Please wait a minute...
Journal of Integrative Agriculture  2021, Vol. 20 Issue (8): 2032-2042    DOI: 10.1016/S2095-3119(21)63659-6
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Improving grain appearance of erect-panicle japonica rice cultivars by introgression of the null gs9 allele
ZHAO Dong-sheng1, 2*, LIU Jin-yu1*, DING Ai-qiu1*, ZHANG Tao1, REN Xin-yu1, ZHANG Lin1, LI Qian-feng1, 2, FAN Xiao-lei1, 2, ZHANG Chang-quan1, 2, LIU Qiao-quan1, 2 
1 Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, P.R.China
2 Co-innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

水稻穗型和籽粒大小不仅对产量形成有显著效应,对稻米品质尤其是外观品质也有重要影响。直立穗性状一般由qpe9-1/dep1等位基因控制,已广泛应用于高产粳稻育种,但其稻米的外观品质往往不够理想。GS9是水稻粒形的重要调控因子,该基因突变后可使稻谷适当变细长,从而改良稻米的外观品质。然而,GS9qPE9-1/DEP1基因都位于第9染色体,两位点紧密连锁,且两者间的互作关系还不明确,这就制约了它们在现代水稻育种中的应用。蛋白和mRNA表达水平的比较分析显示GS9qPE9-1独立发挥功能。以含有GS9qpe9-1等位基因的高产粳稻品种2661(GS9/qpe9-1)为背景,创建了3个近等基因系(NIL),分别携带不同等位基因组合,包括NIL(gs9/qpe9-1)、NIL(GS9/qPE9-1)和NIL(gs9/qPE9-1)。结果显示,GS9qPE9-1对籽粒大小的调控具有加性效应,在含有qpe9-1等位基因的直立穗粳稻品种中导入功能缺失型gs9等位基因,可在不影响株型和穗型的前提下,降低籽粒垩白,改良籽粒外观。此外,在另一推广的高产粳稻品种武育粳27(WYJ27)背景中,导入gs9等位基因,也表现出相同的效应,进一步证实利用gs9等位基因改良高产粳稻品种籽粒外观的可行性。本研究为直立穗粳稻及相关品种稻米外观品质改良提供了有效策略




Abstract  The panicle architecture and grain size of rice affect not only grain yield but also grain quality, especially grain appearance. The erect-panicle (EP) trait controlled by the qpe9-1/dep1 allele has been widely used in high-yielding japonica rice breeding, but usually accompanied with moderate appearance of milled rice. The null gs9 allele shows a good potential for improving grain shape and appearance. However, GS9 and qPE9-1/DEP1 loci are tightly linked, and their interaction is unclear, which obviously restricts their utilization in modern rice breeding. In the present study, comparative analyses of protein and mRNA levels revealed that GS9 and qPE9-1 function independently. Three near-isogenic lines (NILs) carrying various allelic combinations of these two loci, NIL (gs9/qpe9-1), NIL (GS9/qPE9-1) and NIL (gs9/qPE9-1), in the EP japonica cultivar 2661 (GS9/qpe9-1) background were developed for genetic interaction analysis. GS9 and qPE9-1 had additive effects on determining grain size, and the null gs9 allele could decrease grain chalkiness and improve grain appearance without affecting plant and panicle architecture in EP japonica cultivars. Additionally, introgression lines (ILs) developed in another released EP japonica cultivar Wuyujing 27 (WYJ27) background showed the same additive effect and the feasibility of utilizing the gs9 allele to improve grain appearance quality in high-yielding EP cultivars. This study provides an effective strategy for rice breeders to improve rice grain appearance in EP japonica and related cultivars.
Keywords:  rice        GS9        qPE9-1/DEP1        genetic interaction        erect panicle       grain appearance  
Received: 23 December 2020   Accepted:
Fund: This work was supported by the National Natural Science Foundation of China (31971914), the National Key Research and Development Program of China (2016YFD0100501), the Key Research and Development Program of Jiangsu Province, China (BE2018357), the Science Fund for Distinguished Young Scholars of Jiangsu Province, China (BK20200045), the Jiangsu Agricultural Science and Technology Innovation Fund (CX(18)1001), the Jiangsu PAPD Talent Project, and the Yong Elite Scientists Sponsorship Program by China Association for Science and Technology (2018QNRC001).
