Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (11): 3444-3457    DOI: 10.1016/j.jia.2023.04.005
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
FgGyp8 as a putative FgRab1 GAP is required for growth and pathogenesis by regulating FgSnc1-mediated secretory vesicles fusion in Fusarium graminearum

ZHANG Xing-zhi1, 2, CHEN Shuang2, Yakubu Saddeeq ABUBAKAR2, 3, MAO Xu-zhao1, 2, MIAO Peng-fei2, WANG Zong-hua1, 2, ZHOU Jie2#, ZHENG Hua-wei1#

1 Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity/Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Minjiang University, Fuzhou 350108, P.R.China
2 Fujian University Key Laboratory for Plant-Microbe Interaction, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R.China
3 Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria 810211, Nigeria
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

禾谷镰刀菌是一种重要的植物病原真菌,可引起小麦、大麦等多种禾谷类农作物致病及减产。模式真菌酿酒酵母中Gyp8蛋白能水解GTP激活态的Ypt1Rab1)然而,在植物病原真菌中Gyp8同源蛋白的功能仍然未知本研究从遗传学和病理学的角度对禾谷镰刀菌中Gyp8同源蛋白FgGyp8的功能进行研究。通过基因敲除和表型分析,我们发现FgGyp8是禾谷镰刀菌营养菌丝生长所必需。突变体ΔFggyp8分生孢子产量、大小隔膜数与野生型PH-1相比显著下降进一步发现FgGyp8禾谷镰刀菌小麦胚及麦穗的致病性起重要作用FgGyp8包含一个保守TBC(Tre2-Bub2-Cdc16)结构域结构域缺失结果表明,FgGyp8TBC结构域、C端和N末端对其生物学功能均有重要调控作用体外水解酶活性实验结果显示FgGyp8是FgRab1的GTP酶激活蛋白(GAP,GTPase-activating protein)。此外,FgGyp8对FgSnc1蛋白介导的分泌囊泡与质膜的融合过程是必需的。最后,我们发现FgGyp8禾谷镰刀菌FgRab1的另一个GAP FgGyp1存在功能冗余。综上所述,本研究表明FgGyp8作为FgRab1GAP禾谷镰刀菌营养菌丝生长分生孢子形态建成、致病性所必需的。



Abstract  

Fusarium graminearum is an important plant pathogenic fungus that causes disease and yield reduction in many cereal crops, such as wheat and barley.  Gyp8 stimulates GTP hydrolysis on Ypt1 in yeast.  However, the functions of Gyp8 in plant pathogenic fungi are still unknown.  In this study, we investigated the roles of FgGyp8 in Fgraminearum by genetic and pathological analyses.  Through gene knockout and phenotypic analyses, we found that FgGyp8 is required for vegetative growth in Fgraminearum.  The conidiation, conidial size and number of septa per conidium of ΔFggyp8 mutant are significantly reduced when compared to the wild type PH-1.  Furthermore, FgGyp8 is crucial for pathogenicity on wheat coleoptiles and wheat heads.  FgGyp8 contains a conserved TBC domain.  Domain deletion analysis showed that the TBC domain, C- and N-terminal regions of FgGyp8 are all important for its biological functions in Fgraminearum.  Moreover, we showed that FgGyp8 catalyzes the hydrolysis of the GTP on FgRab1 to GDP in vitro, indicating that FgGyp8 is a GTPase-activating protein (GAP) for FgRab1.  In addition, we demonstrated that FgGyp8 is required for FgSnc1-mediated fusion of secretory vesicles with the plasma membrane in Fgraminearum.  Finally, we showed that FgGyp8 has functional redundancy with another FgRab1 GAP, FgGyp1, in Fgraminearum.  Taken together, we conclude that FgGyp8 is required for vegetative growth, conidiogenesis, pathogenicity and acts as a GAP for FgRab1 in Fgraminearum.

