Please wait a minute...
Journal of Integrative Agriculture  2020, Vol. 19 Issue (2): 428-427    DOI: 10.1016/S2095-3119(19)62702-4
Section 4 Integrative management strategies for potato insect pests Advanced Online Publication | Current Issue | Archive | Adv Search |
RNA interference in Colorado potato beetle (Leptinotarsa decemlineata): A potential strategy for pest control
MA Mei-qi, HE Wan-wan, XU Shi-jing, XU Le-tian, ZHANG Jiang
State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan 430062, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  
Colorado potato beetle (CPB), Leptinotarsa decemlineata, is a notorious destructive pest that mainly feeds on the leaves of potato and several other solanaceous plants.  CPB is widely recognized for its adaptation to a remarkable variety of host plants and diverse climates, and its high resistance to insecticides and Bacillus thuringiensis toxins.  RNA interference (RNAi) is a sequence-specific, endogenous gene silencing mechanism evoked by small RNA molecules that is used as a robust tool for virus and pest control.  RNAi has been extensively tested for CPB management by employing various target genes and delivery methods.  This article reviews the screening of RNAi target genes, efficient RNAi delivery systems, and factors affecting RNAi efficiency in CPB, which may help understand the mechanisms of RNAi and its application in CPB control strategy.
 
Keywords:  Colorado potato beetle        double-stranded RNA        pest control        RNA interference        RNAi delivery system  
Received: 01 November 2018   Accepted:
Fund: The study is funded by the National Natural Science Foundation of China (31572071).
Corresponding Authors:  Correspondence ZHANG Jiang, Tel/Fax: +86-27-88661237-8064, E-mail: zhangjiang@hubu.edu.cn   

Cite this article: 

MA Mei-qi, HE Wan-wan, XU Shi-jing, XU Le-tian, ZHANG Jiang. 2020.

RNA interference in Colorado potato beetle (Leptinotarsa decemlineata): A potential strategy for pest control
. Journal of Integrative Agriculture, 19(2): 428-427.

Airs P M, Bartholomay L C. 2017. RNA interference for mosquito and mosquito-borne disease control. Insects, 8, 4.
Alyokhin A, Baker M, Mota-Sanchez D, Dively G, Grafius E. 2008. Colorado potato beetle resistance to insecticides. American Journal of Potato Research, 85, 395–413.
Alyokhin A V, Ferro D N. 1999. Relative fitness of Colorado potato beetle (Coleoptera: Chrysomelidae) resistant and susceptible to the Bacillus thuringiensis Cry3A toxin. Journal of Economic Entomology, 92, 510–515.
Arimatsu Y, Kotani E, Sugimura Y, Furusawa T. 2007. Molecular characterization of a cDNA encoding extracellular dsRNase and its expression in the silkworm, Bombyx mori. Insect Biochemistry & Molecular Biology, 37, 176–183.
Baum J, Bogaert T, Clinton W, Heck G R, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M. 2007. Control of coleopteran insect pests through RNA interference. Nature Biotechnology, 25, 1322–1326
Bock R. 2015. Engineering plastid genomes: Methods, tools, and applications in basic research and biotechnology. Annual Review of Plant Biology, 66, 211–241.
Bolognesi R, Ramaseshadri P, Anderson J, Bachman P, Clinton W, Flannagan R, IIagan O, Lawrence C, Levine S, Moar W, Mueller G, Tan J, Uffman J, Wiggins E, Heck G, Segers G. 2012. Characterizing the mechanism of action of double-stranded RNA activity against western corn rootworm (Diabrotica virgifera virgifera LeConte). PLoS ONE, 7, e47534.
Cappelle K, de Oliveira C F, Van E B, Christiaens O, Smagghe G. 2016. The involvement of clathrin-mediated endocytosis and two Sid-1-like transmembrane proteins in double-stranded RNA uptake in the Colorado potato beetle midgut. Insect Molecular Biology, 25, 315–323.
Christiaens O, Swevers L, Smagghe G. 2014. DsRNA degradation in the pea aphid (Acyrthosiphon pisum) associated with lack of response in RNAi feeding and injection assay. Peptides, 53, 307–314.
Cooper A M, Silver K, Zhang J, Park Y, Zhu K Y. 2019. Molecular mechanisms influencing efficiency of RNA interference in insects. Pest Management Science, 75, 18–28.
De Cosa B, Moar W, Lee S B, Miller M, Daniell H. 2001. Overexpression of the Bt Cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nature Biotechnology, 19, 71–74.
