Special Issue:
园艺-分子生物合辑Horticulture — Genetics · Breeding
|
|
|
Identification of soft rot resistance loci in Brassica rapa with SNP markers |
LIU Meng-yang*, WU Fang*, GE Yun-jia*, LU Yin, ZHANG Xiao-meng, WANG Yan-hua, WANG Yang, YAN Jing-hui, SHEN Shu-xing, ZHAO Jian-jun, MA Wei |
State Key Laboratory of North China Crop Improvement and Regulation, Ministry of Science and Technology/Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei/Collaborative Innovation Center of Vegetable Industry in Hebei/College of Horticulture, Hebei Agricultural University, Baoding 071000, P.R.China |
|
|
摘要
为了研究软腐病的抗性基因,我们筛选出了一份易感软腐病大白菜A03、一份抗软腐病小白菜华冠以及一份抗软腐病突变体sr。本研究以感病大白菜A03与抗软腐病小白菜华冠为亲本进行杂交,获得F2代分离群体来定位大白菜抗软腐病数量性状位点(QTLs)。利用构建的高密度遗传图谱检测到3个QTL位点,共包含166个基因。基于已有的转录组数据,在大白菜受Pc侵染的重要防御调控期,我们对这166个基因在感病大白菜A03和抗病突变体sr内的表达量进行了分析,共筛选出6个候选基因与白菜软腐病防御反应相关。其中,基因TIFY10B (JAZ2,BraA07g038660.3C) 位于A07连锁群的主效QTL位点DRQTL-3上,推测可能是白菜软腐病防御机制中起主效作用的关键基因之一。本研究为进一步研究白菜类作物中软腐病抗性机理奠定了基础。
Abstract
Soft rot caused by Pectobacterium carotovorum (Pc) is a devastating disease of Brassica rapa, causing substantial reductions in crop yield and quality. Identifying genes related to soft rot resistance is the key to solving this problem. To characterize soft rot resistance, we screened a soft rot-susceptible Chinese cabbage (A03), a resistant pakchoi (‘Huaguan’), and a resistant mutant (sr). An F2 population was generated by crossing susceptible Chinese cabbage A03 and resistant pakchoi ‘Huaguan’ to identify quantitative trait loci (QTLs) that confer soft rot resistance. A high-density genetic map was constructed and the three QTLs identified contain 166 genes. Based on available transcriptome data, we analyzed the expression of the 166 genes during an important defense regulatory period in Pc infection in both A03 and the resistant mutant sr. Among the 166 genes, six candidate genes were related to the soft rot defense response in B. rapa. TIFY10B (JAZ2, BraA07g038660.3C) was located in the major soft rot resistance QTL, DRQTL-3 on A07, and we speculate that this gene may play an important role in the defense mechanism against soft rot in B. rapa. This study lays the foundation for further investigations on the mechanism of soft rot resistance in B. rapa crops.
|
Received: 04 August 2021
Accepted: 23 November 2021
|
Fund: The authors are grateful to Prof. Xie Hua (Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, China) for the gift of the Pc pathogen. This work was supported by the National Natural Science Foundation of China (31672151 and 31902005), the China Postdoctoral Science Foundation (2019M651059), the Natural Science Foundation of Hebei, China (C2020204111), the International Cooperation Project in the Science and Technology Support Program of Hebei, China (2019YX023A), the International Cooperation Base Project in the Technology of Hebei, China (20592901D), 100 Foreign Experts Plan of Hebei Province and the Starting Grant from Hebei Agricultural University, China (YJ201955), the Science and Technology Research Project of Universities in Hebei Province, China (QN2021074).
|
About author: LIU Meng-yang, E-mail: Liumengyang_7@163.com; WU Fang, E-mail: wufang_1993@163.com; GE Yun-jia, E-mail: geyunjia_1995@163.com; Correspondence MA Wei, E-mail: yymw@hebau.edu.cn
* These authors contributed equally to this study. |
Cite this article:
LIU Meng-yang, WU Fang, GE Yun-jia, LU Yin, ZHANG Xiao-meng, WANG Yan-hua, WANG Yang, YAN Jing-hui, SHEN Shu-xing, ZHAO Jian-jun, MA Wei.
2022.
Identification of soft rot resistance loci in Brassica rapa with SNP markers. Journal of Integrative Agriculture, 21(8): 2253-2263.
|
Campe R, Langenbach C, Leissing F, Popescu G V, Popescu S C, Goellner K, Beckers G J M, Conrath U. 2016. ABC transporter PEN3/PDR8/ABCG36 interacts with calmodulin that, like PEN3, is required for Arabidopsis nonhost resistance. New Phytologist, 209, 294–306.
Charkowski A, Blanco C, Condemine G, Expert D, Franza T, Hayes C, Hugouvieux-Cotte-Pattat N, Solanilla E L, Low D, Moleleki L, Pirhonen M, Pitman A, Perna N, Reverchon S, Palenzuela P R, Francisco M S, Toth I, Tsuyumu S, Waals J, Wolf J, et al. 2012. The role of secretion systems and small molecules in soft-rot Enterobacteriaceae pathogenicity. Annual Review of Phytopathology, 50, 425–449.