Keywords:  Fusarium graminearum        FgGyp8        GTPase-activating protein        FgRab1        conidiogenesis        pathogenicity  
Received: 02 November 2022   Accepted: 19 February 2023
Fund: This research was funded by the National Natural Science Foundation of China (31970141), the Natural Science Foundation of Fujian Province, China (2020J06047), the Foundation of Minjiang University, China (MJY19019), and the Foundation of Fujian Agriculture and Forestry University, China (KFb22050XA).
About author:  ZHANG Xing-zhi, E-mail: 731563976@qq.com; #Correspondence ZHENG Hua-wei, E-mail: zhw@mju.edu.cn; ZHOU Jie, E-mail: jiezhou@fafu.edu.cn

Cite this article: 

ZHANG Xing-zhi, CHEN Shuang, Yakubu Saddeeq ABUBAKAR, MAO Xu-zhao, MIAO Peng-fei, WANG Zong-hua, ZHOU Jie, ZHENG Hua-wei. 2023. FgGyp8 as a putative FgRab1 GAP is required for growth and pathogenesis by regulating FgSnc1-mediated secretory vesicles fusion in Fusarium graminearum. Journal of Integrative Agriculture, 22(11): 3444-3457.

Abubakar Y S, Qiu H, Fang W, Zheng H, Lu G, Zhou J, Wang Z, Zheng W. 2021. FgRab5 and FgRab7 are essential for endosomes biogenesis and non-redundantly recruit the retromer complex to the endosomes in Fusarium graminearumStress Biology1, 17.

Adnan M, Fang W, Sun P, Zheng Y, Abubakar Y S, Zhang J, Lou Y, Zheng W, Lu G D. 2020. R-SNARE FgSec22 is essential for growth, pathogenicity and DON production of Fusarium graminearumCurrent Genetics66, 421–435.

Albert S, Gallwitz D. 1999. Two new members of a family of Ypt/Rab GTPase activating proteins: Promiscuity of substrate recognition. Journal of Biological Chemistry274, 33186–33189.

De Antoni A, Schmitzová J, Trepte H H, Gallwitz D, Albert S. 2002. Significance of GTP hydrolysis in Ypt1p-regulated endoplasmic reticulum to Golgi transport revealed by the analysis of two novel Ypt1-GAPs. Journal of Biological Chemistry277, 41023–41031.

Bi E, Chiavetta J B, Chen H, Chen G C, Chan C S, Pringle J R. 2000. Identification of novel, evolutionarily conserved Cdc42p-interacting proteins and of redundant pathways linking Cdc24p and Cdc42p to actin polarization in yeast. Molecular Biology of the Cell11, 773–793.

Bielska E, Higuchi Y, Schuster M, Steinberg N, Kilaru S, Talbot N J, Steinberg G. 2014. Long-distance endosome trafficking drives fungal effector production during plant infection. Nature Communications5, 5097.

Brett C L, Plemel R L, Lobingier B T, Vignali M, Fields S, Merz A J. 2008. Efficient termination of vacuolar Rab GTPase signaling requires coordinated action by a GAP and a protein kinase. Journal of Cell Biology182, 1141–1151.

Bushnell W, Hazen B, Pritsch C, Leonard K 2003. Histology and physiology of fusarium head blight. In: Leonard K J, Bushnell W R, eds., Fusarium Head Blight of Wheat and Barley. Amer Phytopathological Society Press, Paul, Minnesota, USA. pp. 44–83.

Callejas-Negrete O A, Castro-Longoria E. 2019. The role of GYP-3 in cellular morphogenesis of Neurospora crassa: Analyzing its relationship with the polarisome. Fungal Genetics and Biology128, 49–59.

Catlett N, Lee B N, Yoder O, Turgeon B G. 2003. Split-marker recombination for efficient targeted deletion of fungal genes. Fungal Genetics Newsletter50, 9–11.

Chang W L, Cui L, Gu Y, Li M, Ma Q, Zhang Z, Ye J, Zhang F, Yu J, Gui Y. 2019. TBC1D20 deficiency induces Sertoli cell apoptosis by triggering irreversible endoplasmic reticulum stress in mice. Molecular Human Reproduction25, 773–786.

Chen Y, Kistler H C, Ma Z. 2019. Fusarium graminearum trichothecene mycotoxins: biosynthesis, regulation, and management. Annual Review of Phytopathology57, 15–39.

