Please wait a minute...
Journal of Integrative Agriculture  2018, Vol. 17 Issue (2): 328-335    DOI: 10.1016/S2095-3119(17)61757-X
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Exogenous application of a low concentration of melatonin enhances salt tolerance in rapeseed (Brassica napus L.) seedlings
ZENG Liu1, CAI Jun-song2, LI Jing-jing1, 3, LU Guang-yuan1, LI Chun-sheng3, FU Gui-ping1, ZHANG Xue-kun1, MA Hai-qing4, LIU Qing-yun4, ZOU Xi-ling1, CHENG Yong
1 Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture/Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, P.R.China
2 Hubei Province Oilseed Rape Office, Wuhan 430060, P.R.China
3 Hubei Engineering University, Xiaogan 432000, P.R.China
4 The Agricultural Bureau of Xishui County, Huanggang 438200, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  Melatonin is a naturally occurring compound in plants.  Here, we tested the effect of exogenous melatonin on rapeseed (Brassica napus L.) grown under salt stress.  Application of 30 μmol L–1 melatonin alleviated salt-induced growth inhibition, and the shoot fresh weight, the shoot dry weight, the root fresh weight, and the root dry weight of seedlings treated with exogenous melatonin increased by 128.2, 142.9, 122.2, and 124.2%, respectively, compared to those under salt stress.  In addition, several physiological parameters were evaluated.  The activities of antioxidant enzymes including peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) were enhanced by 16.5, 19.3, and 14.2% compared to their activities in plants without exogenous melatonin application under salt stress, while the H2O2 content was decreased by 11.2% by exogenous melatonin.  Furthermore, melatonin treatment promoted solute accumulation by increasing the contents of proline (26.8%), soluble sugars (15.1%) and proteins (58.8%).  The results also suggested that higher concentrations (>50 μmol L–1) of melatonin could attenuate or even prevent the beneficial effects on seedling development.  In conclusion, application of a low concentration of exogenous melatonin to rapeseed plants under salt stress can improve the H2O2-scavenging capacity by enhancing the activities of antioxidant enzymes such as POD, CAT and APX, and can also alleviate osmotic stress by promoting the accumulation of osmoregulatory substances such as soluble proteins, proline, and water soluble glucan.  Ultimately, exogenous melatonin facilitates root development and improves the biomass of rapeseed seedlings grown under salt stress, thereby effectively alleviating the damage of salt stress in rapeseed seedlings.
Keywords:  melatonin        rapeseed (Brassica napus L.)        salt              seedlings  
Received: 12 December 2016   Accepted:
Fund: 

This study was supported by the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences (CAAS), the Hubei Agricultural Science and Technology Innovation Center, China, and the Canola Key Industrial Innovation Team of Xiaogan, China.

Corresponding Authors:  Correspondence ZOU Xi-ling, Tel/Fax: +86-27-86824573, E-mail: zouxiling@gmail.com; CHENG Yong, Tel/Fax: +86-27-86824573, E-mail:chengyong58@139.com   

Cite this article: 

ZENG Liu, CAI Jun-song, LI Jing-jing, LU Guang-yuan, LI Chun-sheng, FU Gui-ping, ZHANG Xue-kun, MA Hai-qing, LIU Qing-yun, ZOU Xi-ling, CHENG Yong . 2018. Exogenous application of a low concentration of melatonin enhances salt tolerance in rapeseed (Brassica napus L.) seedlings. Journal of Integrative Agriculture, 17(2): 328-335.

Al Hassan M, Pacurar A, López-Gresa M P, Donat-Torres M P, Llinares J V, Boscaiu M, Vicente O. 2016. Effects of salt stress on three ecologically distinct Plantago species. PLOS ONE, 11, e0160236.

Barratt G F, Nadakavukaren M J, Frehn J L. 1977. Effect of melatonin implants on gonadal weights and pineal gland fine structure of the golden hamster. Tissue and Cell, 9, 335–345.

Bonnefont-Rousselot D, Collin F, Jore D, Gardès-Albert M. 2011. Reaction mechanism of melatonin oxidation by reactive oxygen species in vitro. Journal of Pineal Research, 50, 328–335.

Chen Q, Qi W B, Reiter R J, Wei W, Bao M W. 2009. Exogenously applied melatonin stimulates root growth and raises endogenous indoleacetic acid in roots of etiolated seedlings of Brassica juncea. Journal of Plant Physiology, 166, 324–328.

Dubbels R, Reiter R J, Klenke E, Goebel A, Schnakenberg E, Ehlers C, Schlwara H W, Schloot W. 1995. Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. Journal of Pineal Research, 18, 28–31.