Czech B, Malone C D, Zhou R, Stark A, Schlingeheyde C, Dus M, Perrimon N, Kellis M, Wohlschlegel J A, Sachidanandam R, Hannon G J, Brennecke J. 2008. An endogenous small interfering RNA pathway in Drosophila. Nature, 453, 798–802.
Davis-Vogel C, Ortiz A, Procyk L, Robeson J, Kassa A, Wang Y, Huang E, Walker C, Sethi A, Nelson M E, Sashital D G. 2018. Knockdown of RNA interference pathway genes impacts the fitness of western corn rootworm. Scientific Reports, 8, 1.
Dowling D, Pauli T, Donath A, Meusemann K, Podsiadlowski L, Petersen M, Peters R S, Mayer C, Liu S, Zhou X, Misof B, Niehuis O. 2016. Phylogenetic origin and diversification of RNAi pathway genes in insects. Genome Biology & Evolution, 8, 3784–3793.
Dubrovsky E B. 2005. Hormonal cross talk in insect development. Trends in Endocrinology & Metabolism, 16, 6–11.
Dufourmantel N, Dubald M, Matringe M, Canard H, Garcon F, Job C, Kay E, Wisniewscki J P, Ferullo J M, Pelissier B, Sailland A, Tissot G. 2007. Generation and characterization of soybean and marker-free tobacco plastid transformants over-expressing a bacterial 4-hydroxyphenylpyruvate dioxygenase which provides strong herbicide tolerance. Plant Biotechnology Journal, 5, 118–133.
Engle P, Moran N A. 2013. The gut microbiota of insects - diversity in structure and function. FEMS Microbiology Reviews, 37, 699–735.
Fang W, Vega-Rodríguez J, Ghosh A K, Jacobs-Lorena M, Kang A, St Leger R J. 2011. Development of transgenic fungi that kill human malaria parasites in mosquitoes. Science, 331, 1074–1077.
Ferro D N, Logan J A, Voss R H, Elkinton J S. 1985. Colorado potato beetle (Coleoptera: Chrysomelidae) temperature-dependent growth and feeding rates. Environmental Entomology, 14, 343–348.
Frizzi A, Huang S. 2010. Tapping RNA silencing pathways for plant biotechnology. Plant Biotechnology Journal, 8, 655–677.
Fu K, Guo W C, Ahmat T, Li G. 2015. Knockdown of a nutrient amino acid transporter gene LdNAT1 reduces free neutral amino acid contents and impairs Leptinotarsa decemlineata pupation. Scientific Reports, 5, 18124.
Fu K Y, Li Q, Zhou L T, Meng Q W, Lü F G, Guo W C, Li G Q. 2016a. Knockdown of juvenile hormone acid methyl transferase severely affects the performance of Leptinotarsa decemlineata (Say) larvae and adults. Pest Management Science, 72, 1231–1241.
Fu K Y, Zhu T T, Guo W C, Ahmat T, Li G Q. 2016b. Knockdown of a putative insulin-like peptide gene LdILP2 in Leptinotarsa decemlineata by RNA interference impairs pupation and adult emergence. Gene, 581, 170–177.
Gaddelapati S C, Kalsi M, Roy A, Palli S R. 2018. Cap ‘n’ collar C regulates genes responsible for imidacloprid resistance in the Colorado potato beetle, Leptinotarsa decemlineata. Insect Biochemistry & Molecular Biology, 99, 54–62.
Guo W C, Bai C, Wang Z, Wang P, Fan, Q, Mi X X, Wang L, He J, Pang J H, Luo X L, Fu W D, Tian Y C, Si H J, Zhang G L, Wu J H. 2018. Double-stranded RNAs high-efficiently protect transgenic potato from Leptinotarsa decemlineata by disrupting juvenile hormone biosynthesis. Journal of Agricultural and Food Chemistry, 66, 11990–11999.
Guo W C, Fu K, Yang S, Li X, Li G Q. 2015a. Instar-dependent systemic RNA interference response in Leptinotarsa decemlineata larvae. Pesticide Biochemistry & Physiology, 123, 64–73.
Guo W C, Liu X P, Fu K Y, Shi J F, Lü F G, Li G Q. 2015b. Functions of nuclear receptor HR3 during larval-pupal molting in Leptinotarsa decemlineata (Say) revealed by
in vivo RNA interference. Insect Biochemistry & Molecular Biology, 63, 23–33.