Chesneau L, Dupre S, Burdina A, Roger J, Le Panse S, Jacquet M, Cuif M H. 2004. Gyp5p and Gyl1p are involved in the control of polarized exocytosis in budding yeast. Journal of Cell Science117, 4757–4767.

Cooper A A, Gitler A D, Cashikar A, Haynes C M, Hill K J, Bhullar B, Liu K, Xu K, Strathearn K E, Liu F, Cao S, Caldwell K A, Caldwell G A, Marsischky G, Kolodner R D, Labaer J, Rochet J C, Bonini N M, Lindquist S. 2006. Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science313, 324–328.

Cui L, Gu Y, Liu S, Li M, Ye J, Zhang F, Luo X, Chang W L, Gui Y. 2020. TBC1D20 is essential for mouse blood-testis barrier integrity through maintaining the epithelial phenotype and modulating the maturation of sertoli cells. Reproductive Sciences27, 1443–1454.

Cuomo C A, Gueldener U, Xu J R, Trail F, Turgeon B G, Di Pietro A, Walton J D, Ma L J, Baker S E, Rep M, Adam G, Antoniw J, Baldwin T, Calvo S, Chang Y L, DeCaprio D, Gale L R, Gnerre S, Goswami R S, Hammond-Kosack K, et al. 2007. The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science317, 1400–1402.

Dean R, Van Kan J A, Pretorius Z A, Hammond-Kosack K E, Di Pietro A, Spanu P D, Rudd J J, Dickman M, Kahmann R, Ellis J, Foster G D. 2012. The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology13, 414–430.

Du L L, Collins R N, Novick P J. 1998. Identification of a Sec4p GTPase-activating protein (GAP) as a novel member of a Rab GAP family. Journal of Biological Chemistry273, 3253–3256.

Francl L, Shaner G, Bergstrom G, Gilbert J, Pedersen W, Dill-Macky R, Sweets L, Corwin B, Jin Y, Gallenberg D. 1999. Daily inoculum levels of Gibberella zeae on wheat spikes. Plant Disease83, 662–666.

Fukuda M. 2011. TBC proteins: GAPs for mammalian small GTPase Rab? Bioscience Reports31, 159–168.

Gardiner D M, Rusu A, Barrett L, Hunter G C, Kazan K. 2020. Can natural gene drives be part of future fungal pathogen control strategies in plants? New Phytologist228, 1431–1439.

Gong C, Huang J, Sun D, Xu D, Guo Y, Kang J, Niu G, Wang C. 2021. FgSfl1 and its conserved pka phosphorylation sites are important for conidiation, sexual reproduction, and pathogenesis in Fusarium graminearumJournal of Fungi7, 755.

Haas A K, Yoshimura S, Stephens D J, Preisinger C, Fuchs E, Barr F A. 2007. Analysis of GTPase-activating proteins: Rab1 and Rab43 are key Rabs required to maintain a functional Golgi complex in human cells. Journal of Cell Science120, 2997–3010.

Hou Z M, Xue C Y, Peng Y L, Katan T, Kistler H C, Xu J R. 2002. A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. Molecular Plant–Microbe Interactions15, 1119–1127.

Hutagalung A H, Novick P J. 2011. Role of Rab GTPases in membrane traffic and cell physiology. Physiological Reviews91, 119–149.

Jia L J, Tang H Y, Wang W Q, Yuan T L, Wei W Q, Pang B, Gong X M, Wang S F, Li Y J, Zhang D, Liu W, Tang W H. 2019. A linear nonribosomal octapeptide from Fusarium graminearum facilitates cell-to-cell invasion of wheat. Nature Communications10, 922.

Jiang C, Hei R, Yang Y, Zhang S, Wang Q, Wang W, Zhang Q, Yan M, Zhu G, Huang P, Liu H, Xu J R. 2020. An orphan protein of Fusarium graminearum modulates host immunity by mediating proteasomal degradation of TaSnRK1α. Nature Communications11, 4382.