Dun X L, Tao Z S, Wang J, Wang X F, Liu G H, Wang H Z. 2016. Comparative transcriptome analysis of primary roots of Brassica napus seedlings with extremely different primary root lengths using RNA sequencing. Frontiers in Plant Science, 7, 1238.

Julkowska M M, Testerink C. 2015. Tuning plant signaling and growth to survive salt. Trends in Plant Science, 20, 586–594.

Kostopoulou Z, Therios I, Roumeliotis E, Kanellis A K, Molassiotis A. 2015. Melatonin combined with ascorbic acid provides salt adaptation in Citrus aurantium L. seedlings. Plant Physiology and Biochemistry, 86, 155–165.

Li C, Wang P, Wei Z W, Liang D, Liu C H, Yin L H, Jia D F, Fu M Y, Ma F W. 2012. The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis. Journal of Pineal Research, 53, 298–306.

Liang C Z, Zheng G Y, Li W Z, Wang Y Q, Hu B, Wang H R, Wu H K, Qian Y W, Zhu X G, Tan D X, Chen S Y, Chu C C. 2015. Melatonin delays leaf senescence and enhances salt stress tolerance in rice. Journal of Pineal Research, 59, 91–101.

Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7, 405–410.

Munns R. 2002. Comparative physiology of salt and water stress. Plant, Cell & Environment, 25, 239–250.

Musgrave M E. 2000. Realizing the potential of rapid-cycling Brassica as a model system for use in plant biology research. Journal of Plant Growth Regulation, 19, 314–325.

Nawaz M A, Huang Y, Bie Z L, Ahmed W, Reiter R J, Niu M L, Hameed S. 2015. Melatonin: Current status and future perspectives in plant science. Frontiers in Plant Science, 6, 1230.

Reiter R J, Coto-Montes A, Boga J A, Fuentes-Broto L, Rosales-Corral S, Tan D X. 2011. Melatonin: New applications in clinical and veterinary medicine, plant physiology and industry. Neuroendocrinology Letters, 32, 575–587.

Sah S K, Reddy K R, Li J X. 2016. Abscisic acid and abiotic stress tolerance in crop plants. Frontiers in Plant Science, 7, 571.

Sarropoulou V N, Therios I N, Dimassi-Theriou K N. 2012. Melatonin promotes adventitious root regeneration in in vitro shoot tip explants of the commercial sweet cherry rootstocks CAB-6P (Prunus cerasus L.), Gisela 6 (P. cerasus×

P. canescens), and MxM 60 (P. avium×P. mahaleb). Journal of Pineal Research, 52, 38–46.

Shi H T, Chen K L, Wei Y X, He C Z. 2016. Fundamental issues of melatonin-mediated stress signaling in plants. Frontiers in Plant Science, 7, 1124.

Shi H T, Jiang C, Ye T T, Tan D X, Reiter R J, Zhang H, Liu R Y, Chan Z L. 2015. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass (Cynodon dactylon (L). Pers.) by exogenous melatonin. Journal of Experimental Botany, 66, 681–694.

Wang P, Sun X, Li C, Wei Z W, Liang D, Ma F W. 2013. Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple. Journal of Pineal Research, 54, 292–302.

Wei W, Li Q T, Chu Y N, Reiter R J, Yu X M, Zhu D H, Zhang W K, Ma B, Lin Q, Zhang J S, Chen S Y. 2015. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. Journal of Experimental Botany, 66, 695–707.

Zhang H J, Zhang N, Yang R C, Wang L, Sun Q Q, Li D B, Cao Y Y, Weeda S, Zhao B, Ren S X, Guo Y D. 2014. Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA(4) interaction in cucumber (Cucumis sativus L.). Journal of Pineal Research, 57, 269–279.

Zhang N, Zhao B, Zhang H J, Weeda S, Yang C, Yang Z C, Ren S X, Guo Y D. 2013. Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.). Journal of Pineal Research, 54, 15–23.
 