Guo W C, Liu X P, Fu K Y, Shi J F, Lü F G, Li G Q. 2016. Nuclear receptor ecdysone-induced protein 75 is required for larval-pupal metamorphosis in the Colorado potato beetle Leptinotarsa decemlineata (Say). Insect Molecular Biology, 25, 44–57.
Hare D J. 1980. Impact of defoliation by the Colorado potato beetle on potato yields. Journal of Economic Entomology, 73, 369–373.
Harris C R, Turnbull S A. 1986. Contact toxicity of some pyrethroid insecticides, alone and in combination with piperonyl butoxide, to insecticide-susceptible and pyrethroid-resistant strains of the Colorado potato beetle (Coleoptera: Chrysomelidae). Canadian Entomologist, 118, 1173–1176.
Hough-Goldstein J A, Heimpel G E, Bechmann H E, Mason C E. 1993. Arthropod natural enemies of the Colorado potato beetle. Crop Protection, 12, 324–334.
Hu J, Xia Y X. 2018. Increased virulence in the locust-specific fungal pathogen Metarhizium acridum expressing dsRNAs targeting the host F1F0-ATPase subunit genes. Pest Management Science, 75, 180–186.
Hutchison W D, Burkness E C, Mitchell P D, Moon R D, Leslie T W, Fleischer S J, Abrahamson M, Hamilton K L, Steffey K L, Gray M E, Hellmich R L, Kaster L V, Hunt T E, Wright R J, Pecinovsky K, Rabaey T L, Flood B R, Raun E S. 2010. Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science, 330, 222–225.
Jolivet P. 1991. The Colorado beetle threatens Asia. Leptinotarsa decemlineata Say 1824 (Col. Chrysomelidae). Entomologiste, 47, 29–48.
Jurat-Fuentes J L, Dee J, Moar B, Baum J A, Beattie J, Alyokhin A, Clough M, Felton G W, Groves R L, Menasha S R, Ostlie K, Rondon S I. 2017. Selection of resistance to insecticidal RNAi in Colorado potato beetle (Leptinotarsa Decemlineata). [2019-07-18]. https://www.ent.iastate.edu/events/2017-entomological-society-america-annual-meeting
Khajuria C, Ivashuta S, Wiggins E, Flagel L, Moar W, Pleau M, Miller K, Zhang Y, Ramaseshadri P, Jiang C, Hodge T, Jensen P, Chen M, Gowda A, McNulty B, Vazquez C, Bolognesi R, Haas J, Head G, Clark T. 2018. Development and characterization of the first dsRNA-resistant insect population from western corn rootworm, Diabrotica virgifera virgifera LeConte. PLoS ONE, 13, e0197059.
Khan M A, Kort C A D D. 1978. Further evidence for the significance of proline as a substrate for flight in the colorado potato beetle, Leptinotarsa decemlineata. Comparative Biochemistry and Physiology (Part B: Biochemistry & Molecular Biology), 60, 407–411.
Kong Y, Liu X P, Wan P J, Shi X Q, Guo W C, Li G Q. 2015. The P450 enzyme Shade mediates the hydroxylation of ecdysone to 20-hydroxyecdysone in the Colorado potato beetle, Leptinotarsa decemlineata. Insect Molecular Biology, 23, 632–643.
Kort C A D D, Bartelink A K M, Schuurmans R R. 1973. The significance of L-proline for oxidative metabolism in the flight muscles of the Colorado beetle, Leptinotarsa decemlineata. Insect Biochemistry, 3, 11–17.
Kort C A D D, Bergot B J, Schooley D A. 1982. Nature and titre of juvenile hormones in the Colorado potato beetle, Leptinotarsa decemlineata. Journal of Insect Physiology, 28, 471–474.
Lin J, Zhang H N, Lu Y H, Yang Y H, Wu K M, Tabashnik B E, Wu Y D. 2015. Large-scale test of the natural refuge strategy for delaying insect resistance to transgenic Bt crops. Nature Biotechnology, 33, 169–174.
Liu X P, Fu K Y, Lü F G, Meng Q W, Guo W C, Li G Q. 2014. Involvement of FTZ-F1 in the regulation of pupation in Leptinotarsa decemlineata (Say). Insect Biochemistry & Molecular Biology, 55, 51–60.
Lu M, Hulcr J, Sun J. 2016. The role of symbiotic microbes in insect invasions. Annual Review of Ecology, Evolution, and Systematics, 47, 487–505.