Corresponding Authors:  Correspondence LIU Qiao-quan, E-mail: qqliu@yzu.edu.cn    
About author:  * These authors contributed equally to this study.

Cite this article: 

ZHAO Dong-sheng, LIU Jin-yu, DING Ai-qiu, ZHANG Tao, REN Xin-yu, ZHANG Lin, LI Qian-feng, FAN Xiao-lei, ZHANG Chang-quan, LIU Qiao-quan. 2021. Improving grain appearance of erect-panicle japonica rice cultivars by introgression of the null gs9 allele. Journal of Integrative Agriculture, 20(8): 2032-2042.

Fei C, Yu J, Xu Z, Xu Q. 2019. Erect panicle architecture contributes to increased rice production through the improvement of canopy structure. Molecular Breeding, 39, 128.
Fujisawa Y, Kato T, Ohki S, Ishikawa A, Kitano H, Sasaki T, Asahi T, Iwasaki Y. 1999. Suppression of the heterotrimeric G protein causes abnormal morphology, including dwarfism, in rice. Proceedings of the National Academy of Sciences of the United States of America, 96, 7575–7580.
Gao X, Zhang X, Lan H, Huang J, Wang J, Zhang H. 2015. The additive effects of GS3 and qGL3 on rice grain length regulation revealed by genetic and transcriptome comparisons. BMC Plant Biology, 15, 156.
Harberd N P. 2015. Shaping taste: The molecular discovery of rice genes improving grain size, shape and quality. Journal of Genetics and Genomics, 42, 597–599.
Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X. 2009. Natural variation at the DEP1 locus enhances grain yield in rice. Nature Genetics, 41, 494–497.
Li F, Liu W, Tang J, Chen J, Tong H, Hu B, Li C, Fang J, Chen M, Chu C. 2010. Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation. Cell Research, 20, 838–849.
Li N, Xu R, Li Y. 2019. Molecular networks of seed size control in plants. Annual Review of Plant Biology, 70, 435–463.
Li Y, Fan C, Xing Y, Yun P, Luo L, Yan B, Peng B, Xie W, Wang G, Li X, Xiao J, Xu C, He Y. 2014. Chalk5 encodes a vacuolar H(+)-translocating pyrophosphatase influencing grain chalkiness in rice. Nature Genetics, 46, 398–404.
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using realtime quantitative PCR and the 2(–Delta Delta C(T)) method. Methods, 25, 402–408.
Ma F, Du J, Wang D, Wang H, Zhao B, He G, Yang Z, Zhang T, Wu R, Zhao F. 2020. Identification of long-grain chromosome segment substitution line Z744 and QTL analysis for agronomic traits in rice. Journal of Integrative Agriculture, 19, 1163–1169.
Mao H, Sun S, Yao J, Wang C, Yu S, Xu C, Li X, Zhang Q. 2010. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proceedings of the National Academy of Sciences of the United States of America, 107, 19579–19584.
Miao J, Yang Z, Zhang D, Wang Y, Xu M, Zhou L, Wang J, Wu S, Yao Y, Du X, Gu F, Gong Z, Gu M, Liang G, Zhou Y. 2019. Mutation of RGG2, which encodes a type B heterotrimeric G protein γ subunit, increases grain size and yield production in rice. Plant Biotechnology Journal, 17, 650–664.
Piao R, Jiang W, Ham T H, Choi M S, Qiao Y, Chu S H, Park J H, Woo M O, Jin Z, An G, Lee J, Koh H J. 2009. Map-based cloning of the ERECT PANICLE 3 gene in rice. Theoretical and Applied Genetics, 119, 1497–1506.
Qiao Y, Piao R, Shi J, Lee S I, Jiang W, Kim B K, Lee J, Han L, Ma W, Koh H J. 2011. Fine mapping and candidate gene analysis of dense and erect panicle 3, DEP3, which confers high grain yield in rice (Oryza sativa L.). Theoretical and Applied Genetics, 122, 1439–1449.
