Please wait a minute...
Journal of Integrative Agriculture  2019, Vol. 18 Issue (1): 9-24    DOI: 10.1016/S2095-3119(18)61934-3
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Transcriptome profiling reveals insights into the molecular mechanism of drought tolerance in sweetpotato
ZHU Hong, ZHOU Yuan-yuan, ZHAI Hong, HE Shao-zhen, ZHAO Ning, LIU Qing-chang
Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education/College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Sweetpotato, Ipomoea batatas (L.) Lam., is a globally important food crop and usually grown on arid- and semi-arid lands.  Therefore, investigating the molecular mechanism of drought tolerance will provide important information for the improvement of drought tolerance in this crop.  In this study, transcriptome analysis of the drought-tolerant sweetpotato line Xushu 55-2 was conducted on Illumina HiSeq 2500 platform.  A total of 86.69 Gb clean data were generated and assembled into 2 671 693 contigs, 222 073 transcripts, and 73 636 unigenes.  In total, 11 359 differentially expressed genes (DEGs) were identified after PEG6000 treatment, in which 7 666 were up-regulated and 3 693 were down-regulated.  Of the 11 359 DEGs, 10 192 DEGs were annotated in at least one database, and the remaining 1 167 DEGs were unknown.  Abscisic acid (ABA), ethylene (ETH), and jasmonic acid (JA) signalling pathways play a major role in drought tolerance of sweetpotato.  Drought-inducible transcription factors were identified, some of which have been reported to be associated with drought tolerance and others are unknown in plants.  In addition, 7 643 SSRs were detected.  This study not only reveals insights into the molecular mechanism of drought tolerance in sweetpotato but also provides the candidate genes involved in drought tolerance of this crop.
Keywords:  sweetpotato        Ipomoea batatas (L.) Lam.        transcriptome        drought tolerance        molecular mechanism        SSR markers  
Received: 30 November 2017   Accepted:
Fund: This work was supported by the earmarked fund for China Agriculture Research System (CARS-10, Sweetpotato).
Corresponding Authors:  Correspondence LIU Qing-chang, Tel/Fax: +86-10-62733710, E-mail:   

Cite this article: 

ZHU Hong, ZHOU Yuan-yuan, ZHAI Hong, HE Shao-zhen, ZHAO Ning, LIU Qing-chang. 2019. Transcriptome profiling reveals insights into the molecular mechanism of drought tolerance in sweetpotato. Journal of Integrative Agriculture, 18(1): 9-24.

Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. 2003. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. The Plant Cell, 15, 63–78.
Agarwal P, Reddy M, Chikara J. 2011. WRKY: Its structure, evolutionary relationship, DNA-binding selectivity, role in stress tolerance and development of plants. Molecular Biology Reports, 38, 3883–3896.
Ahn Y O, Kim S H, Kim C Y, Lee J S, Kwak S S, Lee H S. 2010. Exogenous sucrose utilization and starch biosynthesis among sweetpotato cultivars. Carbohydrate Research, 345, 55–60.
Alessio A, Anna M M, Anna M D, Gabor G, Enrica R, Francesco F, Luigi D B, Luana T, Giovanni G, Luigi C. 2009. Transcriptional profiling in response to terminal drought stress reveals differential responses along the wheat genome. BMC Genomics, 10, 279.
Ana C, Stefan G, Juan M G, Javier T, Manuel T, Montserrat R. 2005. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21, 3674–3676.
Arraes F B M, Beneventi M A, De Sa M E L, Paixao J F R, Albuquerque E V S, Marin S R R, Purgatto E, Nepomuceno A L, Grossi-de-Sa M F. 2015. Implications of ethylene biosynthesis and signaling in soybean drought stress tolerance. BMC Plant Biology, 15, 213.
Bartels D. 2001. Targeting detoxification pathways: An efficient approach to obtain plants with multiple stress tolerance. Trends in Plant Science, 6, 284–286.
Bartels D, Sunkar R. 2005. Drought and salt tolerance in plants. Critical Reviews in Biotechnology, 24, 23–58.
Berger J, Palta J, Vadez V. 2016. Review: An integrated framework for crop adaptation to dry environments: Responses to transient and terminal drought. Plant Science, 253, 58–67.
