Please wait a minute...
Journal of Integrative Agriculture  2021, Vol. 20 Issue (8): 2032-2042    DOI: 10.1016/S2095-3119(21)63659-6
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Improving grain appearance of erect-panicle japonica rice cultivars by introgression of the null gs9 allele
ZHAO Dong-sheng1, 2*, LIU Jin-yu1*, DING Ai-qiu1*, ZHANG Tao1, REN Xin-yu1, ZHANG Lin1, LI Qian-feng1, 2, FAN Xiao-lei1, 2, ZHANG Chang-quan1, 2, LIU Qiao-quan1, 2 
1 Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, P.R.China
2 Co-innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

水稻穗型和籽粒大小不仅对产量形成有显著效应,对稻米品质尤其是外观品质也有重要影响。直立穗性状一般由qpe9-1/dep1等位基因控制,已广泛应用于高产粳稻育种,但其稻米的外观品质往往不够理想。GS9是水稻粒形的重要调控因子,该基因突变后可使稻谷适当变细长,从而改良稻米的外观品质。然而,GS9qPE9-1/DEP1基因都位于第9染色体,两位点紧密连锁,且两者间的互作关系还不明确,这就制约了它们在现代水稻育种中的应用。蛋白和mRNA表达水平的比较分析显示GS9qPE9-1独立发挥功能。以含有GS9qpe9-1等位基因的高产粳稻品种2661(GS9/qpe9-1)为背景,创建了3个近等基因系(NIL),分别携带不同等位基因组合,包括NIL(gs9/qpe9-1)、NIL(GS9/qPE9-1)和NIL(gs9/qPE9-1)。结果显示,GS9qPE9-1对籽粒大小的调控具有加性效应,在含有qpe9-1等位基因的直立穗粳稻品种中导入功能缺失型gs9等位基因,可在不影响株型和穗型的前提下,降低籽粒垩白,改良籽粒外观。此外,在另一推广的高产粳稻品种武育粳27(WYJ27)背景中,导入gs9等位基因,也表现出相同的效应,进一步证实利用gs9等位基因改良高产粳稻品种籽粒外观的可行性。本研究为直立穗粳稻及相关品种稻米外观品质改良提供了有效策略




Abstract  The panicle architecture and grain size of rice affect not only grain yield but also grain quality, especially grain appearance. The erect-panicle (EP) trait controlled by the qpe9-1/dep1 allele has been widely used in high-yielding japonica rice breeding, but usually accompanied with moderate appearance of milled rice. The null gs9 allele shows a good potential for improving grain shape and appearance. However, GS9 and qPE9-1/DEP1 loci are tightly linked, and their interaction is unclear, which obviously restricts their utilization in modern rice breeding. In the present study, comparative analyses of protein and mRNA levels revealed that GS9 and qPE9-1 function independently. Three near-isogenic lines (NILs) carrying various allelic combinations of these two loci, NIL (gs9/qpe9-1), NIL (GS9/qPE9-1) and NIL (gs9/qPE9-1), in the EP japonica cultivar 2661 (GS9/qpe9-1) background were developed for genetic interaction analysis. GS9 and qPE9-1 had additive effects on determining grain size, and the null gs9 allele could decrease grain chalkiness and improve grain appearance without affecting plant and panicle architecture in EP japonica cultivars. Additionally, introgression lines (ILs) developed in another released EP japonica cultivar Wuyujing 27 (WYJ27) background showed the same additive effect and the feasibility of utilizing the gs9 allele to improve grain appearance quality in high-yielding EP cultivars. This study provides an effective strategy for rice breeders to improve rice grain appearance in EP japonica and related cultivars.
Keywords:  rice        GS9        qPE9-1/DEP1        genetic interaction        erect panicle       grain appearance  
Received: 23 December 2020   Accepted:
Fund: This work was supported by the National Natural Science Foundation of China (31971914), the National Key Research and Development Program of China (2016YFD0100501), the Key Research and Development Program of Jiangsu Province, China (BE2018357), the Science Fund for Distinguished Young Scholars of Jiangsu Province, China (BK20200045), the Jiangsu Agricultural Science and Technology Innovation Fund (CX(18)1001), the Jiangsu PAPD Talent Project, and the Yong Elite Scientists Sponsorship Program by China Association for Science and Technology (2018QNRC001).
Corresponding Authors:  Correspondence LIU Qiao-quan, E-mail: qqliu@yzu.edu.cn    
About author:  * These authors contributed equally to this study.