Si L, Chen J, Huang X, Gong H, Luo J, Hou Q, Zhou T, Lu T, Zhu J, Shangguan Y, Chen E, Gong C, Zhao Q, Jing Y, Zhao Y, Li Y, Cui L, Fan D, Lu Y, Weng Q, et al. 2016. OsSPL13 controls grain size in cultivated rice. Nature Genetics, 48, 447–456.
Sun H, Qian Q, Wu K, Luo J, Wang S, Zhang C, Ma Y, Liu Q, Huang X, Yuan Q, Han R, Zhao M, Dong G, Guo L, Zhu X, Gou Z, Wang W, Wu Y, Lin H, Fu X. 2014. Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nature Genetics, 46, 652–656.
Sun S, Wang L, Mao H, Shao L, Li X, Xiao J, Ouyang Y, Zhang Q. 2018. A G-protein pathway determines grain size in rice. Nature Communications, 9, 851.
Swain D M, Sahoo R K, Srivastava V K, Tripathy B C, Tuteja R, Tuteja N. 2017. Function of heterotrimeric G-protein γ subunit RGG1 in providing salinity stress tolerance in rice by elevating detoxification of ROS. Planta, 245, 367–383.
Tian Z, Qian Q, Liu Q, Yan M, Liu X, Yan C, Liu G, Gao Z, Tang S, Zeng D, Wang Y, Yu J, Gu M, Li J. 2009. Allelic diversity in rice starch biosynthesis pathway leads to a diverse array of rice eating and cooking qualities. Proceedings of the National Academy of Sciences of the United States of America, 106, 21760–21765.
Utsunomiya Y, Samejima C, Takayanagi Y, Izawa Y, Yoshida T, Sawada Y, Fujisawa Y, Kato H, Iwasaki Y. 2011. Suppression of the rice heterotrimeric G protein β-subunit gene, RGB1, causes dwarfism and browning of internodes and lamina joint regions. The Plant Journal, 67, 907–916.
Wang S, Cui G, Wang H, Ma F, Xia S, Li Y, Yang Z, Ling Y, Zhang C, He G, Zhao F. 2019. Identification and QTL mapping of Z550, a rice backcrossed inbred line with increased grains per panicle. Journal of Integrative Agriculture, 18, 526–531.
Wang S, Li S, Liu Q, Wu K, Zhang J, Wang S, Wang Y, Chen X, Zhang Y, Gao C, Wang F, Huang H, Fu X. 2015. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nature Genetics, 47, 949–954.
Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X. 2012. Control of grain size, shape and quality by OsSPL16 in rice. Nature Genetics, 44, 950–954.
Wang Y, Xiong G, Hu J, Jiang L, Yu H, Xu J, Fang Y, Zeng L, Xu E, Xu J, Ye W, Meng X, Liu R, Chen H, Jing Y, Wang Y, Zhu X, Li J, Qian Q. 2015. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nature Genetics, 47, 944–948.
Wang Y Z, Zhang N, Chen H, Wang F, Huang Y C, Jia B Y, Wang S, Wang Y, Xu Z J. 2019. Effects of DEP1 on grain yield and grain quality in the background of two japonica rice (Oryza sativa) cultivars. Plant Breeding, 139, 608–617.
Xu D, Fang Z, Hu S, Wang X, Xu M, Pan Q. 2004. Analysis of main quality characters and agronomical characters of erect panicle japonica varieties in Jiangsu Province. Journal of Plant Genetics and Resource, 5, 47–51. (in Chinese)
Xu H, Zhao M, Zhang Q, Xu Z, Xu Q. 2016. The DENSE AND ERECT PANICLE 1 (DEP1) gene offering the potential in the breeding of high-yielding rice. Breeding Science, 66, 659–667.
Xu Z, Chen W, Zhang S, Zhang W, Ma D, Liu L, Zhou S. 2005. Differences of panicle trait index among varieties and its relationship with yield and quality of rice in Liaoning. Scientia Agricultura Sinica, 38, 1926–1930. (in Chinese)
Xue P, Zhang Y, Lou X, Zhu A, Chen Y, Sun B, Yu P, Cheng S, Cao L, Zhan X. 2019. Mapping and genetic validation of a grain size QTL qGS7.1 in rice (Oryza sativa L.). Journal of Integrative Agriculture, 18, 1838–1850.