Jiang C, Zhang C, Wu C, Sun P, Hou R, Liu H, Wang C, Xu J R. 2016. TRI6 and TRI10 play different roles in the regulation of deoxynivalenol (DON) production by cAMP signalling in Fusarium graminearumEnvironmental Microbiology18, 3689–3701.

Lewis M J, Nichols B J, Prescianotto-Baschong C, Riezman H, Pelham H R. 2000. Specific retrieval of the exocytic SNARE Snc1p from early yeast endosomes. Molecular Biology of the Cell11, 23–38.

Li B, Liu L, Li Y, Dong X, Zhang H, Chen H, Zheng X, Zhang Z. 2017. The FgVps39-FgVam7-FgSso1 complex mediates vesicle trafficking and is important for the development and virulence of Fusarium graminearumMolecular Plant–Microbe Interactions30, 410–422.

Li G, Marlin M C. 2015. Rab family of GTPases. Methods in Molecular Biology (Clifton, N.J.), 1298, 1–15.

Li G, Segev N. 2012. Rab GTPases and Membrane Trafficking. Bentham Science Publishers, Sharjah, United Arab Emirates. pp. 3–17.

Li L, Zhu X M, Shi H B, Feng X X, Liu X H, Lin F C. 2019. MoFap7, a ribosome assembly factor, is required for fungal development and plant colonization of Magnaporthe oryzaeVirulence10, 1047–1063.

Li Y, Li B, Liu L, Chen H, Zhang H, Zheng X, Zhang Z. 2015. FgMon1, a guanine nucleotide exchange factor of FgRab7, is important for vacuole fusion, autophagy and plant infection in Fusarium graminearumScientific Reports5, 18101.

Liegel R P, Handley M T, Ronchetti A, Brown S, Langemeyer L, Linford A, Chang B, Morris-Rosendahl D J, Carpanini S, Posmyk R, Harthill V, Sheridan E, Abdel-Salam G M, Terhal P A, Faravelli F, Accorsi P, Giordano L, Pinelli L, Hartmann B, Ebert A D, et al. 2013. Loss-of-function mutations in TBC1D20 cause cataracts and male infertility in blind sterile mice and Warburg micro syndrome in humans. American Journal of Human Genetics93, 1001–1014.

Liu X H, Chen S M, Gao H M, Ning G A, Shi H B, Wang Y, Dong B, Qi Y Y, Zhang D M, Lu G D, Wang Z H, Zhou J, Lin F C. 2015. The small GTPase MoYpt7 is required for membrane fusion in autophagy and pathogenicity of Magnaporthe oryzaeEnvironmental Microbiology17, 4495–4510.

Ma T, Zhang L, Wang M, Li Y, Jian Y, Wu L, Kistler H C, Ma Z, Yin Y. 2021. Plant defense compound triggers mycotoxin synthesis by regulating H2B ub1 and H3K4 me2/3 deposition. New Phytologist232, 2106–2123.

Mizuno-Yamasaki E, Rivera-Molina F, Novick P. 2012. GTPase networks in membrane traffic. Annual Review of Biochemistry81, 637–659.

Nickerson D P, Quinn M, Lin A, Mora A, Vuong C, Connolly S, Delgado B. 2020. Targeting of the membrane-anchored Rab GAP (GTPase accelerating protein) Gyp8 to peroxisomes is regulated by the AAA ATPase Msp1. The FASEB Journal34, 1.

Proctor R H, Hohn T M, McCormick S P. 1995. Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Molecular Plant-Microbe Interactions8, 593–601.

Schmitt H D, Puzicha M, Gallwitz D. 1988. Study of a temperature-sensitive mutant of the ras-related YPT1 gene product in yeast suggests a role in the regulation of intracellular calcium. Cell53, 635–647.

Schmitt H D, Wagner P, Pfaff E, Gallwitz D. 1986. The ras-related YPT1 gene product in yeast: A GTP-binding protein that might be involved in microtubule organization. Cell47, 401–412.

Shi D Y, Ren W C, Wang J, Zhang J, Mbadianya J I, Mao X W, Chen C J. 2021. The transcription factor FgNsf1 regulates fungal development, virulence and stress responses in Fusarium graminearumJournal of Integrative Agriculture20, 2156–2169.