Bi H H, Luang S, Li Y, Bazanova N, Morran S, Song Z H, Perera M A, Hrmova M, Borisjuk N, Lopato S. 2016. Identification and characterization of wheat drought-responsive MYB transcription factors involved in the regulation of cuticle biosynthesis. Journal of Experimental Botany, 67, 5363–5380.
Butt H I, Yang Z E, Gong Q, Chen E Y, Wang X Q , Zhao G, Ge X Y, Zhang X Y, Li F G. 2017. GaMYB85, an R2R3 MYB gene, in transgenic Arabidopsis plays an important role in drought tolerance. BMC Plant Biology, 17, 142.
Cai R H, Dai W, Zhang C S, Wang Y, Wu M, Zhao Y, Ma Q, Xiang Y, Cheng B J. 2017. The maize WRKY transcription factor ZmWRKY17 negatively regulates salt stress tolerance in transgenic Arabidopsis plants. Planta, 246, 1215–1231.
Du H, Chang Y, Huang F, Xiong L Z. 2015. GID1 modulates stomatal response and submergence tolerance involving abscisic acid and gibberellic acid signaling in rice. Journal of Integrative Plant Biology, 57, 954–968.
Duan F M, Ding J, Lee D S, Lu X L, Feng Y Q, Song W W. 2017. Overexpression of SoCYP85A1, a spinach cytochrome p450 gene in transgenic tobacco enhances root development and drought stress tolerance. Frontiers in Plant Science, 8, 1909.
Fang Y J, Liao K F, Du H, Xu Y, Song H Z, Li X H, Xiong L Z. 2015. A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. Journal of Experimental Botany, 66, 6803–6817.
Finkelstein R R, Gampala S S, Rock C D. 2002. Abscisic acid signaling in seeds and seedlings. The Plant Cell, 14, S15–S45.
Firon N, LaBonte D, Villordon A, Kfir Y, Solis J, Lapis E, Hetzroni A, Althan L, Perlman T S, Doron-Faigenboim A. 2013. Transcriptional profiling of sweetpotato (Ipomoea batatas) roots indicates down-regulation of lignin biosynthesis and up-regulation of starch biosynthesis at an early stage of storage root formation. BMC Genomics, 14, 1471–2164.
Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-shinozaki K, Shinozaki K. 2006. Crosstalk between abiotic and biotic stress responses: A current view from the points of convergence in the stress signaling networks. Current Opinion in Plant Biology, 9, 436–442.
Gao F, Zhou J, Deng R Y, Zhao H X, Li C L, Chen H, Suzuki T, Park S U, Wu Q. 2017. Overexpression of a tartary buckwheat R2R3-MYB transcription factor gene, FtMYB9, enhances tolerance to drought and salt stresses in transgenic Arabidopsis. Journal of Plant Physiology, 214, 81–90.
Grabherr M G, Haas B J, Yassour M, Levin J Z, Thompsom D A, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren B W, Nusbaum C, Lindblad-Toh K, Friedman N, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29, 644–652.
Hirayama T, Shinozaki K. 2010. Research on plant abiotic stress responses in the post-genome era: Past, present and future. The Plant Journal, 61, 1041–1052.
Hiroshi T, Yasuhiro I, Shunsuke W, Tomokazu K, Mayumi E, Nobuhiro A, Takakazu M, Izumi C M, Takashi H, Hironori K, Hiroshi S, Atsushi S. 2016. Allantoin, a stress-related purine metabolite, can activate jasmonate signaling in a MYC2-regulated and abscisic acid-dependent manner. Journal of Experimental Botany, 67, 2519–2532.
Hu H H, Dai M Q, Yao J L, Xiao B Z, Li X H, Zhang Q F, Xiong L Z. 2006. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proceeding of the National Academy of the Science of United States of America, 103, 12987–12992.
Hussain R M, Ali M, Feng X, Li X. 2017. The essence of NAC gene family to the cultivation of drought-resistant soybean (Glycine max L. Merr.) cultivars. BMC Plant Biology, 17, 55.
Jin C, Li K Q, Xu X Y, Zhang H P, Chen H X, Chen Y H, Hao J, Wang Y, Huang H S, Zhang S L. 2017. A novel NAC transcription factor, PbeNAC1, of Pyrus betulifolia confers cold and drought tolerance via interacting with PbeDREBs and activating the expression of stress-responsive genes. Frontiers in Plant Science, 8, 1049.
