Please wait a minute...
Journal of Integrative Agriculture  2016, Vol. 15 Issue (4): 840-847    DOI: 10.1016/S2095-3119(15)61133-9
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Transcriptome datasets supply basic gene information for RNAi pest management and gene functional studies in Nephotettix cincticeps (Uhler)
CHEN Tai-yu1, 2, HOU Ji-xiang1, LIN Yong-jun1
1 National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, P.R.China
2 College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  RNA interference (RNAi) technology has the potential to be used in pest management in crop production. Here, the transcriptome of Nephotettix cincticeps (Uhler) was deeply sequenced to investigate the systematic RNAi mechanism and candidate genes for dsRNA feeding. In our datasets, a total of 81 225 transcripts were obtained with the length from 150 bp to about 4.2 kb. Almost all the genes related to the RNAi core pathway were proved to be present in N. cincticeps transcriptome. Two transcripts that respectively encode a systemic interference defective (SID) were identified in our database, indicating that the systematic RNAi pathway can function effectively in N. cincticeps. Our datasets not only supply basic gene information for the studies of gene expression and functions in N. cincticeps, such as the control genes for gene expression analysis, but also provide candidate genes for RNAi pest management, such as the genes that encode P450 monooxygenase, V-ATPase and chitin synthase.

Abstract  RNA interference (RNAi) technology has the potential to be used in pest management in crop production. Here, the transcriptome of Nephotettix cincticeps (Uhler) was deeply sequenced to investigate the systematic RNAi mechanism and candidate genes for dsRNA feeding. In our datasets, a total of 81 225 transcripts were obtained with the length from 150 bp to about 4.2 kb. Almost all the genes related to the RNAi core pathway were proved to be present in N. cincticeps transcriptome. Two transcripts that respectively encode a systemic interference defective (SID) were identified in our database, indicating that the systematic RNAi pathway can function effectively in N. cincticeps. Our datasets not only supply basic gene information for the studies of gene expression and functions in N. cincticeps, such as the control genes for gene expression analysis, but also provide candidate genes for RNAi pest management, such as the genes that encode P450 monooxygenase, V-ATPase and chitin synthase.
Keywords:  Nephotettix cincticeps       transcriptome       RNA interference       house-keeping genes  
Received: 02 April 2015   Accepted:
Fund: 

This research was funded by the National Program of Transgenic Variety Development of China (2014ZX08001-001) and the China Postdoctoral Science Foundation (2013M531705).

Corresponding Authors:  LIN Yong-jun, Tel: +86-27-87281719, E-mail: yongjunlin@mail.hzau.edu.cn      E-mail:  yongjunlin@mail.hzau.edu.cn
About author:  CHEN Tai-yu, Tel: +86-27-87280516, E-mail: ctycxd@163.com

Cite this article: 

CHEN Tai-yu, HOU Ji-xiang, LIN Yong-jun. 2016. Transcriptome datasets supply basic gene information for RNAi pest management and gene functional studies in Nephotettix cincticeps (Uhler). Journal of Integrative Agriculture, 15(4): 840-847.

Altschul S F, Gish W, Miller W, Myers E W, Lipman D J. 1990. Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.

Baum J A, Bogaert T, Clinton W, Heck G R, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M, Vaughn T, Roberts J. 2007. Control of coleopteran insect pests through RNA interference. Nature Biotechnology, 25, 1322–1326.

Carthew R W, Sontheimer E J. 2009. Origins and mechanisms of miRNAs and siRNAs. Cell, 136, 642–655.

Chen H, Tang W, Xu C, Li X, Lin Y, Zhang Q. 2005. Transgenic indica rice plants harboring a synthetic cry2A* gene of Bacillus thuringiensis exhibit enhanced resistance against lepidopteran rice pests. Theoretical and Applied Genetics, 111, 1330–1337.

Conesa A, Gotz S, Garcia-Gomez J M, Terol J, Talon M, Robles M. 2005. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21, 3674–3676.

Feinberg E H, Hunter C P. 2003. Transport of dsRNA into cells by the transmembrane protein SID-1. Science, 301, 1545–1547.

Ferry N, Edwards M G, Gatehouse J A, Gatehouse A M. 2004. Plant-insect interactions: Molecular approaches to insect resistance. Current Opinion in Biotechnology, 15, 155–161.

Firmino A A, Fonseca F C, de Macedo L L, Coelho R R, Antonino de Souza Jr J D, Togawa R C, Silva-Junior O B, Pappas-Jr G J, da Silva M C, Engler G, Grossi-de-Sa M F. 2013. Transcriptome analysis in cotton boll weevil (Anthonomus grandis) and RNA interference in insect pests. PLoS One, 8, e85079.