Cite this article: 

ZHAO Dong-sheng, LIU Jin-yu, DING Ai-qiu, ZHANG Tao, REN Xin-yu, ZHANG Lin, LI Qian-feng, FAN Xiao-lei, ZHANG Chang-quan, LIU Qiao-quan. 2021. Improving grain appearance of erect-panicle japonica rice cultivars by introgression of the null gs9 allele. Journal of Integrative Agriculture, 20(8): 2032-2042.

Fei C, Yu J, Xu Z, Xu Q. 2019. Erect panicle architecture contributes to increased rice production through the improvement of canopy structure. Molecular Breeding, 39, 128.
Fujisawa Y, Kato T, Ohki S, Ishikawa A, Kitano H, Sasaki T, Asahi T, Iwasaki Y. 1999. Suppression of the heterotrimeric G protein causes abnormal morphology, including dwarfism, in rice. Proceedings of the National Academy of Sciences of the United States of America, 96, 7575–7580.
Gao X, Zhang X, Lan H, Huang J, Wang J, Zhang H. 2015. The additive effects of GS3 and qGL3 on rice grain length regulation revealed by genetic and transcriptome comparisons. BMC Plant Biology, 15, 156.
Harberd N P. 2015. Shaping taste: The molecular discovery of rice genes improving grain size, shape and quality. Journal of Genetics and Genomics, 42, 597–599.
Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X. 2009. Natural variation at the DEP1 locus enhances grain yield in rice. Nature Genetics, 41, 494–497.
Li F, Liu W, Tang J, Chen J, Tong H, Hu B, Li C, Fang J, Chen M, Chu C. 2010. Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation. Cell Research, 20, 838–849.
Li N, Xu R, Li Y. 2019. Molecular networks of seed size control in plants. Annual Review of Plant Biology, 70, 435–463.
Li Y, Fan C, Xing Y, Yun P, Luo L, Yan B, Peng B, Xie W, Wang G, Li X, Xiao J, Xu C, He Y. 2014. Chalk5 encodes a vacuolar H(+)-translocating pyrophosphatase influencing grain chalkiness in rice. Nature Genetics, 46, 398–404.
Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using realtime quantitative PCR and the 2(–Delta Delta C(T)) method. Methods, 25, 402–408.
Ma F, Du J, Wang D, Wang H, Zhao B, He G, Yang Z, Zhang T, Wu R, Zhao F. 2020. Identification of long-grain chromosome segment substitution line Z744 and QTL analysis for agronomic traits in rice. Journal of Integrative Agriculture, 19, 1163–1169.
Mao H, Sun S, Yao J, Wang C, Yu S, Xu C, Li X, Zhang Q. 2010. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proceedings of the National Academy of Sciences of the United States of America, 107, 19579–19584.
Miao J, Yang Z, Zhang D, Wang Y, Xu M, Zhou L, Wang J, Wu S, Yao Y, Du X, Gu F, Gong Z, Gu M, Liang G, Zhou Y. 2019. Mutation of RGG2, which encodes a type B heterotrimeric G protein γ subunit, increases grain size and yield production in rice. Plant Biotechnology Journal, 17, 650–664.
Piao R, Jiang W, Ham T H, Choi M S, Qiao Y, Chu S H, Park J H, Woo M O, Jin Z, An G, Lee J, Koh H J. 2009. Map-based cloning of the ERECT PANICLE 3 gene in rice. Theoretical and Applied Genetics, 119, 1497–1506.
Qiao Y, Piao R, Shi J, Lee S I, Jiang W, Kim B K, Lee J, Han L, Ma W, Koh H J. 2011. Fine mapping and candidate gene analysis of dense and erect panicle 3, DEP3, which confers high grain yield in rice (Oryza sativa L.). Theoretical and Applied Genetics, 122, 1439–1449.
Si L, Chen J, Huang X, Gong H, Luo J, Hou Q, Zhou T, Lu T, Zhu J, Shangguan Y, Chen E, Gong C, Zhao Q, Jing Y, Zhao Y, Li Y, Cui L, Fan D, Lu Y, Weng Q, et al. 2016. OsSPL13 controls grain size in cultivated rice. Nature Genetics, 48, 447–456.
