Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (6): 1645-1657    DOI: 10.1016/S2095-3119(21)63790-5
Special Issue: 园艺-分子生物合辑Horticulture — Genetics · Breeding
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
PbPH5, an H+ P-ATPase on the tonoplast, is related to malic acid accumulation in pear fruit
SONG Jun-xing, CHEN Ying-can, LU Zhao-hui, ZHAO Guang-ping, WANG Xiao-li, ZHAI Rui, WANG Zhi-gang, YANG Cheng-quan, XU Ling-fei
College of Horticulture, Northwest A&F University, Yangling, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

本研究通过比较基因表达量和有机酸含量,发现了一个P3A亚家族成员PbPH5基因的表达量与不同梨系统的苹果酸积累呈高度相关,且与白梨系统、西洋梨系统、砂梨系统和秋子梨系统中的相关性分别是0.932**,0.656*,0.900**和0.518*(*P<0.05或** P<0.01)。在梨果实中过表达PbPH5基因后苹果酸含量增加,沉默PbPH5基因后苹果酸含量降低;亚细胞定位结果显示PbPH5定位于液泡膜。此外,系统发育分析结果表明PbPH5基因是PH5的同源基因,与矮牵牛、苹果和柑橘PH5基因归于同一支。综上所述,这些结果表明PbPH5是一个较为保守的基因,而且,梨果实中苹果酸的积累至少部分与PbPH5基因表达量相关。




Abstract  

Organic acids are one of the most important factors influencing fruit flavors. The predominant organic acid in most pear cultivars is malic acid, but the mechanism controlling its accumulation remains unclear. In this study, by comparing gene expression levels and organic acid content, we revealed that the expression of PbPH5, which encodes a P3A-ATPase, is highly correlated with malic acid accumulation in different pear species, with correlation coefficients of 0.932**, 0.656*, 0.900**, and 0.518* (*, P<0.05 or **, P<0.01) in Pyrus bretschneideri Rehd., P. communis Linn., P. pyrifolia Nakai., and P. ussuriensis Maxim., respectively. Moreover, the overexpression of PbPH5 in pear significantly increased the malic acid content. In contrast, silencing PbPH5 via RNA interference significantly decreased its transcript level and the pear fruit malic acid content. A subcellular localization analysis indicated that PbPH5 is located in the tonoplast. Additionally, a phylogenetic analysis proved that PbPH5 is a PH5 homolog gene that is clustered with Petunia hybrida, Malus domestica, and Citrus reticulata genes. Considered together, these findings suggest PbPH5 is a functionally conserved gene. Furthermore, the accumulation of malic acid in pear fruits is at least partly related to the changes in PbPH5 transcription levels.

Keywords:  pear       P3A-ATPase        PH5 homolog       malic acid accumulation       proton pump  
Received: 03 March 2021   Accepted: 08 July 2021
Fund: 

This research was funded by the National Key Research and Development Program of China (2019YFD1001400) and the National Natural Science Foundation of China (31601715).  

About author:  SONG Jun-xing, E-mail: JunxingSong@163.com; Correspondence YANG Cheng-quan, Tel: +86-29-87081023, E-mail: cqyang@nwsuaf.edu.cn; XU Ling-fei, Tel: +86-29-87081023, E-mail: lingfxu2013@sina.com

Cite this article: 

SONG Jun-xing, CHEN Ying-can, LU Zhao-hui, ZHAO Guang-ping, WANG Xiao-li, ZHAI Rui, WANG Zhi-gang, YANG Cheng-quan, XU Ling-fei. 2022. PbPH5, an H+ P-ATPase on the tonoplast, is related to malic acid accumulation in pear fruit. Journal of Integrative Agriculture, 21(6): 1645-1657.