Grabherr M G, Haas B J, Yassour M, Levin J Z, Thompson D A, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29, 644–652.

Jinek M, Doudna J A. 2009. A three-dimensional view of the molecular machinery of RNA interference. Nature, 457, 405–412.

Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. 2004. The KEGG resource for deciphering the genome. Nucleic Acids Research, 32, D277-D280.

Kumar S, Tamura K, Nei M. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics, 5, 150–163.

Li J, Chen Q, Lin Y, Jiang T, Wu G, Hua H. 2011. RNA interference in Nilaparvata lugens (Homoptera: Delphacidae) based on dsRNA ingestion. Pest Management Science, 67, 852–859.

Ma W, Zhang Z, Peng C, Wang X, Li F, Lin Y. 2012. Exploring the midgut transcriptome and brush border membrane vesicle proteome of the rice stem borer, Chilo suppressalis (Walker). PLoS One, 7, e38151.

Mao Y B, Cai W J, Wang J W, Hong G J, Tao X Y, Wang L J, Huang Y P, Chen X Y. 2007. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nature Biotechnology, 25, 1307–1313.

Matsumoto Y, Suetsugu Y, Nakamura M, Hattori M. 2014. Transcriptome analysis of the salivary glands of Nephotettix cincticeps (Uhler). Journal of Insect Physiology, 71, 170–176.

Price D R, Gatehouse J A. 2008. RNAi-mediated crop protection against insects. Trends in Biotechnology, 26, 393–400.

Senti K A, Brennecke J. 2010. The piRNA pathway: A fly’s perspective on the guardian of the genome. Trends in Genetics, 26, 499–509.

Tang W, Chen H, Xu C, Li X, Lin Y, Zhang Q. 2006. Development of insect-resistant transgenic indica rice with a synthetic cry1C* gene. Molecular Breeding, 18, 1–10.

Tomizawa M, Noda H. 2013. High mortality caused by high dose of dsRNA in the green rice leafhopper Nephotettix cincticeps (Hemiptera: Cicadellidae). Applied Entomology and Zoology, 48, 553–559.

Tomoyasu Y, Miller S C, Tomita S, Schoppmeier M, Grossmann D, Bucher G. 2008. Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium. Genome Biology, 9, R10.

Winston W M, Molodowitch C, Hunter C P. 2002. Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science, 295, 2456–2459.

Xu H, He X, Zheng X, Yang Y, Tian J, Lu Z. 2014. Southern rice black-streaked dwarf virus (SRBSDV) directly affects the feeding and reproduction behavior of its vector, Sogatella furcifera (Horvath) (Hemiptera: Delphacidae). Virology Journal, 11, 55.

Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L. 2006. WEGO: A web tool for plotting GO annotations. Nucleic Acids Research, 34, W293-W297.

Ye R, Huang H, Yang Z, Chen T, Liu L, Li X, Chen H, Lin Y. 2009. Development of insect-resistant transgenic rice with Cry1C*-free endosperm. Pest Management Science, 65, 1015–1020.
[1] SHAN Yan-ju, JI Gai-ge, ZHANG Ming, LIU Yi-fan, TU Yun-jie, JU Xiao-jun, SHU Jing-ting, ZOU Jian-min. Use of transcriptome sequencing to explore the effect of CSRP3 on chicken myoblasts[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1159-1171.
[2] JIN Ji-su, LIU Yi-ran, ZHOU Zhong-shi, WAN Fang-hao, GUO Jian-ying. Halloween genes AhCYP307A2 and AhCYP314A1 modulate last instar larva–pupa–adult transition, ovarian development and oogenesis in Agasicles hygrophila (Coleoptera: Chrysomelidae)[J]. >Journal of Integrative Agriculture, 2023, 22(3): 812-824.
[3] Jelli VENKATESH, Sung Jin KIM, Muhammad Irfan SIDDIQUE, Ju Hyeon KIM, Si Hyeock LEE, Byoung-Cheorl KANG. CopE and TLR6 RNAi-mediated tomato resistance to western flower thrips[J]. >Journal of Integrative Agriculture, 2023, 22(2): 471-480.
[4] YE Qing-ya, LI Zhi-xing, CHEN Qing-ling, SUN Ming-xu, YIN Ming-liang, LIN Tong. Fatty acid-binding protein gene is indispensable for molting process in Heortia vitessoides (Lepidoptera: Crambidae)[J]. >Journal of Integrative Agriculture, 2023, 22(2): 495-504.
[5] FAN Zi-zhen, MA Qin, MA Si-ya, CAO Feng-qin, YAN Ri-hui, LIN Xian-wu.

