and evaluate the performance of this assay, we used serum samples from pigs infected with the low virulent genotype I SD/DY-I/21 and genotype II HLJ/HRB1/20, and immunized with the vaccine candidate HLJ/18-7GD, field samples, and negative serum samples.  The IFA reacted with the ASFV-positive sera and displayed bright fluorescence foci.  There was no non-specific green fluorescence due to cellular senescence or other cell damage-causing factors.  Compared to a commercial indirect enzyme-linked immunosorbent assay (iELISA), ASFV antibodies were detected 1–4 days earlier using our IFA.  The detection limits of the IFA and iELISA for the same ASFV-antibody positive serum samples were 1:25,600 and 1:6,400, respectively, indicating that the IFA is more sensitive than iELISA.  The newly established IFA was highly specific and did not cross-react with sera positive for six other important porcine pathogens (i.e., Classical swine fever virus (CSFV), Porcine reproductive and respiratory syndrome virus (PRRSV), Porcme circovirus type 2 (PCV2), Pseudorabies virus (PRV), Foot-and-Mouth disease virus type O (FMDV/O), and Porcine epidemic diarrhea virus (PEDV)).  This study thus provides a sensitive, specific, and reliable detection method that is suitable for the serological diagnosis of ASF.

Keywords:  African swine fever        antibody        IFA        serological method

  
Received: 15 March 2023   Accepted: 19 April 2023
Fund: 

This work was supported by the National Key R&D Program of China (2019YFE0107300 and 2021YFD1800101), the Applied Technology Research and Development Project of Heilongjiang Province, China (GA19B301), and the Central Public-interest Scientific Institution Basal Research Fund, China (1610302022003).

About author:  Wan Wang, E-mail: 82101205510@caas.cn; Zhenjiang Zhang, E-mail: 82101199503@caas.cn; #Correspondence Dongming Zhao, E-mail: zhaodongming@caas.cn; Yuanmao Zhu, E-mail: zhuyuanmao@caas.cn * These authors contributed equally to this study.

Cite this article: 

Wan Wang, Zhenjiang Zhang, Weldu Tesfagaber, Jiwen Zhang, Fang Li, Encheng Sun, Lijie Tang, Zhigao Bu, Yuanmao Zhu, Dongming Zhao. 2024. Establishment of an indirect immunofluorescence assay for the detection of African swine fever virus antibodies. Journal of Integrative Agriculture, 23(1): 228-238.

Bastos A D, Penrith M L, Cruciere C, Edrich J, Hutchings G, Roger F, Couacy-Hymann E, Thomson G R. 2003. Genotyping field strains of African swine fever virus by partial p72 gene characterisation. Archives of Virology, 148, 693–706.

Beltrán-Alcrudo D, Arias M, Gallardo C, Kramer S, Penrith M. 2017. African swine fever: Detection and diagnosis – a manual for veterinarians. FAO Animal Production and Health Manual, 19, 88–89.

Bergeron H, Glas P, Schumann K. 2017. Diagnostic specificity of the African swine fever virus antibody detection enzyme-linked immunosorbent assay in feral and domestic pigs in the United States. Transboundary and Emerging Diseases, 64, 1665–1668.

Chapman D A, Darby A C, Da Silva M, Upton C, Radford A D, Dixon L K. 2011. Genomic analysis of highly virulent Georgia 2007/1 isolate of African swine fever virus. Emerging Infectious Diseases, 17, 599–605.

Chen W, Zhao D, He X, Liu R, Wang Z, Zhang X, Li F, Shan D, Chen H, Zhang J. 2020. A seven-gene-deleted African swine fever virus is safe and effective as a live attenuated vaccine in pigs. Science China Life Sciences, 63, 623–634.

Costard S, Wieland B, De Glanville W, Jori F, Rowlands R, Vosloo W, Roger F, Pfeiffer D U, Dixon L K. 2009. African swine fever: How can global spread be prevented? Philosophical Transactions of the Royal Society (B: Biological Sciences), 364, 2683–2696.

Cubillos C, Gómez-Sebastian S, Moreno N, Nuñez M C, Mulumba-Mfumu L K, Quembo C J, Heath L, Etter E M, Jori F, Escribano J M. 2013. African swine fever virus serodiagnosis: A general review with a focus on the analyses of African serum samples. Virus Research, 173, 159–167.

Ding L, Ren T, Huang L, Tesfagaber W, Zhu Y, Li F, Sun E, Bu Z, Zhao D. 2023. Developing a duplex ARMS-qPCR method to differentiate genotypes I and II African swine fever viruses based on their B646L genes. Journal of Integrative Agriculture, 22, 1603–1607.

Gallardo C, Fernández-Pinero J, Arias M. 2019. African swine fever (ASF) diagnosis, an essential tool in the epidemiological investigation. Virus Research, 271, 197676.