Ahmad I, Devonshire J, Mohamed R, Schultze M, Maathuis F J M. 2016. Overexpression of the potassium channel TPKb in small vacuoles confers osmotic and drought tolerance to rice. New Phytologist, 209, 1040–1048.
Arango M, Gévaudant F, Oufattole M, Boutry M. 2003. The plasma membrane proton pump ATPase: The significance of gene subfamilies. Planta, 216, 355–365.
Axelsen K B, Palmgren M G. 1998. Evolution of substrate specificities in the P-type ATPase superfamily. Journal of Molecular Evolution, 46, 84–101.
Axelsen K B, Palmgren M G. 2001. Inventory of the superfamily of P-type ion pumps in Arabidopsis. Plant Physiology, 126, 696–706.
Bai Y, Dougherty L, Li M J, Fazio G, Cheng L L, Xu K N. 2012. A natural mutation-led truncation in one of the two aluminum-activated malate transporter-like genes at the Ma locus is associated with low fruit acidity in apple. Molecular Genetics and Genomics, 287, 663–678.
Baxter I, Tchieu J, Sussman M R, Boutry M, Palmgren M G, Gribskov M, Harper J F, Axelsen K B. 2003. Genomic comparison of P-Type ATPase ion pumps in Arabidopsis and rice. Plant Physiology, 132, 618–628.
Chen W, Si G Y, Zhao G, Abdullah M, Guo N, Li D H, Sun X, Cai Y P, Lin Y, Gao J S. 2018. Genomic comparison of the P-ATPase gene family in four cotton species and their expression patterns in Gossypium hirsutum. Molecules (Basel, Switzerland), 23, 1092.
Elena P, Riccardo D M, Raffaele D I, Paolo C, Sabrina S. 2018. Acidic cell elongation drives cell differentiation in the Arabidopsis root. The EMBO Journal, 37, e99134.
Emmerlich V, Linka N, Reinhold T, Hurth M A, Traub M, Martinoia E, Neuhaus H E. 2003. The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier. Proceedings of the National Academy of Sciences of the United States of America, 100, 11122–11126.
Etienne A, Génard M, Lobit P, Mbeguié-A-Mbéguié D, Bugaud C. 2013. What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. Journal of Experimental Botany, 64, 1451–1469.
Faraco M, Spelt C, Bliek M, Verweij W, Hoshino A, Espen L, Prinsi B, Jaarsma R, Tarhan E, de Boer A H, Sansebastiano G P D, Koes R, Quattrocchio F M. 2014. Hyperacidification of vacuoles by the combined action of two different P-ATPases in the tonoplast determines flower color. Cell Reports, 6, 32–43.
Gévaudant F, Duby G, Stedingk E V, Zhao R, Morsomme P, Boutry M. 2007. Expression of a constitutively activated plasma membrane H+-ATPase alters plant development and increases salt tolerance. Plant Physiology, 144, 1763–1776.
Haffaker R C, Wallace A. 1959. Dark fixation of CO2 in homogenates from citrus leaves, fruits, and roots. Proceeding of the American Society for Horticultural Science, 74, 348–357.
Harker F R, Marsh K B, Young H, Murray S H, Gunson F A, Walker S B. 2002. Sensory interpretation of instrumental measurements 2: Sweet and acid taste of apple fruit. Postharvest Biology and Technology, 24, 241–250.
Hedges S B, Blair J E, Venturi M L, Shoe J L. 2004. A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evolutionary Biology, 4, 2.
Hudina M, Śtampar F. 2000. Sugars and organic acids contents of European (Pyrus comminus L.) and Asian (Pyrus serotina Rehd.) pear cultivars. Acta Alimentaria, 29, 217–230.
Hulme A C. 1958. Quinic and shikimic acids in fruits. Qualitas Plantarum et Materiae Vegetabiles, 3–4, 468–473.