Lu Y H, Rijzaani H, Karcher D, Ruf S, Bock R. 2013. Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons. Proceedings of the National Academy of Sciences of the United States of America, 110, E623–E632.
Lü F G, Fu K Y, Guo W C, Li G Q. 2015. Characterization of two juvenile hormone epoxide hydrolases by RNA interference in the Colorado potato beetle. Gene, 570, 264–271.
Luo Y, Wang X, Wang X, Yu D, Chen B, Kang L. 2013. Differential responses of migratory locusts to systemic RNA interference via double-stranded RNA injection and feeding. Insect Molecular Biology, 22, 574–583.
Mao Y B, Cai W J, Wang J W, Hong G J, Tao X Y, Wang L J, Huang Y P, Chen X Y. 2007. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nature Biotechnology, 25, 1307–1313.
Margis R, Fusaro A F, Smith N A, Curtin S J, Watson J M, Finnegan E J, Waterhouse P M. 2006. The evolution and diversification of Dicers in plants. FEBS Letters, 580, 2442–2450.
Motasanchez D, Hollingworth R M, Grafius E J, Moyer D D. 2010. Resistance and cross-resistance to neonicotinoid insecticides and spinosad in the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae). Pest Management Science, 62, 30–37.
Ni M, Ma W, Wang X F, Gao M J, Dai Y, Wei X L, Zhang L, Peng Y G, Chen S Y, Ding L Y, Tian Y, Li J, Wang H P, Wang X L, Xu G W, Guo W Z, Yang Y H, Wu Y D, Heuberger S, Tabashnik B E, et al. 2017. Next-generation transgenic cotton: Pyramiding RNAi and Bt counters insect resistance. Plant Biotechnology Journal, 15, 1204–1213.
Ochoa-Campuzano C, Martínez-Ramírez A C, Contreras E, Rausell C, Real M D. 2013. Prohibitin, an essential protein for Colorado potato beetle larval viability, is relevant to Bacillus thuringiensis Cry3Aa toxicity. Pesticide Biochemistry & Physiology, 107, 299–308.
Perlak F J, Stone T B, Muskopf Y M, Petersen L J, Parker G B, McPherson S A, Wyman J, Love S, Reed G, Biever D, Fischhoff D A. 1993. Genetically improved potatoes: Protection from damage by Colorado potato beetles. Plant Molecular Biology, 22, 313–321.
Ruhlman T A. 2014. Plastid transformation in lettuce (Lactuca sativa L.) by biolistic DNA delivery. Methods in Molecular Biology, 1132, 331–343.
San M K, Scott J G. 2016. The next generation of insecticides: DsRNA is stable as a foliar-applied insecticide. Pest Management Science, 72, 801–809.
Santos D, Vanden Broeck J, Wynant N. 2014. System RNA interference in locusts: Reverse genetics and possibilities for locust pest control. Current Opinion in Insect Science, 6, 9–14.
Sarah L B, Jian-Zhou Z, Richard T R, Anthony M S. 2005. Insect resistance management in GM crops: past, present and future. Nature Biotechnology, 23, 57–62.
Schoville S D, Chen Y H, Andersson M N, Benoit J B, Bhandari A, Bowsher J H, Brevik K, Cappelle K, Chen M M, Childers A K, Childers C, Christiaens O, Clements J, Didion E M, Elpidina E N, Engsontia P, Friedrich M, Garcia-Robles I, Gibbs R A, Goswami C, et al. 2018. A model species for agricultural pest genomics: The genome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Scientific Reports, 8, 1931.
Shi J F, Fu J, Mu L L, Guo W C, Li G Q. 2016a. Two Leptinotarsa uridine diphosphate N-acetylglucosamine pyrophosphorylases are specialized for chitin synthesis in larval epidermal cuticle and midgut peritrophic matrix. Insect Biochemistry & Molecular Biology, 68, 1–12.
Shi J F, Mu L L, Chen X, Guo W C, Li G Q. 2016b. RNA interference of chitin synthase genes inhibits chitin biosynthesis and affects larval performance in Leptinotarsa decemlineata (Say). International Journal of Biological Sciences, 12, 1319–1331.
Shi J F, Xu Q Y, Sun Q K, Meng Q W, Mu L L, Guo W C, Li G Q. 2016c. Physiological roles of trehalose in Leptinotarsa larvae revealed by RNA interference of trehalose-6-phosphate synthase and trehalase genes. Insect Biochemistry & Molecular Biology, 77, 52–68.