Gallardo C, Nieto R, Soler A, Pelayo V, Fernández-Pinero J, Markowska-Daniel I, Pridotkas G, Nurmoja I, Granta RSimón A. 2015. Assessment of African swine fever diagnostic techniques as a response to the epidemic outbreaks in eastern european union countries: How to improve surveillance and control programs. Journal of Clinical Microbiology, 53, 2555–2565.

Ge S, Li J, Fan X, Liu F, Li L, Wang Q, Ren W, Bao J, Liu C, Wang H. 2018. Molecular characterization of African swine fever virus, China, 2018. Emerging Infectious Diseases, 24, 2131–2133.

Hurtado C, Bustos M J, Carrascosa A L. 2010. The use of COS-1 cells for studies of field and laboratory African swine fever virus samples. Journal of Virological Methods, 164, 131–134.

King D P, Reid S M, Hutchings G H, Grierson S S, Wilkinson P J, Dixon L K, Bastos A D, Drew T W. 2003. Development of a TaqMan® PCR assay with internal amplification control for the detection of African swine fever virus. Journal of Virological Methods, 107, 53–61.

Kleiboeker S B, Burrage T G, Scoles G A, Fish D, Rock D L. 1998. African swine fever virus infection in the argasid host, Ornithodoros porcinus porcinus. Journal of Virology, 72, 1711–1724.

de León P, Bustos M J, Carrascosa A L. 2013. Laboratory methods to study African swine fever virus. Virus Research, 173, 168–179.

Malogolovkin A, Burmakina G, Titov I, Sereda A, Gogin A, Baryshnikova E, Kolbasov D. 2015. Comparative analysis of African swine fever virus genotypes and serogroups. Emerging Infectious Diseases, 21, 312–315.

Masujin K, Kitamura T, Kameyama K I, Okadera K, Nishi T, Takenouchi T, Kitani H, Kokuho T. 2021. An immortalized porcine macrophage cell line competent for the isolation of African swine fever virus. Scientific Reports, 11, 4759–4769.

Oura C, Edwards L, Batten C. 2013. Virological diagnosis of African swine fever - comparative study of available tests. Virus Research, 173, 150–158.

Pastor M, Laviada M, Sanchez-Vizcaino J, Escribano J. 1989. Detection of African swine fever virus antibodies by immunoblotting assay. Canadian Journal of Veterinary Research, 53, 105–107.

Penrith M L, Vosloo W. 2009. Review of African swine fever: Transmission, spread and control. Journal of the South African Veterinary Association, 80, 58–62.

Portugal R, Goatley L C, Husmann R, Zuckermann F A, Dixon L K. 2020. A porcine macrophage cell line that supports high levels of replication of OURT88/3, an attenuated strain of African swine fever virus. Emerging Microbes & Infections, 9, 1245–1253.

Reis A L, Parkhouse R, Penedos A R, Martins C, Leitao A. 2007. Systematic analysis of longitudinal serological responses of pigs infected experimentally with African swine fever virus. Journal of General Virology, 88, 2426–2434.

Sánchez-Vizcaíno J, Mur L, Gomez-Villamandos J, Carrasco L. 2015. An update on the epidemiology and pathology of African swine fever. Journal of Comparative Pathology, 152, 9–21.

Sanchez-Vizcaino J M. 1987. African swine fever diagnosis. African Swine Fever, 7, 63–71.

Sun E, Huang L, Zhang X, Zhang J, Shen D, Zhang Z, Wang Z, Huo H, Wang W, Huangfu H. 2021a. Genotype I African swine fever viruses emerged in domestic pigs in China and caused chronic infection. Emerging Microbes & Infections, 10, 2183–2193.

Sun E, Zhang Z, Wang Z, He X, Zhang X, Wang L, Wang W, Huang L, Xi F, Huangfu H. 2021b. Emergence and prevalence of naturally occurring lower virulent African swine fever viruses in domestic pigs in China in 2020. Science China Life Sciences, 64, 752–765.

Tesfagaber W, Wang L, Tsegay G, Hagoss Y T, Zhang Z, Zhang J, Huangfu H, Xi F, Li F, Sun E. 2021. Characterization of anti-p54 monoclonal antibodies and their potential use for African swine fever virus diagnosis. Pathogens, 10, 178–191.

Tsegay G, Tesfagaber W, Zhu Y, He X, Wang W, Zhang Z, Sun E, Zhang J, Guan Y, Li F. 2022. Novel P22-monoclonal antibody based blocking ELISA for the detection of African swine fever virus antibodies in serum. Biosafety and Health, 4, 234–243.

Viñuela E. 1985. African swine fever virus. Iridoviridae, 116, 151–170.

WOAH (World Organization for Animal Health). 2019. Chapter 3.8.1. African swine fever (infection with African swine fever virus). In: OIE terrestrial manual. [2022-12-26]. http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/3.08.01_ASF.pdf

Zhao D, Liu R, Zhang X, Li F, Wang J, Zhang J, Liu X, Wang L, Zhang J, Wu X. 2019. Replication and virulence in pigs of the first African swine fever virus isolated in China. Emerging Microbes & Infections, 8, 438–447.

No related articles found!
No Suggested Reading articles found!