Hussain S B, Shi C Y, Guo L X, Kamran H M, Sadka A, Liu Y Z. 2017. Recent advances in the regulation of citric acid metabolism in citrus fruit. Critical Reviews in Plant Sciences, 36, 241–256.
Kühlbrandt W. 2004. Biology, structure and mechanism of P-type ATPases. Nature Reviews Molecular Cell Biology, 5, 282–295.
Li Y B, Provenzano S, Bliek M, Spelt C, Appelhagen I, Laura Machado D F, Walter V, Andrea S, Martin S, Thorsten S, Bernd W, Ronald K, Francesca Q. 2016. Evolution of tonoplast P-ATPase transporters involved in vacuolar acidification. The New Phytologist, 211, 1092–1107.
Liu L, Chen C X, Zhu Y F, Xue L, Liu Q W, Qi K J, Zhang S L, Wu J. 2016. Maternal inheritance has impact on organic acid content in progeny of pear (Pyrus spp.) fruit. Euphytica, 209, 305–321.
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25, 402–408.
Ma B Q, Gao M, Zhang L H, Zhao H Y, Zhu L C, Su J, Li C Y, Li M J, Ma F W, Yuan Y Y. 2020. Genome-wide identification and characterization of apple P3A-type ATPase genes, with implications for alkaline stress responses. Forests, 11, 292.
Ma B Q, Liao L, Fang T, Peng Q, Ogutu C, Zhou H, Ma F W, Han Y P. 2019. A Ma10 gene encoding P-type ATPase is involved in fruit organic acid accumulation in apple. Plant Biotechnology Journal, 17, 674–686.
Maeshima M. 2000. Vacuolar H+-pyrophosphatase. Biochimica et Biophysica Acta, 1465, 37–51.
Manzoor M A, Cheng X, Li G H, Su X Q, Abdullah M, Cai Y P. 2020. Gene structure, evolution and expression analysis of the P-ATPase gene family in Chinese pear (Pyrus bretschneideri). Computational Biology and Chemistry, 88, 107346.
Martinoia E, Maeshima M, Neuhaus H E. 2007. Vacuolar transporters and their essential role in plant metabolism. Journal of Experimental Botany, 58, 83–102.
Mayuoni-Kirshinbaum L, Porat R. 2014. The flavor of pomegranate fruit: A review. Journal of the Science of Food and Agriculture, 94, 21–27.
Moskowitz A H, Hrazdina G. 1981. Vacuolar contents of fruit subepidermal cells from Vitis species. Plant Physiology, 68, 686–692.
Notton B A, Blanke M M. 1993. Phosphoenolpyruvate carboxylase in avocado fruit: Purification and properties. Phytochemistry, 33, 1333–1337.
Oleski N, Peiman M, Bennett A B. 1987. Transport properties of the tomato fruit tonoplast: II. Citrate transport. Plant Physiology, 84, 997–1000.
Palmer J D, Soltis D E, Chase M W. 2004. The plant tree of life: An overview and some points of view. American Journal of Botany, 91, 1437–1445.
Palmgren M G, Nissen P. 2011. P-Type ATPases. Annual Review of Biophysics, 40, 243–266.
Quintana A, Albrechtová J, Griesbach R J, Freyre R. 2007. Anatomical and biochemical studies of anthocyanidins in flowers of Anagallis monelli L. (Primulaceae) hybrids. Scientia Horticulturae, 112, 413–421.
Rayle D L, Cleland R. 1977. Control of plant cell enlargement by hydrogen ions. Current Topics in Developmental Biology, 11, 187–214.
Ramos D C N E R, Johanningsmeier S D, McFeeters R F. 2007. The chemistry and physiology of sour taste - A review. Journal of Food Science, 72, R33–R38.
Rentsch D, Martinoia E. 1991. Citrate transport into barley mesophyll vacuoles-comparison with malate-uptake activity. Planta, 184, 532–537.
Sha S F, Li J C, Wu J, Zhang S L. 2011. Characteristics of organic acids in the fruit of different pear species. African Journal of Agricultural Research, 6, 2403–2410.
