Please wait a minute...
Journal of Integrative Agriculture  2018, Vol. 17 Issue (2): 328-335    DOI: 10.1016/S2095-3119(17)61757-X
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Exogenous application of a low concentration of melatonin enhances salt tolerance in rapeseed (Brassica napus L.) seedlings
ZENG Liu1, CAI Jun-song2, LI Jing-jing1, 3, LU Guang-yuan1, LI Chun-sheng3, FU Gui-ping1, ZHANG Xue-kun1, MA Hai-qing4, LIU Qing-yun4, ZOU Xi-ling1, CHENG Yong
1 Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture/Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, P.R.China
2 Hubei Province Oilseed Rape Office, Wuhan 430060, P.R.China
3 Hubei Engineering University, Xiaogan 432000, P.R.China
4 The Agricultural Bureau of Xishui County, Huanggang 438200, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  Melatonin is a naturally occurring compound in plants.  Here, we tested the effect of exogenous melatonin on rapeseed (Brassica napus L.) grown under salt stress.  Application of 30 μmol L–1 melatonin alleviated salt-induced growth inhibition, and the shoot fresh weight, the shoot dry weight, the root fresh weight, and the root dry weight of seedlings treated with exogenous melatonin increased by 128.2, 142.9, 122.2, and 124.2%, respectively, compared to those under salt stress.  In addition, several physiological parameters were evaluated.  The activities of antioxidant enzymes including peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) were enhanced by 16.5, 19.3, and 14.2% compared to their activities in plants without exogenous melatonin application under salt stress, while the H2O2 content was decreased by 11.2% by exogenous melatonin.  Furthermore, melatonin treatment promoted solute accumulation by increasing the contents of proline (26.8%), soluble sugars (15.1%) and proteins (58.8%).  The results also suggested that higher concentrations (>50 μmol L–1) of melatonin could attenuate or even prevent the beneficial effects on seedling development.  In conclusion, application of a low concentration of exogenous melatonin to rapeseed plants under salt stress can improve the H2O2-scavenging capacity by enhancing the activities of antioxidant enzymes such as POD, CAT and APX, and can also alleviate osmotic stress by promoting the accumulation of osmoregulatory substances such as soluble proteins, proline, and water soluble glucan.  Ultimately, exogenous melatonin facilitates root development and improves the biomass of rapeseed seedlings grown under salt stress, thereby effectively alleviating the damage of salt stress in rapeseed seedlings.
Keywords:  melatonin        rapeseed (Brassica napus L.)        salt              seedlings  
Received: 12 December 2016   Accepted:
Fund: 

This study was supported by the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences (CAAS), the Hubei Agricultural Science and Technology Innovation Center, China, and the Canola Key Industrial Innovation Team of Xiaogan, China.

Corresponding Authors:  Correspondence ZOU Xi-ling, Tel/Fax: +86-27-86824573, E-mail: zouxiling@gmail.com; CHENG Yong, Tel/Fax: +86-27-86824573, E-mail:chengyong58@139.com   

Cite this article: 

ZENG Liu, CAI Jun-song, LI Jing-jing, LU Guang-yuan, LI Chun-sheng, FU Gui-ping, ZHANG Xue-kun, MA Hai-qing, LIU Qing-yun, ZOU Xi-ling, CHENG Yong . 2018. Exogenous application of a low concentration of melatonin enhances salt tolerance in rapeseed (Brassica napus L.) seedlings. Journal of Integrative Agriculture, 17(2): 328-335.

Al Hassan M, Pacurar A, López-Gresa M P, Donat-Torres M P, Llinares J V, Boscaiu M, Vicente O. 2016. Effects of salt stress on three ecologically distinct Plantago species. PLOS ONE, 11, e0160236.

Barratt G F, Nadakavukaren M J, Frehn J L. 1977. Effect of melatonin implants on gonadal weights and pineal gland fine structure of the golden hamster. Tissue and Cell, 9, 335–345.

Bonnefont-Rousselot D, Collin F, Jore D, Gardès-Albert M. 2011. Reaction mechanism of melatonin oxidation by reactive oxygen species in vitro. Journal of Pineal Research, 50, 328–335.

Chen Q, Qi W B, Reiter R J, Wei W, Bao M W. 2009. Exogenously applied melatonin stimulates root growth and raises endogenous indoleacetic acid in roots of etiolated seedlings of Brassica juncea. Journal of Plant Physiology, 166, 324–328.

Dubbels R, Reiter R J, Klenke E, Goebel A, Schnakenberg E, Ehlers C, Schlwara H W, Schloot W. 1995. Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. Journal of Pineal Research, 18, 28–31.