Chen C L, Yuan F, Li X Y, Ma R C, Xie H. 2021. Jasmonic acid and ethylene signaling pathways participate in the defense response of Chinese cabbage to Pectobacterium carotovorum infection. Journal of Integrative Agriculture, 20, 1314–1326.
Chini A, Fonseca S, Fernandez G, Adie B, Chico J M, Lorenzo O, Garcia-Casado G, Lopez-Vidriero I, Lozano F M, Ponce M R. 2007. The JAZ family of repressors is the missing link in jasmonate signalling. Nature, 448, 666–671.
Choi C, Park Y H, Kwon S I, Yun C, Ahn I, Park S R, Hwang D J. 2014. Identification of AtWRKY75 as a transcriptional regulator in the defense response to Pcc through the screening of Arabidopsis activation-tagged lines. Plant Biotechnology Reports, 8, 183–192.
Dalton-Morgan J, Hayward A, Alamery S, Tollenaere R, Mason A, Campbell E, Patel D, Lorenc M, Yi B, Long Y, Meng J, Raman R, Raman H, Lawley C, Edwards D, Batley J. 2014. A high-throughput SNP array in the amphidiploid species Brassica napus shows diversity in resistance genes. Functional & Integrative Genomics, 14, 643–655.
Eulgem T, Somssich I E. 2007. Networks of WRKY transcription factors in defense signaling. Current Opinion in Plant Biology, 10, 366–371.
Gardan L, Gouy C R, Samson R. 2003. Elevation of three subspecies of Pectobacterium carotovorum to species level: Pectobacterium atrosepticum sp. nov., Pectobacterium betavasculorum sp. nov. and Pectobacterium wasabiae sp. nov. International Journal of Systematic & Evolutionary Microbiology, 53, 381.
Gimenez-Ibanez S, Boter M, Ortigosa A, García-Casado G, Chini A, Lewsey M G, Ecker J R, Ntoukakis V, Solano R. 2017. JAZ2 controls stomata dynamics during bacterial invasion. New Phytologist, 213, 1378–1392.
He X, Zhu L F, Wassan G M, Wang Y J, Miao Y H, Shaban M, Hu H Y, Sun H, Zhang X L. 2017. GhJAZ2 attenuates cotton resistance to biotic stresses via inhibiting the transcriptional activity of GhbHLH171. Molecular Plant Pathology, 19, 896–908.
Hori K, Kobayashi T, Shimizu A, Sato K, Takeda K, Kawasaki S, Genetics A. 2003. Efficient construction of high-density linkage map and its application to QTL analysis in barley. Theoretical & Applied Genetics, 107, 806–813.
Howe G A. 2018. Plant hormones: Metabolic end run to Jasmonate. Nature Chemical Biology, 14, 109–110.
Hu Z Y, Deng G C, Mou H P, Xu Y H, Chen L, Yang J H, Zhang M F. 2018. A re-sequencing-based ultra-dense genetic map reveals a gummy stem blight resistance-associated gene in Cucumis melo. DNA Research, 2, 1–10.
Huang X H, Zhao Y, Wei X H, Li C Y, Wang A H, Zhao Q, Li W J, Guo Y L, Deng L W, Zhu C R. 2012. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nature Genetics, 44, 32–39.
Hwang B H, Bae H, Lim H S, Kim K B, Kim S J, Im M H, Park B S, Kim D S, Kim J. 2010. Overexpression of polygalacturonase-inhibiting protein 2 (PGIP2) of Chinese cabbage (Brassica rapa ssp. Pekinensis) increased resistance to the bacterial pathogen Pectobacterium Carotovorum ssp. carotovorum. Plant Cell Tissue and Organ Culture, 103, 293–305.
Jones J, Dangl J. 2006. The plant immune system. Nature, 444, 323–329.
Jung Y, Choi C, Park J, Kang H, Choi J, Nou I, Lee S Y, Kang K. 2008. Overexpression of the pineapple fruit bromelain gene (BAA) in transgenic Chinese cabbage (Brassica rapa) results in enhanced resistance to bacterial soft rot. Electronic Journal of Biotechnology, 11, 71–79.
Kariola T, Palomäki T A, Brader G, Palva E T. 2003. Erwinia carotovora subsp. carotovora and Erwinia-derived elicitors HrpN and PehA trigger distinct but interacting defense responses and cell death in Arabidopsis. Molecular Plant–Microbe Interactions, 16, 179–187.
Kim H S, Park Y H, Nam H, Lee Y M, Song K, Choi C, Ahn I, Park S R, Lee Y H, Hwang D J, Wees S. 2014. Overexpression of the Brassica rapa transcription factor WRKY12 results in reduced soft rot symptoms caused by Pectobacterium carotovorum in Arabidopsis and Chinese cabbage. Plant Biology, 5, 973–981.
Kim K C, Chen F Z. 2006. Pathogen-induced Arabidopsis WRKY7 is a transcriptional repressor and enhances plant susceptibility to Pseudomonas syringae. Plant Physiology, 142, 1180–1192.