Sun H, Qian Q, Wu K, Luo J, Wang S, Zhang C, Ma Y, Liu Q, Huang X, Yuan Q, Han R, Zhao M, Dong G, Guo L, Zhu X, Gou Z, Wang W, Wu Y, Lin H, Fu X. 2014. Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nature Genetics, 46, 652–656.
Sun S, Wang L, Mao H, Shao L, Li X, Xiao J, Ouyang Y, Zhang Q. 2018. A G-protein pathway determines grain size in rice. Nature Communications, 9, 851.
Swain D M, Sahoo R K, Srivastava V K, Tripathy B C, Tuteja R, Tuteja N. 2017. Function of heterotrimeric G-protein γ subunit RGG1 in providing salinity stress tolerance in rice by elevating detoxification of ROS. Planta, 245, 367–383.
Tian Z, Qian Q, Liu Q, Yan M, Liu X, Yan C, Liu G, Gao Z, Tang S, Zeng D, Wang Y, Yu J, Gu M, Li J. 2009. Allelic diversity in rice starch biosynthesis pathway leads to a diverse array of rice eating and cooking qualities. Proceedings of the National Academy of Sciences of the United States of America, 106, 21760–21765.
Utsunomiya Y, Samejima C, Takayanagi Y, Izawa Y, Yoshida T, Sawada Y, Fujisawa Y, Kato H, Iwasaki Y. 2011. Suppression of the rice heterotrimeric G protein β-subunit gene, RGB1, causes dwarfism and browning of internodes and lamina joint regions. The Plant Journal, 67, 907–916.
Wang S, Cui G, Wang H, Ma F, Xia S, Li Y, Yang Z, Ling Y, Zhang C, He G, Zhao F. 2019. Identification and QTL mapping of Z550, a rice backcrossed inbred line with increased grains per panicle. Journal of Integrative Agriculture, 18, 526–531.
Wang S, Li S, Liu Q, Wu K, Zhang J, Wang S, Wang Y, Chen X, Zhang Y, Gao C, Wang F, Huang H, Fu X. 2015. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nature Genetics, 47, 949–954.
Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X. 2012. Control of grain size, shape and quality by OsSPL16 in rice. Nature Genetics, 44, 950–954.
Wang Y, Xiong G, Hu J, Jiang L, Yu H, Xu J, Fang Y, Zeng L, Xu E, Xu J, Ye W, Meng X, Liu R, Chen H, Jing Y, Wang Y, Zhu X, Li J, Qian Q. 2015. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nature Genetics, 47, 944–948.
Wang Y Z, Zhang N, Chen H, Wang F, Huang Y C, Jia B Y, Wang S, Wang Y, Xu Z J. 2019. Effects of DEP1 on grain yield and grain quality in the background of two japonica rice (Oryza sativa) cultivars. Plant Breeding, 139, 608–617.
Xu D, Fang Z, Hu S, Wang X, Xu M, Pan Q. 2004. Analysis of main quality characters and agronomical characters of erect panicle japonica varieties in Jiangsu Province. Journal of Plant Genetics and Resource, 5, 47–51. (in Chinese)
Xu H, Zhao M, Zhang Q, Xu Z, Xu Q. 2016. The DENSE AND ERECT PANICLE 1 (DEP1) gene offering the potential in the breeding of high-yielding rice. Breeding Science, 66, 659–667.
Xu Z, Chen W, Zhang S, Zhang W, Ma D, Liu L, Zhou S. 2005. Differences of panicle trait index among varieties and its relationship with yield and quality of rice in Liaoning. Scientia Agricultura Sinica, 38, 1926–1930. (in Chinese)
Xue P, Zhang Y, Lou X, Zhu A, Chen Y, Sun B, Yu P, Cheng S, Cao L, Zhan X. 2019. Mapping and genetic validation of a grain size QTL qGS7.1 in rice (Oryza sativa L.). Journal of Integrative Agriculture, 18, 1838–1850.
Yi X, Zhang Z, Zeng S, Tian C, Peng J, Li M, Lu Y, Meng Q, Gu M, Yan C. 2011. Introgression of qPE9-1 allele, conferring the panicle erectness, leads to the decrease of grain yield per plant in japonica rice (Oryza sativa L.). Journal of Genetics and Genomics, 38, 217–223.