[1] XIAN Xiao-qing, ZHAO Hao-xiang, GUO Jian-yang, ZHANG Gui-fen, LIU Hui, LIU Wan-xue, WAN Fang-hao. Estimation of the potential geographical distribution of a new potato pest (Schrankia costaestrigalis) in China under climate change[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2441-2455.
[2] WANG Meng-qi, ZHANG Hong-rui, XI Yu-qiang, WANG Gao-ping, ZHAO Man, ZHANG Li-juan, GUO Xian-ru. Population genetic variation and historical dynamics of the natural enemy insect Propylea japonica (Coleoptera: Coccinellidae) in China[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2456-2469.
[3] YU Wen-jia, LI Hai-gang, Peteh M. NKEBIWE, YANG Xue-yun, GUO Da-yong, LI Cui-lan, ZHU Yi-yong, XIAO Jing-xiu, LI Guo-hua, SUN Zhi, Torsten MÜLLER, SHEN Jian-bo. Combining rhizosphere and soil-based P management decreased the P fertilizer demand of China by more than half based on LePA model simulations[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2509-2520.
[4] JIAN Jin-zhuo, HUANG Wen-kun, KONG Ling-an, JIAN Heng, Sulaiman ABDULSALAM, PENG De-liang, PENG Huan. Molecular diagnosis and direct quantification of cereal cyst nematode (Heterodera filipjevi) from field soil using TaqMan real-time PCR[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2591-2601.
[5] ZHANG Lin-zhen, HE Li, WANG Ning, AN Jia-hua, ZHANG Gen, CHAI Jin, WU Yu-jie, DAI Chang-jiu, LI Xiao-han, LIAN Ting, LI Ming-zhou, JIN Long. Identification of novel antisense long non-coding RNA APMAP-AS that modulates porcine adipogenic differentiation and inflammatory responses[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2483-2499.
[6] YANG Hong-jun, YE Wen-wu, YU Ze, SHEN Wei-liang, LI Su-zhen, WANG Xing, CHEN Jia-jia, WANG Yuan-chao, ZHENG Xiao-bo. Host niche, genotype, and field location shape the diversity and composition of the soybean microbiome[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2412-2425.
[7] ZHANG Sheng-zhong, HU Xiao-hui, WANG Fei-fei, CHU Ye, YANG Wei-qiang, XU Sheng, WANG Song, WU Lan-rong, YU Hao-liang, MIAO Hua-rong, FU Chun, CHEN Jing. A stable and major QTL region on chromosome 2 conditions pod shape in cultivated peanut (Arachis hyopgaea L.)[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2323-2334.
[8] GUO Bao-jian, SUN Hong-wei, QI Jiang, HUANG Xin-yu, HONG Yi, HOU Jian, LÜ Chao, WANG Yu-lin, WANG Fei-fei, ZHU Juan, GUO Gang-gang, XU Ru-gen. A single nucleotide substitution in the MATE transporter gene regulates plastochron and many noded dwarf phenotype in barley (Hordeum vulgare L.)[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2295-2305.
[9] GUO Kai, GAO Wei, ZHANG Tao-rui, WANG Zu-ying, SUN Xiao-ting, YANG Peng, LONG Lu, LIU Xue-ying, WANG Wen-wen, TENG Zhong-hua, LIU Da-jun, LIU De-xin, TU Li-li, ZHANG Zheng-sheng. Comparative transcriptome and lipidome reveal that a low K+ signal effectively alleviates the effect induced by Ca2+ deficiency in cotton fibers[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2306-2322.
[10] WANG Xing-long, ZHU Yu-peng, YAN Ye, HOU Jia-min, WANG Hai-jiang, LUO Ning, WEI Dan, MENG Qing-feng, WANG Pu. Irrigation mitigates the heat impacts on photosynthesis during grain filling in maize [J]. >Journal of Integrative Agriculture, 2023, 22(8): 2370-2383.
[11] ZHAO Jun-yang, LU Hua-ming, QIN Shu-tao, PAN Peng, TANG Shi-de, CHEN Li-hong, WANG Xue-li, TANG Fang-yu, TAN Zheng-long, WEN Rong-hui, HE Bing. Soil conditioners improve Cd-contaminated farmland soil microbial communities to inhibit Cd accumulation in rice[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2521-2535.
[12] PEI Sheng-zhao, ZENG Hua-liang, DAI Yu-long, BAI Wen-qiang, FAN Jun-liang. Nitrogen nutrition diagnosis for cotton under mulched drip irrigation using unmanned aerial vehicle multispectral images[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2536-2552.
[13] SU Qin, LÜ Jun, LI Wan-xue, CHEN Wei-wen, LUO Min-shi, ZHANG Chuan-chuan, ZHANG Wen-qing. The combination of NlMIP and Gαi/q coupled-receptor NlA10 promotes abdominal vibration production in female Nilaparvata lugens (Stål)[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2470-2482.
[14] Roberta SPANÒ, Mariarosaria MASTROCHIRICO, Francesco LONGOBARDI, Salvatore CERVELLIERI, Vincenzo LIPPOLIS, Tiziana MASCIA. Characterization of volatile organic compounds in grafted tomato plants upon potyvirus necrotic infection[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2426-2440.
[15] ZHANG Qiang-qiang, GAO Xi-xi, Nazir Muhammad ABDULLAHI, WANG Yue, HUO Xue-xi. Asset specificity and farmers’ intergenerational succession willingness of apple management[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2553-2566.
No Suggested Reading articles found!