Sidjanin D J, Park A K, Ronchetti A, Martins J, Jackson W T. 2016. TBC1D20 mediates autophagy as a key regulator of autophagosome maturation. Autophagy12, 1759–1775.

Sklan E H, Serrano R L, Einav S, Pfeffer S R, Lambright D G, Glenn J S. 2007. TBC1D20 is a Rab1 GTPase-activating protein that mediates hepatitis C virus replication. Journal of Biological Chemistry282, 36354–36361.

Stenmark H. 2009. Rab GTPases as coordinators of vesicle traffic. Nature Reviews Molecular Cell Biology10, 513–525.

Sun M, Bian Z, Luan Q, Chen Y, Wang W, Dong Y, Chen L, Hao C, Xu J R, Liu H. 2021. Stage-specific regulation of purine metabolism during infectious growth and sexual reproduction in Fusarium graminearumNew Phytologist230, 757–773.

Will E, Gallwitz D. 2001. Biochemical characterization of Gyp6p, a Ypt/Rab-specific GTPase-activating protein from yeast. Journal of Biological Chemistry276, 12135–12139.

Wu C, Guo Z, Zhang M, Chen H, Peng M, Abubakar Y S, Zheng H, Yun Y, Zheng W, Wang Z, Zhou J. 2022. Golgi-localized calcium/manganese transporters FgGdt1 and FgPmr1 regulate fungal development and virulence by maintaining Ca2+ and Mn2+ homeostasis in Fusarium graminearumEnvironmental Microbiology24, 4623–4640.

Xie Q, Chen A, Zhang Y, Yuan M, Xie W, Zhang C, Zheng W, Wang Z, Li G, Zhou J. 2019. Component interaction of ESCRT complexes is essential for endocytosis-dependent growth, reproduction, DON production and full virulence in Fusarium graminearumFrontiers in Microbiology10, 180.

Yan H, Huang J, Zhang H, Shim W B. 2020. A Rab GTPase protein FvSec4 is necessary for fumonisin B1 biosynthesis and virulence in Fusarium verticillioidesCurrent Genetics66, 205–216.

Yang C, Li J, Chen X, Zhang X, Liao D, Yun Y, Zheng W, Abubakar Y S, Li G, Wang Z, Zhou J. 2020. FgVps9, a Rab5 GEF, is critical for DON biosynthesis and pathogenicity in Fusarium graminearumFrontiers in Microbiology11, 1714.

Yang C D, Dang X, Zheng H W, Chen X F, Lin X L, Zhang D M, Abubakar Y S, Chen X, Lu G, Wang Z, Li G, Zhou J. 2017. Two Rab5 homologs are essential for the development and pathogenicity of the rice blast fungus Magnaporthe oryzaeFrontiers in Plant Science8, 620.

Yin Y, Wang Z, Cheng D, Chen X, Chen Y, Ma Z. 2018. The ATP-binding protein FgArb1 is essential for penetration, infectious and normal growth of Fusarium graminearumNew Phytologist219, 1447–1466.

Yuan Y, Zhang M, Li J, Yang C, Abubakar Y S, Chen X, Zheng W, Wang Z, Zheng H, Zhou J. 2022. The small GTPase FgRab1 plays indispensable roles in the vegetative growth, vesicle fusion, autophagy and pathogenicity of Fusarium graminearumInternational Journal of Molecular Sciences23, 895.

Zhang H, Li B, Fang Q, Li Y, Zheng X, Zhang Z. 2016. SNARE protein FgVam7 controls growth, asexual and sexual development, and plant infection in Fusarium graminearumMolecular Plant Pathology17, 108–119.

Zhang L M, Chen S T, Min Q, Cao X Q, Liang N, Li Q, Tang W, Lu G D, Zhou J, Yu W Y, Wang Z H, Zheng H K. 2021. The putative elongator complex protein Elp3 is involved in asexual development and pathogenicity by regulating autophagy in the rice blast fungus. Journal of Integrative Agriculture20, 2944–2956.

