Please wait a minute...
Journal of Integrative Agriculture  2018, Vol. 17 Issue (03): 530-538    DOI: 10.1016/S2095-3119(17)61721-0
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
GmNAC15 overexpression in hairy roots enhances salt tolerance in soybean
LI Ming1, 2, HU Zheng2, JIANG Qi-yan2, SUN Xian-jun2, GUO Yuan2, QI Jun-cang1, ZHANG Hui2   
1 Agricultural College, Shihezi University, Shihezi 832003, P.R.China
2 National Key Facilities for Crop Genetic Resources and Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  The NAC (NAM, ATAF1/2 and CUC2) transcription factor family plays a key role in plant development and responses to abiotic stress.  GmNAC15 (Glyma15g40510.1), a member of the NAC transcription factor family in soybean, was functionally characterized, especially with regard to its role in salt tolerance.  In the present study, qRT-PCR (quantitative reverse transcription PCR) analysis indicated that GmNAC15 was induced by salt, drought, low temperature stress, and ABA treatment in roots and leaves.  GmNAC15 overexpression in soybean (Glycine max) hairy roots enhanced salt tolerance.  Transgenic hairy roots improved the survival of wild leaves; however, overexpression of GmNAC15 in hairy root couldn’t influnce the expression level of GmNAC15 in leaf.  GmNAC15 regulates the expression levels of genes responsive to salt stress.  Altogether, these results provide experimental evidence of the positive effect of GmNAC15 on salt tolerance in soybean and the potential application of genetic manipulation to enhance the salt tolerance of important crops. 
Keywords:  NAC        salt tolerance        soybean        hairy roots  
Received: 24 February 2017   Accepted:
Fund: 

This study was supported by the National Key Research and Development Program of China (2016YFD0101005) and the Agricultural Science and Technology Program for Innovation Team on Identification and excavation of Elite Crop Germplasm, Chinese Academy of Agricultural Sciences.

Corresponding Authors:  Correspondence QI Jun-cang,E-mail: qjc_agr@shzu.edu.cn; ZHANG Hui,E-mail:zhanghui06@caas.cn   
About author:  LI Ming,Tel/Fax:+86-10-62186654,E-mail:lmpapaya1987926@sina.com

Cite this article: 

LI Ming, HU Zheng, JIANG Qi-yan, SUN Xian-jun, GUO Yuan, QI Jun-cang, ZHANG Hui. 2018. GmNAC15 overexpression in hairy roots enhances salt tolerance in soybean. Journal of Integrative Agriculture, 17(03): 530-538.

Aono M, Kubo A, Saji H, Tanaka K, Kondo N. 1993. Enhanced tolerance to photooxidative stress of transgenic Nicotiana tabacum with high chloroplastic glutathione reductase activity. Plant and Cell Physiology, 34, 129–135. 

Ernst H A, Olsen A N, Skriver K, Larsen S, Leggio L L. 2004. Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. Scientific Report, 5, 297–303.

Estrada-Navarrete G, Alvarado-Affantranger X, Olivares J E, Díaz-Camino C, Santana O, Murillo E, Guillén G, Sánchez-Guevara N, Acosta J, Quinto C, Li D, Gresshoff P M, Sánchez F. 2006. Agrobacterium rhizogenes transformation of the Phaseolus spp.: A tool for functional genomics. Molecular Plant-Microbe Interactions, 19, 1385–1393.

Feng H, Duan X, Zhang Q, Li X, Wang B, Huang L, Wang X, Kang Z. 2014. The target gene of tae-miR164, a novel NAC transcription factor from the NAM subfamily, negatively regulates resistance of wheat to stripe rust. Molecular Plant Pathology, 15, 284–296.  

Hao Y J, Wei W, Song Q X, Chen H W, Zhang Y Q, Wang F, Zou H, Lei G, Tian A , Zhang W, Ma B, Zhang J, Chen S. 2011. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. The Plant Journal, 68, 302–313.

He X J, Mu R L, Cao W H, Zhang Z G, Zhang J S, Chen S Y. 2005. AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. The Plant Journal, 44, 903–916.

Hibara K I, Karim M R, Takada S, Taoka K I, Furutani M, Aida M, Tasaka M. 2006. Arabidopsis CUP-SHAPED COTYLEDON3 regulates postembryonic shoot meristem and organ boundary formation. The Plant Cell, 18, 2946–2957.

Huang Q, Wang Y. 2016. Overexpression of TaNAC2D displays opposite responses to abiotic stresses between seedling and mature stage of transgenic Arabidopsis. Frontiers in Plant Science, 7, 1754.