Jin S B, Fu H T, Zhou Q, Sun S M, Jiang S F, Xiong Y W, Gong Y S, Qiao H, Zhang W Y. 2000. Transcriptome analysis of androgenic gland for discovery of novel genes from the oriental river prawn macrobrachium nipponense using Illumina Hiseq. PLoS ONE, 8, e76840.
Jin Y, Zheng H Y, Jin X J, Zhang Y X, Ren C Y. 2016. Effect of ABA, SA and JA on soybean growth under drought stress and re-watering. Soybean Science, 6, 958–963. (in Chinese)
Jung C, Seo J S, Han S W, Koo Y J, Kim C H, Song S I, Nahm B H, Choi Y D, Cheong J J. 2008. Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiology, 146, 623–635.
Kazuo N, Kazuko Y S. 2013. ABA signaling in stress-response and seed development. Plant Cell Reports, 32, 959–970.
Kent W J. 2002. BLAT - The BLAST-like alignment tool. Genome Research, 12, 656–664.
Kim S H, Song W K, Kim Y H, Kwon S Y, Lee H S, Lee I C, Kwak S S. 2009. Characterization of full-length enriched expressed sequence tags of dehydration-treated white fibrous roots of sweetpotato. BMB Reports, 42, 271–276.
Klein M, Geisler M, SuhS J, Kolukisaoglu H U, Azevedo L, Plaza S, Curtis M D, Richter A, Weder B, Schulz B, Martinoia E. 2004. Disruption of AtMRP4, a guard cell plasma membrane ABCC-type ABC transporter, leads to deregulation of stomatal opening and increased drought susceptibility. The Plant Journal, 39, 219–236.
Kumar M N, Verslues P E. 2015. Stress physiology functions of the Arabidopsis histidine kinase cytokinin receptors. Physiologia Plantarum, 154, 369–380.
Le D T, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Ham L M, Yamaguchi-Shinozaki K, Shinozaki K, Tran L S P. 2012. Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis. PLoS ONE, 7, e49522.
Lee D K, Kim H I, Jang G, Chung P J, Jeong J S, Kim Y S, Bang S W, Jung H, Choi Y D, Kim J K. 2015. The NF-YA transcription factor OsNF-YA7 confers drought stress tolerance of rice in an abscisic acid independent manner. Plant Science, 241, 199–210.
Li K Q, Xing C H, Yao Z H, Huang X S. 2017. PbrMYB21, a novel MYB protein of Pyrus betulaefolia, functions in drought tolerance and modulates polyamine levels by regulating arginine decarboxylase gene. Plant Biotecchnology Journal, 15, 1186–1203.
Li R J, Zhai H, Kang C, Liu D G, He S Z, Liu Q C. 2015. De novo transcriptome sequencing of the orange-fleshed sweetpotato and analysis of differentially expressed genes related to carotenoid biosynthesis. International Journal of Genomics, 2015, 843802.
Liang C, Li Y, Meng Z, Yan R, Zhu T, Kang S, Ali M A, Malik W, Sun G, Zhang R. 2017. Activation of ABA receptors gene GhPYL9-11A is positively correlated with cotton drought tolerance in transgenic Arabidopsis. Frontiers in Plant Science, 8, 1453.
Lippold F, Sanchez D H, Musialak M, Schlereth A, Scheible W R, Hincha D K, Udvardi M K. 2009. AtMyb41 regulates transcriptional and metabolic responses to osmotic stress in Arabidopsis. Plant Physiology, 149, 1761–1772.
Liu W W, Tai H H, Li S S, Gao W, Zhao M, Xie C X, Li W X. 2014. BHLH122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism. New Phytologist, 201, 1192–1204.
Loebenstein G. 2009. Origin, distribution and economic importance. In: The Sweetpotato. Springer, Israel. pp. 9–12.
Low J, Lynam J, Lemaga B, Crissman C, Barker I, Thiele G, Namanda S, Wheatley C, Andrade M. 2009. Sweetpotato in sub-saharan Africa. In: The Sweetpotato. Springer, Kenya. pp. 359–390.
Ma P Y, Bian X F, Jia Z D, Guo X D, Xie Y Z. 2016. De novo sequencing and comprehensive analysis of the mutant transcriptome from purple sweetpotato (Ipomoea batatas L.). Gene, 575, 641–649.