Zhang Z Q, Qin G Z, Li B Q, Tian S P. 2014. Knocking out bcsas1 in Botrytis cinerea impacts growth, development, and secretion of extracellular proteins, which decreases virulence. Molecular Plant–Microbe Interactions27, 590–600.

Zheng H, Chen S, Chen X, Liu S, Dang X, Yang C, Giraldo M C, Oliveira-Garcia E, Zhou J, Wang Z, Valent B. 2016. The small GTPase MoSec4 is involved in vegetative development and pathogenicity by regulating the extracellular protein secretion in Magnaporthe oryzaeFrontiers in Plant Science7, 1458.

Zheng H, Li L, Miao P, Wu C, Chen X, Yuan M, Fang T, Norvienyeku J, Li G, Zheng W, Wang Z, Zhou J. 2018. FgSec2A, a guanine nucleotide exchange factor of FgRab8, is important for polarized growth, pathogenicity and deoxynivalenol production in Fusarium graminearumEnvironmental Microbiology20, 3378–3392.

Zheng H, Li L, Yu Z, Yuan Y, Zheng Q, Xie Q, Li G, Abubakar YS, Zhou J, Wang Z, Zheng W. 2021. FgSpa2 recruits FgMsb3, a Rab8 GAP, to the polarisome to regulate polarized trafficking, growth and pathogenicity in Fusarium graminearumNew Phytologist229, 1665–1683.

Zheng H, Zheng W, Wu C, Yang J, Xi Y, Xie Q, Zhao X, Deng X, Lu G, Li G, Ebbole D, Zhou J, Wang Z. 2015. Rab GTPases are essential for membrane trafficking-dependent growth and pathogenicity in Fusarium graminearumEnvironmental Microbiology17, 4580–4599.

Zheng Q, Yu Z, Yuan Y, Sun D, Abubakar Y S, Zhou J, Wang Z, Zheng H. 2021. The GTPase-activating protein FgGyp1 is important for vegetative growth, conidiation, and virulence and negatively regulates DON biosynthesis in Fusarium graminearumFrontiers in Microbiology12, 621519.

Zheng W, Lin Y, Fang W, Zhao X, Lou Y, Wang G, Zheng H, Liang Q, Abubakar Y S, Olsson S, Zhou J, Wang Z. 2018. The endosomal recycling of FgSnc1 by FgSnx41-FgSnx4 heterodimer is essential for polarized growth and pathogenicity in Fusarium graminearumNew Phytologist219, 654–671