Silcox C A, Ghidiu G M, Forgash A J. 1985. Laboratory and field evaluation of piperonyl butoxide as a pyrethroid synergist against the Colorado potato beetle (Coleoptera: Chrysomelidae). Journal of Economic Entomology, 78, 1399–1405.
Siomi M C, Sato K, Pezic D, Aravin A A. 2011. PIWI-interacting small RNAs: The vanguard of genome defence. Nature Reviews Molecular Cell Biology, 12, 246–258.
Skryabin K. 2010. Do Russia and Eastern Europe need GM plants? Nature Biotechnology, 27, 593–595.
Spit J, Philips A, Wynant N, Santos D, Plaetinck G, Vanden B J. 2017. Knockdown of nuclease activity in the gut enhances RNAi efficiency in the Colorado potato beetle, Leptinotarsa decemlineata, but not in the desert locust, Schistocerca gregaria. Insect Biochemistry & Molecular Biology, 81, 103–116.
Swevers L, Huvenne H, Menschaert G, Kontogiannatos D, Kourti A, Pauchet Y, Ffrench-Constant R, Smagghe G. 2013. Colorado potato beetle (Coleoptera) gut transcriptome analysis: expression of RNA interference-related genes. Insect Molecular Biology, 22, 668–684.
Tabashnik B E, Sisterson M S, Ellsworth P C, Dennehy T J, Antilla L, Liesner L, Whitlow M, Staten R T, Fabrick J A, Unnithan G C, Yelich A J, Ellers-Kirk C, Harpold V S, Li X, Carrière Y. 2010. Suppressing resistance to Bt cotton with sterile insect releases. Nature Biotechnology, 28, 1304–1307.
Terenius O, Papanicolaou A, Garbutt J S, Eleftherianos I, Huvenne H, Kanginakudru S, Albrechtsen M, An C, Aymeric JL, Barthel A, Bebas P, Bitra K, Bravo A, Chevalier F, Collinge D P, Crava C M, de Maagd R A, Duvic B, Erlandson M, Faye I, et al. 2011. RNA interference in Lepidoptera: An overview of successful and unsuccessful studies and implications for experimental design. Journal of Insect Physiology, 57, 231–245
Timmons L, Court D L, Fire A. 2001. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene, 263, 103–112.
Wan P J, Fu K Y, Lü F G, Guo W C, Li G Q. 2015a. Knockdown of a putative alanine aminotransferase gene affects amino acid content and flight capacity in the Colorado potato beetle Leptinotarsa decemlineata. Amino Acids, 47, 1445–1454.
Wan P J, Fu K Y, Lü F G, Wang X X, Guo W C, Li G Q. 2015b. Knocking down a putative Δ1-pyrroline-5-carboxylate dehydrogenase gene by RNA interference inhibits flight and causes adult lethality in the Colorado potato beetle Leptinotarsa decemlineata (Say). Pest Management Science, 71, 1387–1396.
Weber D. 2003. Colorado beetle: Pest on the move. Pesticide Outlook, 14, 256–259.
Weisz R, Smilowitz Z, Christ B. 1994. Distance, rotation, and border crops affect Colorado potato beetle (Coleoptera: Chrysomelidae) colonization and population density and early blight (Alternaria Solani) severity in rotated potato fields. Journal of Economic Entomology, 87, 723–729.
Whitten M M A, Facey P D, Del Sol R, Fernández-Martínez L T, Evans M C, Mitchell J J, Bodger O G, Dyson P J. 2016. Symbiont-mediated RNA interference in insects. Proceedings of the Royal Society (B), 283, 20160042.
Xiao D, Gao X W, Xu J P, Liang X, Li Q Q, Yao J X, Zhu K Y. 2015. Clathrin-dependent endocytosis plays a predominant role in cellular uptake of double-stranded RNA in the red flour beetle. Insect Biochemistry & Molecular Biology, 60, 68–77.
Xu L T, Deng J D, Zhou F Y, Cheng C H, Zhang L W, Zhang J, Lu M. 2019. Gut microbiota in an invasive bark beetle infected by a pathogenic fungus accelerates beetle mortality. Journal of Pest Science, 92, 343–351.
Xu L T, Lou Q Z, Cheng C H, Lu M, Sun J H. 2015. Gut-associated bacteria of Dendroctonus valens and their involvement in verbenone production. Microbial Ecology, 70, 1012–1023.
Xu L T, Zhang Y Q, Zhang S H, Deng J D, Lu M, Zhang L W, Zhang J. 2018. Comparative analysis of the immune system of an invasive bark beetle, Dendroctonus valens, infected by an entomopathogenic fungus. Developmental and Comparative Immunology, 88, 65–69.