Dun X L, Tao Z S, Wang J, Wang X F, Liu G H, Wang H Z. 2016. Comparative transcriptome analysis of primary roots of Brassica napus seedlings with extremely different primary root lengths using RNA sequencing. Frontiers in Plant Science, 7, 1238.

Julkowska M M, Testerink C. 2015. Tuning plant signaling and growth to survive salt. Trends in Plant Science, 20, 586–594.

Kostopoulou Z, Therios I, Roumeliotis E, Kanellis A K, Molassiotis A. 2015. Melatonin combined with ascorbic acid provides salt adaptation in Citrus aurantium L. seedlings. Plant Physiology and Biochemistry, 86, 155–165.

Li C, Wang P, Wei Z W, Liang D, Liu C H, Yin L H, Jia D F, Fu M Y, Ma F W. 2012. The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis. Journal of Pineal Research, 53, 298–306.

Liang C Z, Zheng G Y, Li W Z, Wang Y Q, Hu B, Wang H R, Wu H K, Qian Y W, Zhu X G, Tan D X, Chen S Y, Chu C C. 2015. Melatonin delays leaf senescence and enhances salt stress tolerance in rice. Journal of Pineal Research, 59, 91–101.

Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7, 405–410.

Munns R. 2002. Comparative physiology of salt and water stress. Plant, Cell & Environment, 25, 239–250.

Musgrave M E. 2000. Realizing the potential of rapid-cycling Brassica as a model system for use in plant biology research. Journal of Plant Growth Regulation, 19, 314–325.

Nawaz M A, Huang Y, Bie Z L, Ahmed W, Reiter R J, Niu M L, Hameed S. 2015. Melatonin: Current status and future perspectives in plant science. Frontiers in Plant Science, 6, 1230.

Reiter R J, Coto-Montes A, Boga J A, Fuentes-Broto L, Rosales-Corral S, Tan D X. 2011. Melatonin: New applications in clinical and veterinary medicine, plant physiology and industry. Neuroendocrinology Letters, 32, 575–587.

Sah S K, Reddy K R, Li J X. 2016. Abscisic acid and abiotic stress tolerance in crop plants. Frontiers in Plant Science, 7, 571.

Sarropoulou V N, Therios I N, Dimassi-Theriou K N. 2012. Melatonin promotes adventitious root regeneration in in vitro shoot tip explants of the commercial sweet cherry rootstocks CAB-6P (Prunus cerasus L.), Gisela 6 (P. cerasus×

P. canescens), and MxM 60 (P. avium×P. mahaleb). Journal of Pineal Research, 52, 38–46.

Shi H T, Chen K L, Wei Y X, He C Z. 2016. Fundamental issues of melatonin-mediated stress signaling in plants. Frontiers in Plant Science, 7, 1124.

Shi H T, Jiang C, Ye T T, Tan D X, Reiter R J, Zhang H, Liu R Y, Chan Z L. 2015. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass (Cynodon dactylon (L). Pers.) by exogenous melatonin. Journal of Experimental Botany, 66, 681–694.

Wang P, Sun X, Li C, Wei Z W, Liang D, Ma F W. 2013. Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple. Journal of Pineal Research, 54, 292–302.

Wei W, Li Q T, Chu Y N, Reiter R J, Yu X M, Zhu D H, Zhang W K, Ma B, Lin Q, Zhang J S, Chen S Y. 2015. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. Journal of Experimental Botany, 66, 695–707.

Zhang H J, Zhang N, Yang R C, Wang L, Sun Q Q, Li D B, Cao Y Y, Weeda S, Zhao B, Ren S X, Guo Y D. 2014. Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA(4) interaction in cucumber (Cucumis sativus L.). Journal of Pineal Research, 57, 269–279.

Zhang N, Zhao B, Zhang H J, Weeda S, Yang C, Yang Z C, Ren S X, Guo Y D. 2013. Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.). Journal of Pineal Research, 54, 15–23.
 