Huang Q, Wang Y, Li B, Chang J, Chen M, Li K, Yang G, He G. 2015. TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis. BMC Plant Biology, 15, 268.

Huang X S, Luo T, Fu X Z, Fan Q J, Liu J H. 2011. Cloning and molecular characterization of a mitogen-activated protein kinase gene from Poncirus trifoliata whose ectopic expression confers dehydration/drought tolerance in transgenic tobacco. Journal of Experimental Botany, 62, 5191–5206.

Jensen M K, Kjaersgaard T, Nielsen M M, Galberg P, Petersen K, O’Shea C, Skriver K. 2010. The Arabidopsis thaliana NAC transcription factor family: Structure-function relationships and determinants of ANAC019 stress signalling. Biochemical Journal, 426, 183–196.

Kereszt A, Li D, Indrasumunar A, Nguyen C D, Nontachaiyapoom S, Kinkema M, Gresshoff P M. 2007. Agrobacterium rhizogenes-mediated transformation of soybean to study root biology. Nature Protocols, 2, 948–952.

Kong X, Sun L, Zhou Y, Zhang M, Liu Y, Pan J, Li D. 2011. ZmMKK4 regulates osmotic stress through reactive oxygen species scavenging in transgenic tobacco. Plant Cell Reports, 30, 2097–2104.

Le D T, Nishiyama R I E, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, Shinozaki K, Tran L S P. 2011. Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Research, 18, 263–276.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods, 25, 402–408. 

Mao X, Zhang H, Qian X, Li A, Zhao G, Jing R. 2012. TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. Journal of Experimental Botany, 63, 2933–2946.

Ni Z, Hu Z, Jiang Q, Zhang H. 2013. GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress. Plant Molecular Biology, 82, 113–129.

Nuruzzaman M, Manimekalai R, Sharoni A M, Satoh K, Kondoh H, Ooka H, Kikuchi S. 2010. Genome-wide analysis of NAC transcription factor family in rice. Gene, 465, 30–44.

Parida A K, Das A B. 2005. Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety, 60, 324–349.

Patil M, Ramu S V, Jathish P, Sreevathsa R, Reddy P C, Prasad T G, Udayakumar M. 2014. Overexpression of AtNAC2 (ANAC092) in groundnut (Arachis hypogaea L.) improves abiotic stress tolerance. Plant Biotechnology Reports, 8, 161–169.

Phang T H, Shao G, Lam H M. 2008. Salt tolerance in soybean. Journal of Integrative Plant Biology, 50, 1196–1212.

Puckette M C, Weng H, Mahalingam R. 2007. Physiological and biochemical responses to acute ozone-induced oxidative stress in Medicago truncatula. Plant Physiology and Biochemistry, 45, 70–79.

Puranik S, Sahu P P, Srivastava P S, Prasad M. 2012. NAC proteins: Regulation and role in stress tolerance. Trends in Plant Science, 17, 369–381.

Rushton P J, Bokowiec M T, Han S, Zhang H, Brannock J F, Chen X, Laudeman T W, Timko M P. 2008. Tobacco transcription factors: novel insights into transcriptional regulation in the Solanaceae. Plant Physiology, 147, 280–295.

Takada S, Hibara K I, Ishida T, Tasaka M. 2001. The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development, 128, 1127–1135.

Yang R, Deng C, Ouyang B, Ye Z. 2011. Molecular analysis of two salt-responsive NAC-family genes and their expression analysis in tomato. Molecular Biology Reports, 38, 857–863.

Zhang G, Chen M, Li L, Xu Z, Chen X, Guo J, Ma Y. 2009. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. Journal of Experimental Botany, 60, 3781–3796.

Zheng X, Chen B, Lu G, Han B. 2009. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochemical and Biophysical Research Communications, 379, 985–989.