Shi C Y, Hussain S B, Yang H, Bai Y X, Khan M A, Liu Y Z. 2019. CsPH8, a P-type proton pump gene, plays a key role in the diversity of citric acid accumulation in citrus fruits. Plant Science, 289, 110288. 
Shi C Y, Song R Q, Hu X M, Liu X, Jin L F, Liu Y Z. 2015. Citrus PH5-like H+-ATPase genes: Identification and transcript analysis to investigate their possible relationship with citrate accumulation in fruits. Frontiers in Plant Science, 6, 135.
Shohei Y. 1984. Isolation of vacuoles from immature apple fruit flesh and compartmentation of sugars, organic acids, phenolic compounds and amino acids. Plant and Cell Physiology, 25, 151–166.
Sichul L, Yu-Young K, Youngsook L, Gynheung A. 2007. Rice P1B-type heavy-metal ATPase, OsHMA9, is a metal efflux protein. Plant Physiology, 145, 831–842.
Song L Y, Wang X L, Han W, Qu Y Y, Wang Z G, Zhai R, Yang C Q, Ma F W, Xu L F. 2020. PbMYB120 negatively regulates anthocyanin accumulation in pear. International Journal of Molecular Sciences, 21, 1528.
Sun H L, Wang X Y, Shang Y, Wang X Q, Du G L, Lü D G. 2021. Preharvest application of melatonin induces anthocyanin accumulation and related gene upregulation in red pear (Pyrus ussuriensis). Journal of Integrative Agriculture, 20, 2126–2137.
Suzuki Y, Shiratake K, Yamaki S. 2000. Seasonal changes in the activities of vacuolar H+-pumps and their gene expression in the developing Japanese pear fruit. Journal of the Japanese Society for Horticultural Science, 69, 15–21.
Szczypka M S, Zhu Z W, Silar P, Thiele D J. 1997. Saccharomyces cerevisiae mutants altered in vacuole function are defective in copper detoxification and iron-responsive gene transcription. Yeast, 13, 1423–1435.
Terrier N, Deguilloux C, Sauvage F X, Martinoia E, Romieu C. 1998. Proton pumps and anion transport in Vitis vinifera: The inorganic pyrophosphatase plays a predominant role in the energization of the tonoplast. Plant Physiology and Biochemistry, 36, 367–377.
Terrier N, Sauvage F X, Ageorges A, Romieu C. 2001. Changes in acidity and in proton transport at the tonoplast of grape berries during development. Planta, 213, 20–28.
Visser T, Schaap A A, Vries D P. 1968. Acidity and sweetness in apple and pear. Euphytica, 17, 153–167.
Walter V, Cornelis S, Gian-Pietro D S, Joop V, Lara R, Francesco F, Ronald K, Francesca Q. 2008. An H+ P-ATPase on the tonoplast determines vacuolar pH and flower colour. Nature Cell Biology, 10, 1456–1462.
Wang X Z, Qian X Q, Stumpf B, Fatima A, Feng K, Sven S, Hanstein S. 2013. Modulatory ATP binding to the E2 state of maize plasma membrane H+-ATPase indicated by the kinetics of vanadate inhibition. The FEBS Journal, 280, 4793–4806.
Zhai R, Wang Z M, Zhang S W, Meng G, Song L Y, Wang Z G, Li P M, Ma F W, Xu L F. 2016. Two MYB transcription factors regulate flavonoid biosynthesis in pear fruit (Pyrus bretschneideri Rehd.). Journal of Experimental Botany, 67, 1275–1284.
Zhai R, Zhao Y X, Wu M, Yang J, Li X Y, Liu H T, Wu T, Liang F F, Yang C Q, Wang Z G, Ma F W, Xu L F. 2019. The MYB transcription factor PbMYB12b positively regulates flavonol biosynthesis in pear fruit. BMC Plant Biology, 19, 85.
Zhang Y X, Li Q G, Xu L L, Qiao X, Liu C X, Zhang S L. 2020. Comparative analysis of the P-type ATPase gene family in seven Rosaceae species and an expression analysis in pear (Pyrus bretschneideri Rehd.). Genomics, 112, 2550–2563.