Ma X Q, Zhang J, Burgess P, Rossi S, Huang B R. 2018. Interactive effects of melatonin and cytokinin on alleviating droughtinduced leaf senescence in creeping bentgrass (Agrostis stolonifera). Environmental and Experimental Botany, 145, 1–11.
Mao K, Dong Q L, Li C, Liu C H, Ma F W. 2017. Genome wide identification and characterization of apple bHLH transcription actors and expression analysis in response to drought and salt stress. Frontiers in Plant Science, 8, 480.
Mi X N, Wang X J, Wu H, Gan L J, Ding J, Li Y. 2017. Characterization and expression analysis of cytokinin biosynthesis genes in Fragaria vesca. Plant Growth Regulation, 82, 139–149.
Miura K, Tada Y. 2014. Regulation of water, salinity, and cold stress responses by salicylic acid. Frontiers in Plant Science, 5, 4.
Mochida K, Yoshida T, Sakurai T, Yamaguchi-Shinozaki K, Shinozaki K, Tran L S P. 2010. Genome-wide analysis of two-component systems and prediction of stress-responsive two-component system members in soybean. DNA Research, 17, 303–324.
Nishiyama R, Watanabe Y, Leyva-Gonzalez M A, Van H C, Fujita Y, Tanaka M, Seki M, Yamaguchi-Shinozaki K, Shinozaki K, Herrera-Estrella L. 2013. Arabidopsis AHP2, AHP3, and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response. Proceeding of the National Academy of Science of United States of America, 110, 4840–4845.
Padmaja G. 2009. Uses and nutritional data of sweetpotato. In: The Sweetpotato. Springer, India. pp. 189–234.
Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A. 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding, 2, 225–238.
Qin Z, Li A, Hou F, Wang Q, Dong S, Zhang L. 2017. Gene identification using RNA-seq in two sweetpotato genotypes and the use of mining to analyze carotenoid biosynthesis. South African Journal of Botany, 109, 189–195.
Rao A N, Sivasankar B, Sadasivam V. 2009. Kinetic study on the photocatalytic degradation of salicylic acid using ZnO catalyst. Journal of Hazardous Materials, 166, 1357–1361.
Rizhsky L, Liang H, Mittler R. 2002. The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiology, 130, 1143–1151.
Romualdi C, Bortoluzzi S, D’Alessi F, Danieli G A. 2003. IDEG6: A web tool for detection of differentially expressed genes in multiple tag sampling experiments. Physiological Genomics, 12, 159–162.
Sathish K P, Jyothi T, Krtaki B, Venu K, Muthusamy M. 2017. Comparative analysis of the root transcriptomes of cultivated sweetpotato (Ipomoea batatas [L.] Lam) and its wild ancestor (Ipomoea trifida [Kunth] G. Don). BMC Plant Biology, 17, 9.
Schafleitner R, Tincopa L R, Palomino O, Rossel G, Robles R F, Alagon R, Rivera C, Quispe C, Rojas L R, Pacheco J A. 2010. A sweetpotato gene index established by
de novo assembly of pyrosequencing and Sanger sequences and mining for gene-based microsatellite markers. BMC Genomics, 11, 604.
Seo J S, Joo J, Kim M J, Kim Y K, Nahm B H, Song S I, Cheong J J, Lee J S, Kim J K, Choi Y D. 2011. OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. The Plant Journal, 65, 907–921.
Shen X, Guo X, Zhao D, Zhang Q, Jiang Y, Wang Y, Peng X, Wei Y, Zhai Z, Zhao W, Li T. 2017. Cloning and expression profiling of the PacSnRK2 and PacPP2C gene families during fruit development, ABA treatment, and dehydration stress in sweet cherry. Plant Physiology and Biochemistry, 119, 275–285.
Shinozaki K, Yamaguchi-Shinozaki K. 2000. Molecular responses to dehydration and low temperature: Differences and cross-talk between two stress signaling pathways. Current Opinion in Plant Biology, 3, 217–223.
Shinozaki K, Yamaguchi-Shinozaki K. 2007. Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 58, 221–227.
Srinivas T. 2009. Economics of sweetpotato production and marketing. In: The Sweetpotato. Springer, India. pp. 235–267.