Yi X, Zhang Z, Zeng S, Tian C, Peng J, Li M, Lu Y, Meng Q, Gu M, Yan C. 2011. Introgression of qPE9-1 allele, conferring the panicle erectness, leads to the decrease of grain yield per plant in japonica rice (Oryza sativa L.). Journal of Genetics and Genomics, 38, 217–223.
Yadav D, Islam S, Tuteja N. 2012. Rice heterotrimeric G-protein gamma subunits (RGG1 and RGG2) are differentially regulated under abiotic stress. Plant Signaling & Behavior, 7, 733–740.
Yan S, Zou G, Li S, Wang H, Liu H, Zhai G, Guo P, Song H, Yan C, Tao Y. 2011. Seed size is determined by the combinations of the genes controlling different seed characteristics in rice. Theoretical and Applied Genetics, 123, 1173–1181.
Ying J Z, Gao J, Shan J, Zhu M, Shi M, Lin H. 2012. Dissecting the genetic basis of extremely large grain shape in rice cultivar ‘JZ1560’. Journal of Genetics and Genomics, 39, 325–333.
Zeng D, Tian Z, Rao Y, Dong G, Yang Y, Huang L, Leng Y, Xu J, Sun C, Zhang G, Hu J, Zhu L, Gao Z, Hu X, Guo L, Xiong G, Wang Y, Li J, Qian Q. 2017. Rational design of high-yield and superior-quality rice. Nature Plants, 3, 17031.
Zhang C, Zhu J, Chen S, Fan X, Li Q, Lu Y, Wang M, Yu H, Yi C, Tang S, Gu M, Liu Q. 2019. Wxlv, the ancestral allele of rice Waxy gene. Molecular Plant, 12, 1157–1166.
Zhao D, Li Q, Zhang C, Zhang C, Yang Q, Pan L, Ren X, Lu J, Gu M, Liu Q. 2018. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality. Nature Communications, 9, 1240.
Zhou H, Xia D, He Y. 2020. Rice grain quality - traditional traits for high quality rice and health-plus substances. Molecular Breeding, 40, doi: 10.1007/s11032-019-1080-6.
Zhou Y, Zhu J, Li Z, Yi C, Liu J, Zhang H, Tang S, Gu M, Liang G. 2009. Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication. Genetics, 183, 315–324.
Zhu K, Tang D, Yan C, Chi Z, Yu H, Chen J, Liang J, Gu M, Cheng Z. 2010. ERECT PANICLE2 encodes a novel protein that regulates panicle erectness in indica rice. Genetics, 184, 343–350.
[1] ZHAO Jun-yang, LU Hua-ming, QIN Shu-tao, PAN Peng, TANG Shi-de, CHEN Li-hong, WANG Xue-li, TANG Fang-yu, TAN Zheng-long, WEN Rong-hui, HE Bing. Soil conditioners improve Cd-contaminated farmland soil microbial communities to inhibit Cd accumulation in rice[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2521-2535.
[2] GAO Peng, ZHANG Tuo, LEI Xing-yu, CUI Xin-wei, LU Yao-xiong, FAN Peng-fei, LONG Shi-ping, HUANG Jing, GAO Ju-sheng, ZHANG Zhen-hua, ZHANG Hui-min. Improvement of soil fertility and rice yield after long-term application of cow manure combined with inorganic fertilizers[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2221-2232.
[3] SHI Shi-jie, ZHANG Gao-yu, CAO Cou-gui, JIANG Yang . Untargeted UHPLC–Q-Exactive-MS-based metabolomics reveals associations between pre- and post-cooked metabolites and the taste quality of geographical indication rice and regular rice[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2271-2281.
[4] WEI Huan-he, GE Jia-lin, ZHANG Xu-bin, ZHU Wang, DENG Fei, REN Wan-jun, CHEN Ying-long, MENG Tian-yao, DAI Qi-gen. Decreased panicle N application alleviates the negative effects of shading on rice grain yield and grain quality[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2041-2053.