[1] Niu Wang, Weidong Zhang, Zhenyu Zhong, Xiongbo Zhou, Xinran Shi, Xin Wang. FGF7 secreted from dermal papillae cell regulates the proliferation and differentiation of hair follicle stem cell[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3583-3597.
[2] Lichao Zhai, Shijia Song, Lihua Zhang, Jinan Huang, Lihua Lv, Zhiqiang Dong, Yongzeng Cui, Mengjing Zheng, Wanbin Hou, Jingting Zhang, Yanrong Yao, Yanhong Cui, Xiuling Jia. Subsoiling before winter wheat alleviates the kernel position effect of densely grown summer maize by delaying post-silking root–shoot senescence[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3384-3402.
[3] Tiantian Chen, Lei Li, Dan Liu, Yubing Tian, Lingli Li, Jianqi Zeng, Awais Rasheed, Shuanghe Cao, Xianchun Xia, Zhonghu He, Jindong Liu, Yong Zhang. Genome wide linkage mapping for black point resistance in a recombinant inbred line population of Zhongmai 578 and Jimai 22[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3311-3321.
[4] Zuxian Chen, Bingbing Zhao, Yingying Wang, Yuqing Du, Siyu Feng, Junsheng Zhang, Luxiang Zhao, Weiqiang Li, Yangbao Ding, Peirong Jiao. H5N1 avian influenza virus PB2 antagonizes duck IFN-β signaling pathway by targeting mitochondrial antiviral signaling protein[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3614-3625.
[5] Yang Sun, Yu Liu, Li Zhou, Xinyan Liu, Kun Wang, Xing Chen, Chuanqing Zhang, Yu Chen. Activity of fungicide cyclobutrifluram against Fusarium fujikuroi and mechanism of the pathogen resistance associated with point mutations in FfSdhB, FfSdhC2 and FfSdhD[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3511-3528.
[6] Yufeng Xiao, Meiqi Dong, Xian Wu, Shuang Liang, Ranhong Li, Hongyu Pan, Hao Zhang. Enrichment, domestication, degradation, adaptive mechanism, and nicosulfuron bioremediation of bacteria consortium YM2[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3529-3545.
[7] Yuxin He, Fei Deng, Chi Zhang, Qiuping Li, Xiaofan Huang, Chenyan He, Xiaofeng Ai, Yujie Yuan, Li Wang, Hong Cheng, Tao Wang, Youfeng Tao. Wei Zhou, Xiaolong Lei, Yong Chen, Wanjun Ren. Can a delayed sowing date improve the eating and cooking quality of mechanically transplanted rice in the Sichuan Basin, China?[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3368-3383.
[8] Dili Lai, Md. Nurul Huda, Yawen Xiao, Tanzim Jahan, Wei Li, Yuqi He, Kaixuan Zhang, Jianping Cheng, Jingjun Ruan, Meiliang Zhou. Evolutionary and expression analysis of sugar transporters from Tartary buckwheat revealed the potential function of FtERD23 in drought stress[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3334-3350.
[9] Zishuai Wang, Wangchang Li, Zhonglin Tang. Enhancing the genomic prediction accuracy of swine agricultural economic traits using an expanded one-hot encoding in CNN models[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3574-3582.
[10] Yunji Xu, Xuelian Weng, Shupeng Tang, Weiyang Zhang, Kuanyu Zhu, Guanglong Zhu, Hao Zhang, Zhiqin Wang, Jianchang Yang. Untargeted lipidomic analysis of milled rice under different alternate wetting and soil drying irrigation regimes[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3351-3367.
[11] Minghui Li, Yilan Chen, Siqiao Wang, Xueke Sun, Yongkun Du, Siyuan Liu, Ruiqi Li, Zejie Chang, Peiyang Ding, Gaiping Zhang. Plug-and-display nanoparticle immunization of the core epitope domain induces potent neutralizing antibody and cellular immune responses against PEDV[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3598-3613.
[12] Jing Zhou, Bingshuai Du, Yibo Cao, Kui Liu, Zhihua Ye, Yiming Huang, Lingyun Zhang. Genome-wide identification of sucrose transporter genes in Camellia oleifera and characterization of CoSUT4[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3494-3510.
[13] Yuheng Wang, Furong Kang, Bo Yu, Quan Long, Huaye Xiong, Jiawei Xie, Dong Li, Xiaojun Shi, Prakash Lakshmanan, Yueqiang Zhang, Fusuo Zhang. Magnesium supply is vital for improving fruit yield, fruit quality and magnesium balance in citrus orchards with increasingly acidic soil[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3641-3655.
[14] Mingxin Feng, Ying Hu, Xin Yang, Jingwen Li, Haochen Wang, Yujia Liu, Haijun Ma, Kai Li, Jiayin Shang, Yulin Fang, Jiangfei Meng. Uncovering the miRNA-mediated regulatory network involved in postharvest senescence of grape berries[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3465-3483.
[15] Li Liu, Yifeng Feng, Ziqi Han, Yaxiao Song, Jianhua Guo, Jing Yu, Zidun Wang, Hui Wang, Hua Gao, Yazhou Yang, Yuanji Wang, Zhengyang Zhao. Functional analysis of the xyloglucan endotransglycosylase/hydrolase gene MdXTH2 in apple fruit firmness formation[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3418-3434.
No Suggested Reading articles found!