Yadav D, Islam S, Tuteja N. 2012. Rice heterotrimeric G-protein gamma subunits (RGG1 and RGG2) are differentially regulated under abiotic stress. Plant Signaling & Behavior, 7, 733–740.
Yan S, Zou G, Li S, Wang H, Liu H, Zhai G, Guo P, Song H, Yan C, Tao Y. 2011. Seed size is determined by the combinations of the genes controlling different seed characteristics in rice. Theoretical and Applied Genetics, 123, 1173–1181.
Ying J Z, Gao J, Shan J, Zhu M, Shi M, Lin H. 2012. Dissecting the genetic basis of extremely large grain shape in rice cultivar ‘JZ1560’. Journal of Genetics and Genomics, 39, 325–333.
Zeng D, Tian Z, Rao Y, Dong G, Yang Y, Huang L, Leng Y, Xu J, Sun C, Zhang G, Hu J, Zhu L, Gao Z, Hu X, Guo L, Xiong G, Wang Y, Li J, Qian Q. 2017. Rational design of high-yield and superior-quality rice. Nature Plants, 3, 17031.
Zhang C, Zhu J, Chen S, Fan X, Li Q, Lu Y, Wang M, Yu H, Yi C, Tang S, Gu M, Liu Q. 2019. Wxlv, the ancestral allele of rice Waxy gene. Molecular Plant, 12, 1157–1166.
Zhao D, Li Q, Zhang C, Zhang C, Yang Q, Pan L, Ren X, Lu J, Gu M, Liu Q. 2018. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality. Nature Communications, 9, 1240.
Zhou H, Xia D, He Y. 2020. Rice grain quality - traditional traits for high quality rice and health-plus substances. Molecular Breeding, 40, doi: 10.1007/s11032-019-1080-6.
Zhou Y, Zhu J, Li Z, Yi C, Liu J, Zhang H, Tang S, Gu M, Liang G. 2009. Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication. Genetics, 183, 315–324.
Zhu K, Tang D, Yan C, Chi Z, Yu H, Chen J, Liang J, Gu M, Cheng Z. 2010. ERECT PANICLE2 encodes a novel protein that regulates panicle erectness in indica rice. Genetics, 184, 343–350.
[1] Gaozhao Wu, Xingyu Chen, Yuguang Zang, Ying Ye, Xiaoqing Qian, Weiyang Zhang, Hao Zhang, Lijun Liu, Zujian Zhang, Zhiqin Wang, Junfei Gu, Jianchang Yang. An optimized strategy of nitrogen-split application based on the leaf positional differences in chlorophyll meter readings[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2605-2617.
[2] Xiaogang He, Zirong Li, Sicheng Guo, Xingfei Zheng, Chunhai Liu, Zijie Liu, Yongxin Li, Zheming Yuan, Lanzhi Li. Epistasis-aware genome-wide association studies provide insights into the efficient breeding of high-yield and high-quality rice[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2541-2556.
[3] Myeong-Hyeon Min, Aye Aye Khaing, Sang-Ho Chu, Bhagwat Nawade, Yong-Jin Park. Exploring the genetic basis of pre-harvest sprouting in rice through a genome-wide association study-based haplotype analysis[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2525-2540.
[4] Peng Xu, Mengdie Jiang, Imran Khan, Muhammad Shaaban, Hongtao Wu, Barthelemy Harerimana, Ronggui Hu. Regulatory potential of soil available carbon, nitrogen, and functional genes on N2O emissions in two upland plantation systems[J]. >Journal of Integrative Agriculture, 2024, 23(8): 2792-2806.
[5] Bin Lei, Jiale Shao, Feng Zhang, Jian Wang, Yunhua Xiao, Zhijun Cheng, Wenbang Tang, Jianmin Wan. Genetic analysis and fine mapping of a grain size QTL in the small-grain sterile rice line Zhuo201S[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2155-2163.
[6] Hanzhu Gu, Xian Wang, Minhao Zhang, Wenjiang Jing, Hao Wu, Zhilin Xiao, Weiyang Zhang, Junfei Gu, Lijun Liu, Zhiqin Wang, Jianhua Zhang, Jianchang Yang, Hao Zhang.