[1] JIAO Hui-jun, WANG Hong-wei, RAN Kun, DONG Xiao-chang, DONG Ran, WEI Shu-wei, WANG Shao-min. Identification and functional analysis of arabinogalactan protein expressed in pear pollen tubes[J]. >Journal of Integrative Agriculture, 2023, 22(3): 776-789.
[2] GUAN Zhi-bin, ZHANG Yan-qi, CHAI Xiu-juan, CHAI Xin, ZHANG Ning, ZHANG Jian-hua, SUN Tan. Visual learning graph convolution for multi-grained orange quality grading[J]. >Journal of Integrative Agriculture, 2023, 22(1): 279-291.
[3] SHAN Yan-fei, LI Meng-yan, WANG Run-ze, LI Xiao-gang, LIN Jing, LI Jia-ming, ZHAO Ke-jiao, WU Jun. Evaluation of the early defoliation trait and identification of resistance genes through a comprehensive transcriptome analysis in pears[J]. >Journal of Integrative Agriculture, 2023, 22(1): 120-138.
[4] ZHANG Ying, CAO Yu-fen, HUO Hong-liang, XU Jia-yu, TIAN Lu-ming, DONG Xing-guang, QI Dan, LIU Chao. An assessment of the genetic diversity of pear (Pyrus L.) germplasm resources based on the fruit phenotypic traits[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2275-2290.
[5] TANG Zi-kai, SUN Man-yi, LI Jia-ming, SONG Bo-bo, LIU Yue-yuan, TIAN Yi-ke, WANG Cai-hong, WU Jun. Comparative transcriptome analysis provides insights into the mechanism of pear dwarfing[J]. >Journal of Integrative Agriculture, 2022, 21(7): 1952-1967.
[6] LIU Jian-long, ZHANG Chen-xiao, LI Tong-tong, LIANG Cheng-lin, YANG Ying-jie, LI Ding-Li, CUI Zhen-hua, WANG Ran, SONG Jian-kun. Phenotype and mechanism analysis of plant dwarfing in pear regulated by abscisic acid[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1346-1356.
[7] GUO Bing-bing, LI Jia-ming, LIU Xing, QIAO Xin, Musana Rwalinda FABRICE, WANG Peng, ZHANG Shao-ling, WU Ju-you. Identification and expression analysis of the PbrMLO gene family in pear, and functional verification of PbrMLO23[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2410-2423.
[8] SHI Hai-yan, CAO Li-wen, XU Yue, YANG Xiong, LIU Shui-lin, LIANG Zhong-shuo, LI Guo-ce, YANG Yu-peng, ZHANG Yu-xing, CHEN Liang. Transcriptional profiles underlying the effects of salicylic acid on fruit ripening and senescence in pear (Pyrus pyrifolia Nakai)[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2424-2437.
[9] ZHAO Dong-sheng, LIU Jin-yu, DING Ai-qiu, ZHANG Tao, REN Xin-yu, ZHANG Lin, LI Qian-feng, FAN Xiao-lei, ZHANG Chang-quan, LIU Qiao-quan. Improving grain appearance of erect-panicle japonica rice cultivars by introgression of the null gs9 allele[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2032-2042.
[10] SUN Hui-li, WANG Xin-yue, SHANG Ye, WANG Xiao-qian, DU Guo-dong, LÜ De-guo. Preharvest application of melatonin induces anthocyanin accumulation and related gene upregulation in red pear (Pyrus ussuriensis)[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2126-2137.
[11] XUE Yong-song, XU Shao-zhuo, XUE Cheng, WANG Run-ze, ZHANG Ming-yue, LI Jia-ming, ZHANG Shao-ling, WU Jun. Pearprocess: A new phenotypic tool  for stone cell trait evaluation in pear fruit[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1625-1634.
[12] JIANG Hai-bo, LI Hong-xu, ZHAO Ming-xin, MEI Xin-lan, KANG Ya-long, DONG Cai-xia, XU Yang-chun . Strategies for timing nitrogen fertilization of pear trees based on the distribution, storage, and remobilization of 15N from seasonal application of (15N H4)2SO4[J]. >Journal of Integrative Agriculture, 2020, 19(5): 1340-1353.
[13] CHEN Bin, TIAN Yan-li, ZHAO Yu-qiang, WANG Jia-nan, XU Zhi-gang, LI Xiang, HU Bai-shi. Bleeding canker of pears caused by Dickeya fangzhongdai: Symptoms, etiology and biology[J]. >Journal of Integrative Agriculture, 2020, 19(4): 889-897.
[14] TIAN Yan-li, ZHAO Yu-qiang, CHEN Bao-hui, CHEN Shuo, ZENG Rong, HU Bai-shi, LI Xiang. Real-time PCR assay for detection of Dickeya fangzhongdai causing bleeding canker of pear disease in China[J]. >Journal of Integrative Agriculture, 2020, 19(4): 898-905.
[15] LI Liu, ZHENG Meng-meng, MA Xiao-fang, LI Yuan-jun, LI Qing-yu, WANG Guo-ping, HONG Ni . Molecular, serological and biological characterization of a novel Apple stem pitting virus strain from a local pear variety grown in China[J]. >Journal of Integrative Agriculture, 2019, 18(11): 2549-2560.
No Suggested Reading articles found!