Ko Y J, Lee S, Song K, Park S Y, Ahn I, Bae S C, Lee Y H, Hwang D J. 2015. Heterologous expression of the Brassica rapa transcription factor BrWRKY7 enhances resistance against bacterial soft rot caused by Pectobacterium carotovorum in Arabidopsis. Plant Biotechnology Reports, 9, 179–186.
Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics, 25, 1754–1760.
Li J, Brader G, Palva E T. 2004. The WRKY70 transcription factor: A node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. The Plant Cell, 16, 319–331.
Li X, Fu L, Chen C, Sun W, Tian Y, Xie H. 2019. Characteristics and rapid diagnosis of Pectobacterium carotovorum ssp. associated with bacterial soft rot of vegetables in China. Plant Disease, 104, 1158–1166.
Li Y Y, Shen J X, Wang T H, Fu T D, Ma C Z. 2007. Construction of a linkage map using SRAP, SSR and AFLP markers in Brassica napus L. Scientia Agricultura Sinica, 40, 1118–1126. (in Chinese)
Liu M Y, Wu F, Wang S, Lu Y, Chen X P, Wang Y H, Gu A X, Zhao J J, Shen S X. 2019. Comparative transcriptome analysis reveals defense responses against soft rot in Chinese cabbage. Horticulture Research, 6, 68.
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25, 402–408.
Lorenzo O, Chico J M, Sanchezserrano J J, Solano R. 2004. JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. The Plant Cell, 16, 1938–1950.
Lu Y, Dai S Y, Gu A X, Liu M Y, Wang Y H, Luo S X, Zhao Y J, Wang S, Xuan S X, Chen X P. 2016. Microspore induced doubled haploids production from ethyl methanesulfonate (EMS) soaked flower buds is an efficient strategy for mutagenesis in Chinese cabbage. Frontiers in Plant Science, 7, 1780–1780.
Mckenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A M, Garimella K, Altshuler D, Gabriel S, Daly M J. 2010. The genome analysis toolkit: A mapreduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20, 1297–1303.
Mengiste T. 2012. Plant immunity to necrotrophs. Annual Review of Phytopathology, 50, 267–294.
Murray M G, Thompson W F. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8, 4321–4325.
Normansetterblad C, Vidal S, Palva E T. 2000. Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora. Molecular Plant–Microbe Interactions, 13, 430–438.
Park Y H, Choi C, Park E M, Kim H S, Park H J, Bae S C, Ahn I, Kim M G, Park S R, Hwang D J. 2012. Over-expression of rice leucine-rich repeat protein results in activation of defense response, thereby enhancing resistance to bacterial soft rot in Chinese cabbage. Plant Cell Reports, 31,1845–1850.
Rogers S O, Bendich A J. 1985. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Molecular Biology, 5, 69–76.
Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S. 2003. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. The Plant Journal, 74, 174–183.
Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, Nomura K, He S Y, Howe G A, Browse J. 2007. JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature, 448, 661–665.
Wan Q, Zhang Z S, Hu M C, Chen L, Liu D J, Chen X, Wang W, Zheng J. 2007. T1 locus in cotton is the candidate gene affecting lint percentage, fiber quality and spiny bollworm (Earias Spp.) resistance. Euphytica, 158, 241–247.
Wang D, Amornsiripanitch N, Dong X. 2006. A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLoS Pathogens, 2, e123.
Wang K, Li M, Hakonarson H. 2010. Annovar: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research, 38, e164.
Yamagishi H, Yoshikawa H, Yui S. 1990. Leaf morphology and soft rot resistance in offspring of a somatic hybrid between Chinese cabbage and kale (Cruciferae). Euphytica, 47, 215–221.
Yang Y X, Ahammed G J, Wu C J, Fan S Y, Zhou Y H . 2015. Crosstalk among jasmonate, salicylate and ethylene signaling pathways in plant disease and immune responses. Current Protein & Peptide Science, 16, 450–461.
Zhang L, Cai X, Wu J, Liu M, Grob S, Cheng F, Liang J L, Cai C C, Liu Z Y, Liu B, Wang F, Li S, Liu F Y, Li X M, Chen L, Yang W C, Li M H, Grossniklaus U, Zheng H K, Wang X W. 2018. Improved Brassica rapa reference genome by single-molecule sequencing and chromosome conformation capture technologies. Horticulture Research, 5, 50.
Zhang Z S, Xiao Y H, Luo M, Li X B, Luo X Y, Hou L, Li D, Pei Y. 2005. Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L.). Euphytica, 144, 91–99.
Zheng Z Y, Qamar S A, Chen Z X, Mengiste T. 2006. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. The Plant Journal, 48, 592–605.
Zimnoch-Guzowska E, Marczewski W, Lebecka R, Flis B, Schaferpregl R, Salamini F, Gebhardt C. 2000. QTL analysis of new sources of resistance to Erwinia carotovora ssp. atroseptica in potato done by AFLP, RFLP, and resistance-gene-like markers. Crop Science, 40, 1156–1167.
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|