[5] CHEN Guang-yi, PENG Li-gong, LI Cong-mei, TU Yun-biao, LAN Yan, WU Chao-yue, DUAN Qiang, ZHANG Qiu-qiu, YANG Hong, LI Tian. Effects of the potassium application rate on lipid synthesis and eating quality of two rice cultivars[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2025-2040.
[6] LIU Yu, LIU Wen-wen, LI Li, Frederic FRANCIS, WANG Xi-feng. Transcriptome analysis reveals different response of resistant and susceptible rice varieties to rice stripe virus infection[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1750-1762.
[7] DU Xiang-bei, XI Min, WEI Zhi, CHEN Xiao-fei, WU Wen-ge, KONG Ling-cong. Raised bed planting promotes grain number per spike in wheat grown after rice by improving spike differentiation and enhancing photosynthetic capacity[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1631-1644.
[8] LI Min, ZHU Da-wei, JIANG Ming-jin, LUO De-qiang, JIANG Xue-hai, JI Guang-mei, LI Li-jiang, ZHOU Wei-jia. Dry matter production and panicle characteristics of high yield and good taste indica hybrid rice varieties[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1338-1350.
[9] ZHANG Zi-han, NIE Jun, LIANG Hai, WEI Cui-lan, WANG Yun, LIAO Yu-lin, LU Yan-hong, ZHOU Guo-peng, GAO Song-juan, CAO Wei-dong. The effects of co-utilizing green manure and rice straw on soil aggregates and soil carbon stability in a paddy soil in southern China[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1529-1545.
[10] CHEN Chang-zhao, WANG Ya-Liang, HE Meng-xing, LI Zhi-wen, SHEN Lan, LI Qing, RE De-yong, HU Jiang, ZHU Li, ZHANG Guang-heng, GAO Zhen-yu, ZENG Da-li, GUO Long-biao, QIAN Qian, ZHANG Qiang. OsPPR9 encodes a DYW-type PPR protein that affects editing efficiency of multiple RNA editing sites and is essential for chloroplast development[J]. >Journal of Integrative Agriculture, 2023, 22(4): 972-980.
[11] WANG Xin-yu, YANG Guo-dong, XU Le, XIANG Hong-shun, YANG Chen, WANG Fei, PENG Shao-bing. Grain yield and nitrogen use efficiency of an ultrashort-duration variety grown under different nitrogen and seeding rates in direct-seeded and double-season rice in Central China[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1009-1020.
[12] Kanokwan KAEWMUNGKUN, Keasinee TONGMARK, Sriprapai CHAKHONKAEN, Numphet SANGARWUT, Thiwawan WASINANON, Natjaree PANYAWUT, Khanittha DITTHAB, Kannika SIKAEWTUNG, QI Yong-bin, Sukanya DAPHA, Atikorn PANYA, Natthaporn PHONSATTA, Amorntip MUANGPROM. Development of new aromatic rice lines with high eating and cooking qualities[J]. >Journal of Integrative Agriculture, 2023, 22(3): 679-690.
[13] CAO Peng-hui, WANG Di, GAO Su, LIU Xi, QIAO Zhong-ying, XIE Yu-lin, DONG Ming-hui, DU Tan-xiao, ZHANG Xian, ZHANG Rui, JI Jian-hui. OsDXR interacts with OsMORF1 to regulate chloroplast development and the RNA editing of chloroplast genes in rice[J]. >Journal of Integrative Agriculture, 2023, 22(3): 669-678.
[14] WANG Yuan-zheng, Olusegun IDOWU, WANG Yun, HOMMA Koki, NAKAZAKI Tetsuya, ZHENG Wen-jing, XU Zheng-jin, SHIRAIWA Tatsuhiko.
Effects of erect panicle genotype and environment interactions on rice yield and yield components
[J]. >Journal of Integrative Agriculture, 2023, 22(3): 716-726.
[15] REN Chuan-ying, ZHANG Shan, HONG Bin, GUAN Li-jun, HUANG Wen-gong, FENG Jun-ran, SHA Di-xin, YUAN Di, LI Bo, JI Ni-na, LIU Wei, LU Shu-wen. Germinated brown rice relieves hyperlipidemia by alleviating gut microbiota dysbiosis[J]. >Journal of Integrative Agriculture, 2023, 22(3): 945-957.
No Suggested Reading articles found!