Sun H, Chen L, Hu J, Ullah A, He X, Yang X, Zhang X. 2017. The JASMONATE ZIM-domain gene family mediates JA signaling and stress response in cotton. Plant Cell Physiology, 58, 2139–2154.
Tamura T, Hara K, Yamaguchi Y, Koizumi N, Sano H. 2003. Osmotic stress tolerance of transgenic tobacco expressing a gene encoding a membrane-located receptor-like protein from tobacco plants. Plant Physiology, 131, 454–462.
Tang G Y, Shao F X, Xu P L, Shan L, Liu Z J. 2017. Overexpression of a peanut NAC gene, AhNAC4, confers enhanced drought tolerance in tobacco. Russian Journal of Plant Physiology, 64, 525–535.
Tao X, Gu Y H, Jiang Y S, Zhang Y Z, Wang H Y. 2013. Transcriptome analysis to identify putative floral-specific genes and flowering regulatory-related genes of sweetpotato. Bioscience Biotechnology and Biochemistry, 77, 2169–2174.
Tao X, Gu Y H, Wang H Y, Zheng W, Li X, Zhao C W, Chuan W, Zhang Y Z. 2012. Digital gene expression analysis based on integrated de novo transcriptome assembly of sweetpotato [Ipomoea batatas (L.) Lam.]. PLoS ONE, 7, e36234.
Thao N P, Tran L S P. 2012. Potentials toward genetic engineering of drought-tolerant soybean. Critical Reviews in Biotechnology, 32, 349–362.
Tran L S, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, Yamaguchi-Shinozaki K. 2007. Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought and salt stress in Arabidopsis. Proceeding of the National Academy of Science of United States of America, 104, 20623–20628.
Tu M X, Wang X H, Feng T Y, Sun X M, Wang Y Q, Huang L, Gao M, Wang Y J, Wang X P. 2016. Expression of a grape (Vitis vinifera) bZIP transcription factor, VIbZIP36, in Arabidopsis thaliana confers tolerance of drought stress during seed germination and seedling establishment. Plant Science, 252, 311–323.
Valliyodan B, Nguyen H T. 2006. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Critical Reviews in Biotechnology, 9, 189–195.
Wang F B, Zhu H, Chen D H, Li Z J, Peng R H, Yao Q H. 2016. A grape bHLH transcription factor gene, VvbHLH1, increases the accumulation of flavonoids and enhances salt and drought tolerance in transgenic Arabidopsis thaliana. Plant Cell, Tissue and Organ Culture, 125, 387–398.
Wang N, Guo T L, Wang P, Sun X, Shao Y, Jia X, Liang B W, Gong X Q, Ma F W. 2017. MhYTP1 and MhYTP2 from apple confer tolerance to multiple abiotic stresses in Arabidopsis thaliana. Frontiers in Plant Science, 8, 1367.
Wang Y D, Zhang T, Wang R C, Zhao Y D. 2018. Recent advances in auxin research in rice and their implications for crop improvement. Journal of Experimental Botany, 69, 255–263.
Wang Z Y, Fang B P, Chen J Y, Zhang X J, Luo Z X, Huang L F, Chen X L, Li Y J. 2010. De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweetpotato (Ipomoea batatas). BMC Genomics, 11, e726.
Wu H, Fu B, Sun P P, Xiao C, Liu J H. 2016. A NAC transcription factor represses putrescine biosynthesis and affects drought tolerance. Plant Physiology, 172, 1532–1547.
Xie F L, Burklew C E, Yang Y F, Liu M, Xiao P, Zhang B H, Qiu D Y. 2012. De novo sequencing and a comprehensive analysis of purple sweetpotato (Ipomoea batatas L.) transcriptome. Planta, 236, 1.
Xue J Q, Li Y H, Tan H, Yang F, Ma N, Gao J P. 2008. Expression of ethylene biosynthetic and receptor genes in rose floral tissues during ethylene-enhanced flower opening. Journal of Experimental Botany, 59, 2161–2169.
Yamaguchi-Shinozaki K, Shinozaki K. 2006. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Reviews of Plant Biology, 57, 781–803.
Yang J, Zhang J, Wang Z, Zhu Q, Wang W. 2001. Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiology, 127, 315–323.