Yoon J S, Mogilicherla K, Gurusamy D, Chen X, Chereddy S C R R, Palli S R. 2018. Double-stranded RNA binding protein, Staufen, is required for the initiation of RNAi in coleopteran insects. Proceedings of the National Academy of Sciences of the United States of America, 115, 8334–8339.
Yoon J S, Shukla J, Zhong J G, Mogilicherla K, Palli S R. 2016. RNA interference in the Colorado potato beetle, Leptinotarsa decemlineata: Identification of key contributors. Insect Biochemistry & Molecular Biology, 78, 78–88.
Yoon K S, Nelson J O, Clark J M. 2002. Selective induction of abamectin metabolism by dexamethasone, 3-methylcholanthrene, and phenobarbital in Colorado potato beetle, Leptinotarsa decemlineata (Say). Pesticide Biochemistry & Physiology, 73, 74–86.
Zhang J, Khan S A, Hasse C, Ruf S, Heckel D G, Bock R. 2015. Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids. Science, 347, 991–994.
Zhang J, Khan S A, Heckel D G, Bock R. 2017. Next-generation insect-resistant plants: RNAi-mediated crop protection. Trends in Biotechnology, 35, 871–882.
Zhou L T, Jia S, Wan P J, Kong Y, Guo W C, Ahmat T, Li G Q. 2013. RNA interference of a putative S-adenosyl-L-homocysteine hydrolase gene affects larval performance in Leptinotarsa decemlineata (Say). Journal of Insect Physiology, 59, 1049–1056.
Zhu F, Xu J, Palli R, Ferguson J, Palli S R. 2011. Ingested RNA interference for managing the populations of the Colorado potato beetle, Leptinotarsa decemlineata. Pest Management Science, 67, 175–182.
 
[1] GAO Yue, LUO Jian, SUN Yue, ZHANG Hua-wei, ZHANG Da-xia, LIU Feng, MU Wei, LI Bei-xing. Photosensitivity and a precise combination of size-dependent lambda-cyhalothrin microcapsules synergistically generate better insecticidal efficacy [J]. >Journal of Integrative Agriculture, 2023, 22(5): 1477-1488.
[2] LU Qi-qi, SONG Yuan-feng, PAN Ke-qing, LI Yun, TANG Ming-xin, ZHONG Guo-hua, LIU Jie. Improved crop protection and biodiversity of the agroecosystem by reduced tillage in rice paddy fields in southern China[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2345-2356.
[3] LI Tian-pu, ZHANG Li-wen, LI Ya-qing, YOU Min-sheng, ZHAO Qian. Functional analysis of the orphan genes Tssor-3 and Tssor-4 in male Plutella xylostella[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1880-1888.
[4] ZHAO Xiao-fan. Progress in understanding hormonal regulation during the post-embryonic development of Helicoverpa armigera[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1417-1428.
[5] MENG Miao, YU Qi, WANG Qin, LIU Chun, LIU Zhao-yang, REN Chun-jiu, CUI Wei-zheng, LIU Qing-xin. BmApontic is involved in neurodevelopment in the silkworm Bombyx mori[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1439-1446.
[6] LIU Jiao, ZHANG Xue-yao, WU Hai-hua, MA Wen, ZHU Wen-ya, Kun-Yan ZHU, MA En-bo, ZHANG Jian-zhen . Characteristics and roles of cytochrome b5 in cytochrome P450-mediated oxidative reactions in Locusta migratoria[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1512-1521.
[7] Silvia I. RONDON. Decoding Phthorimaea operculella (Lepidoptera: Gelechiidae) in the new age of change[J]. >Journal of Integrative Agriculture, 2020, 19(2): 316-324.
[8] YANG Fang-yuan, GUO Jian-jun, LIU Ning, ZHANG Run-zhi.
Genetic structure of the invasive Colorado potato beetle Leptinotarsa decemlineata populations in China
[J]. >Journal of Integrative Agriculture, 2020, 19(2): 350-359.
[9] LIU Wen-wen, XIN Min, CAO Meng-ji, QIN Meng, LIU Hui, ZHAO Shou-qi, WANG Xi-feng. Identification, characterization and full-length sequence analysis of a novel endornavirus in common sunflower (Helianthus annuus L.)[J]. >Journal of Integrative Agriculture, 2018, 17(10): 2281-2291.
No Suggested Reading articles found!