[1] TANG Yang-yang, CUI Ying-ying, JIANG Yan-yan, SHAO Ming-zhu, ZANG Xin-xin, DANG Guang-hui, LIU Si-guo. Characteristics of Mycobacterium tuberculosis serine protease Rv1043c in enzymology and pathogenicity in mice[J]. >Journal of Integrative Agriculture, 2023, 22(12): 3755-3768.
[2] LIU Na, LIAN Sen, ZHOU Shan-yue, WANG Cai-xia, REN Wei-chao, LI Bao-hua. Involvement of the autophagy-related gene BdATG8 in development and pathogenicity in Botryosphaeria dothidea[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2319-2328.
[3] ZHANG Li-mei, CHEN Shu-ting, QI Min, CAO Xue-qi, LIANG Nan, LI Qian, TANG Wei, LU Guo-dong, ZHOU Jie, YU Wen-ying, WANG Zong-hua, ZHENG Hua-kun. The putative elongator complex protein Elp3 is involved in asexual development and pathogenicity by regulating autophagy in the rice blast fungus[J]. >Journal of Integrative Agriculture, 2021, 20(11): 2944-2956.
[4] GONG Xiao-dong, LIU Yu-wei, BI Huan-huan, YANG Xiao-rong, HAN Jian-min, DONG Jin-gao, GU Shou-qin. StKU80, a component in the NHEJ repair pathway, is involved in mycelial morphogenesis, conidiation, appressorium development, and oxidative stress reactions in Exserohilum turcicum[J]. >Journal of Integrative Agriculture, 2021, 20(1): 147-158.
[5] PAN Li-jun, LU Lin, LIU Yu-ping, WEN Sheng-xian, ZHANG Zeng-yan. The M43 domain-containing metalloprotease RcMEP1 in Rhizoctonia cerealis is a pathogenicity factor during the fungus infection to wheat[J]. >Journal of Integrative Agriculture, 2020, 19(8): 2044-2055.
[6] Lü Wu-yun, YANG Nan, XU Zhe, DAI Han, TANG Shuai, WANG Zheng-yi. FgHAT2 is involved in regulating vegetative growth, conidiation, DNA damage repair, DON production and virulence in Fusarium graminearum[J]. >Journal of Integrative Agriculture, 2020, 19(7): 1813-1824.
[7] Bongekile NGOBESE, Oliver Tendayi ZISHIRI, Mohamed Ezzat EL ZOWALATY. Molecular detection of virulence genes in Campylobacter species isolated from livestock production systems in South Africa[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1656-1670.
[8] CHEN Bin, TIAN Yan-li, ZHAO Yu-qiang, WANG Jia-nan, XU Zhi-gang, LI Xiang, HU Bai-shi. Bleeding canker of pears caused by Dickeya fangzhongdai: Symptoms, etiology and biology[J]. >Journal of Integrative Agriculture, 2020, 19(4): 889-897.
[9] SONG Su-qin, Lü Zhuo, WANG Jing, ZHU Jing, GU Mei-ying, TANG Qi-yong, ZHANG Zhi-dong, WANG Wei, ZHANG Li-juan, WANG Bo. First report of a new potato disease caused by Galactomyces candidum F12 in China[J]. >Journal of Integrative Agriculture, 2020, 19(10): 2470-2476.
[10] WU Kai-li, CHEN Wei-zhong, YANG Shuai, WEN Ya, ZHENG Yu-ru, Wilfred Mabeche Anjago, YUN Ying-zi, WANG Zong-hua.
Isolation and identification of Fusarium oxysporum f. sp. cubense in Fujian Province, China
[J]. >Journal of Integrative Agriculture, 2019, 18(8): 1905-1913.
[11] CHANG Ji-tao, YU De-bin, LIANG Jian-bin, CHEN Jia, WANG Jian-fa, WANG Fang, JIANG Zhi-gang, HE Xi-jun, WU Rui, YU Li. Mycoplasma leachii causes bovine mastitis: Evidence from clinical symptoms, histopathology and immunohistochemistry[J]. >Journal of Integrative Agriculture, 2019, 18(1): 160-168.
[12] JIA Xiao-hui, FU Jun-fan, WANG Wen-hui, CUI Jian-chao, DU Yan-min, ZHOU Ru-jun, SUN Pingping. First report of Athelia bombacina causing postharvest fruit rot on pear[J]. >Journal of Integrative Agriculture, 2018, 17(11): 2596-2599.
[13] WANG Li-min, ZHANG Yi-fan, DU Zhen-lin, Kang Rui-jiao, CHEN Lin-lin, XING Xiao-ping, YUAN Hong-xia, Ding Sheng-li, LI Hong-lian. FpPDE1 function of Fsarium pseudograminearum on pathogenesis in wheat[J]. >Journal of Integrative Agriculture, 2017, 16(11): 2504-2512.
[14] WEN Chu, ZHONG Qi, ZHANG Jia-dong, LU Jian-shan, ZHANG Li-xin, YUAN Xi-min, GAN Menghou, CAI Xue-peng, ZHANG Guo-zhong. Sequence and phylogenetic analysis of chicken reoviruses in China[J]. >Journal of Integrative Agriculture, 2016, 15(8): 1846-1855.
[15] HUANG Min, LIN Li, WU Yi-xin, Honhing Ho, HE Peng-fei, LI Guo-zhi, HE Peng-bo, XIONG Guo-ru, YUAN Yuan, HE Yue-qiu. Pathogenicity of Klebsiella pneumonia (KpC4) infecting maize and mice[J]. >Journal of Integrative Agriculture, 2016, 15(7): 1510-1520.
No Suggested Reading articles found!