Yang S, Vanderbeld B, Wan J, Huang Y. 2010. Narrowing down the targets: Towards successful genetic engineering of drought-tolerant crops. Molecular Plant, 3, 469–490.
Yang Y, Xu M, Luo Q F, Wang J, Li H G. 2014. De novo transcriptome analysis of Liriodendron chinense petals and leaves by Illumina sequencing. Gene, 534, 155–162.
Zhai H, Wang F B, Si Z Z, Huo J X, Xing L, An Y Y, He S Z, Liu Q C. 2016. A myo-inositol-1-phosphate synthase gene, IbMIPS1, enhances salt and drought tolerance and stem nematode resistance in transgenic sweetpotato. Plant Biotechnology Journal, 14, 592–602.
Zhang C, Zhang L, Zhang S, Zhu S, Wu P Z, Chen Y P, Li M R, Jiang H W, Wu G J. 2015. Global analysis of gene expression profiles in physic nut (Jatrophy curcas L.) seedlings exposed to drought stress. BMC Plant Biology, 15, 17.
Zhang H, Jin J, Tang L, Zhao Y, Gu X, Gao G, Luo J. 2011. Plant TFDB 2.0: Update and improvement of the comprehensive plant transcription factor database. Nucleic Acids Research, 39, 1114–1117.
Zhang H, Zhang Q, Zhai H, Li Y, Wang X F, Liu Q C, He S Z. 2017. Transcript profile analysis reveals important roles of jasmonic acid sigalling pathway in the response of sweepotato to salt stress. Scientific Reports, 7, 40819.
Zhang L, Shu H, Zhang A Y, Liu B L, Xing G F, Xue J A, Yuan L X, Gao C Y, Li R Z. 2017. Foxtail millet WRKY genes and drought stress. Journal of Agricultural Science, 155, 777–790.
Zhang L, Wang Q, Liu Q, Wang Q. 2009. Sweetpotato in China. In: The Sweetpotato. Springer, China. pp. 325–358.
Zhou Q Y, Tian A G, Zou H F, Xie Z M, Lei G, Huang J, Wang C M, Wang H W, Zhang J S, Chen S Y. 2008. Soybean WRKY-type transcription factor genes GmWRKY13, GmWRKY21 and GmWRKY54 confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnology Journal, 6, 486–503.
Zhou X Y, Zhang N, Yang J W, Si H J. 2016. Functional analysis of potato CPD gene: A rate-limiting enzyme in brassinosteroid biosynthesis under polyethylene glycol-induced osmotic stress. Crop Science, 56, 2675–2687.
Zhu J K. 2002. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 53, 247–273.
Zhu Z, Guo H. 2008. Genetic basis of ethylene perception and signal transduction in Arabidopsis. Journal of Integrative Plant Biology, 50, 808–815.
[1] XIAO Yang-yang, QIAN Jia-jia, HOU Xing-liang, ZENG Lan-ting, LIU Xu, MEI Guo-guo, LIAO Yin-yin.

Diurnal emission of herbivore-induced (Z)-3-hexenyl acetate and allo-ocimene activates sweet potato defense responses to sweet potato weevils [J]. >Journal of Integrative Agriculture, 2023, 22(6): 1782-1796.

[2] LÜ Jing, Satyabrata NANDA, CHEN Shi-min, MEI Yang, HE Kang, QIU Bao-li, ZHANG You-jun, LI Fei, PAN Hui-peng.

A survey on the off-target effects of insecticidal double-stranded RNA targeting the Hvβ´COPI gene in the crop pest Henosepilachna vigintioctopunctata through RNA-seq [J]. >Journal of Integrative Agriculture, 2022, 21(9): 2665-2674.

[3] LI Rui-jie, ZHAI Hong, HE Shao-zhen, ZHANG Huan, ZHAO Ning, LIU Qing-chang. A geranylgeranyl pyrophosphate synthase gene, IbGGPS, increases carotenoid contents in transgenic sweetpotato[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2538-2546.
[4] WANG Bo, HUANG Tian-yu, YAO Yuan, Frederic FRANCIS, YAN Chun-cai, WANG Gui-rong, WANG Bing. A conserved odorant receptor identified from antennal transcriptome of Megoura crassicauda that specifically responds to cis-jasmone[J]. >Journal of Integrative Agriculture, 2022, 21(7): 2042-2054.