The response of roots and the rhizosphere environment to integrative cultivation practices in paddy rice [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1879-1896.

[7] Yuguang Zang, Gaozhao Wu, Qiangqiang Li, Yiwen Xu, Mingming Xue, Xingyu Chen, Haiyan Wei, Weiyang Zhang, Hao Zhang, Lijun Liu, Zhiqin Wang, Junfei Gu, Jianchang Yang.

Irrigation regimes modulate non-structural carbohydrate remobilization and improve grain filling in rice (Oryza sativa L.) by regulating starch metabolism [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1507-1522.

[8] Luqi Jia, Yongdong Dai, Ziwei Peng, Zhibo Cui, Xuefei Zhang, Yangyang Li, Weijiang Tian, Guanghua He, Yun Li, Xianchun Sang.

The auxin transporter OsAUX1 regulates tillering in rice (Oryza sativa) [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1454-1467.

[9] Chaoyue Pang, Ling Jin, Haoyu Zang, Damalk Saint-Claire S. Koklannou, Jiazhi Sun, Jiawei Yang, Yongxing Wang, Liang Xu, Chunyan Gu, Yang Sun, Xing Chen, Yu Chen. Establishment of a system for screening and identification of novel bactericide targets in the plant pathogenic bacterium Xanthomonas oryzae pv. oryzae using Tn-seq and SPR[J]. >Journal of Integrative Agriculture, 2024, 23(5): 1580-1592.
[10] Junnan Hang, Bowen Wu, Diyang Qiu, Guo Yang, Zhongming Fang, Mingyong Zhang.

OsNPF3.1, a nitrate, abscisic acid and gibberellin transporter gene, is essential for rice tillering and nitrogen utilization efficiency [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1087-1104.

[11] Shuang Cheng, Zhipeng Xing, Chao Tian, Mengzhu Liu, Yuan Feng, Hongcheng Zhang.

Optimized tillage methods increase mechanically transplanted rice yield and reduce the greenhouse gas emissions [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1150-1163.

[12] Yunping Chen, Jie Hu, Zhiwen Cai, Jingya Yang, Wei Zhou, Qiong Hu, Cong Wang, Liangzhi You, Baodong Xu.

A phenology-based vegetation index for improving ratoon rice mapping using harmonized Landsat and Sentinel-2 data [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1164-1178.

[13] Jingnan Zou, Ziqin Pang, Zhou Li, Chunlin Guo, Hongmei Lin, Zheng Li, Hongfei Chen, Jinwen Huang, Ting Chen, Hailong Xu, Bin Qin, Puleng Letuma, Weiwei Lin, Wenxiong Lin.

The underlying mechanism of variety–water–nitrogen–stubble damage interactions on yield formation in ratoon rice with low stubble height under mechanized harvesting [J]. >Journal of Integrative Agriculture, 2024, 23(3): 806-823.

[14] Shuliang Jiao, Qinyan Li, Fan Zhang, Yonghong Tao, Yingzhen Yu, Fan Yao, Qingmao Li, Fengyi Hu, Liyu Huang.

Artificial selection of the Green Revolution gene Semidwarf 1 is implicated in upland rice breeding [J]. >Journal of Integrative Agriculture, 2024, 23(3): 769-780.

[15] Min Jiang, Zhang Chen, Yuan Li , Xiaomin Huang, Lifen Huang, Zhongyang Huo.

Rice canopy temperature is affected by nitrogen fertilizer [J]. >Journal of Integrative Agriculture, 2024, 23(3): 824-835.

No Suggested Reading articles found!