Maleness-on-the-Y (MoY) orthologue is a key regulator of male sex determination in Zeugodacus cucurbitae (Diptera: Tephritidae) [J]. >Journal of Integrative Agriculture, 2023, 22(2): 505-513.

[6] LONG Ke-ren, LI Xiao-kai, ZHANG Ruo-wei, GU Yi-ren, DU Min-jie, XING Xiang-yang, DU Jia-xiang, MAI Miao-miao, WANG Jing, JIN Long, TANG Qian-zi, HU Si-lu, MA Ji-deng, WANG Xun, PAN Deng-ke, LI Ming-zhou. Transcriptomic analysis elucidates the enhanced skeletal muscle mass, reduced fat accumulation, and metabolically benign liver in human follistatin-344 transgenic pigs[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2675-2690.
[7] LÜ Jing, Satyabrata NANDA, CHEN Shi-min, MEI Yang, HE Kang, QIU Bao-li, ZHANG You-jun, LI Fei, PAN Hui-peng.

A survey on the off-target effects of insecticidal double-stranded RNA targeting the Hvβ´COPI gene in the crop pest Henosepilachna vigintioctopunctata through RNA-seq [J]. >Journal of Integrative Agriculture, 2022, 21(9): 2665-2674.

[8] WANG Bo, HUANG Tian-yu, YAO Yuan, Frederic FRANCIS, YAN Chun-cai, WANG Gui-rong, WANG Bing. A conserved odorant receptor identified from antennal transcriptome of Megoura crassicauda that specifically responds to cis-jasmone[J]. >Journal of Integrative Agriculture, 2022, 21(7): 2042-2054.
[9] FAN Xiao-xue, BIAN Zhong-hua, SONG Bo, XU Hai. Transcriptome analysis reveals the differential regulatory effects of red and blue light on nitrate metabolism in pakchoi (Brassica campestris L.)[J]. >Journal of Integrative Agriculture, 2022, 21(4): 1015-1027.
[10] ZHOU Cheng-zhe, ZHU Chen, LI Xiao-zhen, CHEN Lan, XIE Si-yi, CHEN Guang-wu, ZHANG Huan, LAI Zhong-xiong, LIN Yu-ling, GUO Yu-qiong. Transcriptome and phytochemical analyses reveal roles of characteristic metabolites in the taste formation of white tea during withering process[J]. >Journal of Integrative Agriculture, 2022, 21(3): 862-877.
[11] LIU Li-feng, GAO Le, ZHANG Li-xin, CAI Yu-peng, SONG Wen-wen, CHEN Li, YUAN Shan, WU Ting-ting, JIANG Bing-jun, SUN Shi, WU Cun-xiang, HOU Wen-sheng, HAN Tian-fu. Co-silencing E1 and its homologs in an extremely late-maturing soybean cultivar confers super-early maturity and adaptation to high-latitude short-season regions[J]. >Journal of Integrative Agriculture, 2022, 21(2): 326-335.
[12] ZHU Ying-chun, YUAN Gao-peng, JIA Sheng-feng, AN Guo-lin, LI Wei-hua, SUN De-xi, LIU Jun-pu. Transcriptomic profiling of watermelon (Citrullus lanatus) provides insights into male flowers development[J]. >Journal of Integrative Agriculture, 2022, 21(2): 407-421.
[13] WU Zhe, YANG Xuan, ZHAO Yu-xuan, JIA Li. Identifying candidate genes involved in trichome formation on carrot stems by transcriptome profiling and resequencing [J]. >Journal of Integrative Agriculture, 2022, 21(12): 3589-3599.
[14] MA Wen-tao, LU Min, AN Hua-ming, YI Yin. Comparative transcriptomic analysis of Rosa sterilis inflorescence branches with different trichome types reveals an R3-MYB transcription factor that negatively regulates trichome formation[J]. >Journal of Integrative Agriculture, 2022, 21(10): 2926-2942.
[15] CHU Shuang-feng, ZHAO Tian-qi, Abdelaziz Adam Idriss ARBAB, YANG Yi, CHEN Zhi, YANG Zhang-ping. MiR-140 downregulates fatty acid synthesis by targeting transforming growth factor alpha (TGFA) in bovine mammary epithelial cells[J]. >Journal of Integrative Agriculture, 2022, 21(10): 3004-3016.
No Suggested Reading articles found!