[5] ZHOU Cheng-zhe, ZHU Chen, LI Xiao-zhen, CHEN Lan, XIE Si-yi, CHEN Guang-wu, ZHANG Huan, LAI Zhong-xiong, LIN Yu-ling, GUO Yu-qiong. Transcriptome and phytochemical analyses reveal roles of characteristic metabolites in the taste formation of white tea during withering process[J]. >Journal of Integrative Agriculture, 2022, 21(3): 862-877.
[6] LI Chen, LIU Xuan-xuan, ABOUELNASR Hesham, MOHAMED HAMED Arisha, KOU Meng, TANG Wei, YAN Hui, WANG Xin, WANG Xiao-xiao, ZHANG Yun-gang, LIU Ya-ju, GAO Run-fei, MA Meng, LI Qiang. Inhibition of miR397 by STTM technology to increase sweetpotato resistance to SPVD[J]. >Journal of Integrative Agriculture, 2022, 21(10): 2865-2875.
[7] SHI Hai-yan, CAO Li-wen, XU Yue, YANG Xiong, LIU Shui-lin, LIANG Zhong-shuo, LI Guo-ce, YANG Yu-peng, ZHANG Yu-xing, CHEN Liang. Transcriptional profiles underlying the effects of salicylic acid on fruit ripening and senescence in pear (Pyrus pyrifolia Nakai)[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2424-2437.
[8] WANG Chao-nan, LUAN Fei-shi, LIU Hong-yu, Angela R. DAVIS, ZHANG Qi-an, DAI Zu-yun, LIU Shi. Mapping and predicting a candidate gene for flesh color in watermelon[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2100-2111.
[9] WU Tong, FENG Shu-yan, YANG Qi-hang, Preetida J BHETARIYA, GONG Ke, CUI Chun-lin, SONG Jie, PING Xiao-rui, PEI Qiao-ying, YU Tong, SONG Xiao-ming. Integration of the metabolome and transcriptome reveals the metabolites and genes related to nutritional and medicinal value in Coriandrum sativum[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1807-1818.
[10] ZHAO Juan, LIU Ting, LIU Wei-cheng, ZHANG Dian-peng, DONG Dan, WU Hui-ling, ZHANG Tao-tao, LIU De-wen. Transcriptomic insights into growth promotion effect of Trichoderma afroharzianum TM2-4 microbial agent on tomato plants[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1266-1276.
[11] NIE Xing-hua, WANG Ze-hua, LIU Ning-wei, SONG Li, YAN Bo-qian, XING Yu, ZHANG Qing, FANG Ke-feng, ZHAO Yong-lian, CHEN Xin, WANG Guang-peng, QIN Ling, CAO Qing-qin. Fingerprinting 146 Chinese chestnut (Castanea mollissima Blume) accessions and selecting a core collection using SSR markers[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1277-1286.
[12] CHENG Jin-tao, CHEN Hai-wen, DING Xiao-chen, SHEN Tai, PENG Zhao-wen, KONG Qiu-sheng, HUANG Yuan, BIE Zhi-long. Transcriptome analysis of the influence of CPPU application for fruit setting on melon volatile content[J]. >Journal of Integrative Agriculture, 2021, 20(12): 3199-3208.
[13] FU Fang-fang, PENG Ying-shu, WANG Gui-bin, Yousry A. EL-KASSABY, CAO Fu-liang. Integrative analysis of the metabolome and transcriptome reveals seed germination mechanism in Punica granatum L.[J]. >Journal of Integrative Agriculture, 2021, 20(1): 132-146.
[14] LAN Hao, ZHANG Zhan-feng, WU Jun, CAO He-he, LIU Tong-xian. Performance and transcriptomic response of the English grain aphid, Sitobion avenae, feeding on resistant and susceptible wheat cultivars[J]. >Journal of Integrative Agriculture, 2021, 20(1): 178-190.
[15] LING Ying-hui, ZHENG Qi, JING Jing, SUI Meng-hua, ZHU Lu, LI Yun-sheng, ZHANG Yun-hai, LIU Ya, FANG Fu-gui, ZHANG Xiao-rong . Switches in transcriptome functions during seven skeletal muscle development stages from fetus to kid in Capra hircus[J]. >Journal of Integrative Agriculture, 2021, 20(1): 212-226.
No Suggested Reading articles found!