Zhou Q Y, Tian A G, Zou H F, Xie Z M, Lei G, Huang J, Wang C M, Wang H W, Zhang J S, Chen S Y. 2008. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnology Journal, 6, 486–503.
[1] Xiaolin Liu, Jie Zhu, Ruixiang Li, Yang Feng, Qian Yao, Dong Duan. The role of the transcription factor NAC17 in enhancing plant resistance and stress tolerance in Vitis quinquangularis[J]. >Journal of Integrative Agriculture, 2025, 24(9): 3435-3450.
[2] Siya Li, Lu Cao, Ziwen Zhou, Yaohua Cheng, Xianchen Zhang, Yeyun Li. The miR164a targets CsNAC1 to negatively regulate the cold tolerance of tea plants (Camellia sinensis)[J]. >Journal of Integrative Agriculture, 2025, 24(8): 3073-3086.
[3] Ming Ma, Tingting Hao, Xipeng Ren, Chang Liu, Gela A, Agula Hasi, Gen Che. NAC family gene CmNAC34 positively regulates fruit ripening through interaction with CmNAC-NOR in Cucumis melo[J]. >Journal of Integrative Agriculture, 2025, 24(7): 2601-2618.
[4] Qianqian Shi, Xue Han, Xinhao Zhang, Jie Zhang, Qi Fu, Chen Liang, Fangmeng Duan, Honghai Zhao, Wenwen Song. Transcriptome-wide N6-methyladenosine (m6A) profiling of compatible and incompatible responses reveals a nonhost resistance-specific m6A modification involved in soybean–soybean cyst nematode interaction[J]. >Journal of Integrative Agriculture, 2025, 24(5): 1875-1891.
[5] Yuxiang Qin, Bao Zhang, Shoufu Cui, Xiaochun Qin, Genying Li. TaFLZ54D enhances salt stress tolerance in wheat by interacting with TaSGT1 and TaPP2C[J]. >Journal of Integrative Agriculture, 2025, 24(3): 1017-1029.
[6] Hong Huo, Shuang Xiao, Jinming Wang, Xijun Wang, Jinying Ge, Gongxun Zhong, Zhiyuan Wen, Chong Wang, Jinliang Wang, Han Wang, Xijun He, Lei Shuai, Zhigao Bu. Rabies virus-based oral and inactivated vaccines protect minks against SARS-CoV-2 infection and transmission[J]. >Journal of Integrative Agriculture, 2025, 24(3): 1198-1211.
[7] Taowen Pan, Yulin Chen, Sicong Li, Lei Wang, Joji Muramoto, Carol Shennan, Jihui Tian, Kunzheng Cai. Anaerobic soil disinfestation rather than Bacillus velezensis Y6 inoculant suppresses tomato bacterial wilt by improving soil quality and manipulating bacterial communities[J]. >Journal of Integrative Agriculture, 2025, 24(2): 754-768.
[8] Zhen Liu, Ning Xu, Jumei Hou, Tong Liu. TbNACα negatively regulates Trichoderma breve T069 synthesis of ethyl caffeate and enhances antagonism of Sclerotium rolfsii[J]. >Journal of Integrative Agriculture, 2025, 24(11): 4324-4341.
[9] Bo Jiao, Xin Guo, Yiying Chen, Shah Faisal, Wenchao Liu, Xiaojie Ma, Bicong Wu, Guangyue Ren, Qiang Wang. Low-fat microwaved peanut snacks production: Effect of defatting treatment on structural characteristics, texture, color, and nutrition[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2491-2502.
[10] Ping Chen, Qing Du, Benchuan Zheng, Huan Yang, Zhidan Fu, Kai Luo, Ping Lin, Yilin Li, Tian Pu, Taiwen Yong, Wenyu Yang.

Coordinated responses of leaf and nodule traits contribute to the accumulation of N in relay intercropped soybean [J]. >Journal of Integrative Agriculture, 2024, 23(6): 1910-1928.

[11] Qianqian Chen, Qian Zhao, Baoxing Xie, Xing Lu, Qi Guo, Guoxuan Liu, Ming Zhou, Jihui Tian, Weiguo Lu, Kang Chen, Jiang Tian, Cuiyue Liang.

Soybean (Glycine max) rhizosphere organic phosphorus recycling relies on acid phosphatase activity and specific phosphorus-mineralizing-related bacteria in phosphate deficient acidic soils [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1685-1702.

[12] Fan Yu, Zehuai Yu, Jin Chai, Xikai Yu, Chen Fu, Xinwang Zhao, Hailong Chang, Jiawei Lei, Baoshan Chen, Wei Yao, Muqing Zhang, Jiayun Wu, Qinnan Wang, Zuhu Deng. Intergeneric chromosome-specific painting reveals differential chromosomal transmission from Tripidium arundinaceum in sugarcane progeny[J]. >Journal of Integrative Agriculture, 2024, 23(11): 3751-3762.
[13] DU Dan, HU Xin, SONG Xiao-mei, XIA Xiao-jiao, SUN Zhen-yu, LANG Min, PAN Yang-lu, ZHENG Yu, PAN Yu. SlTPP4 participates in ABA-mediated salt tolerance by enhancing root architecture in tomato[J]. >Journal of Integrative Agriculture, 2023, 22(8): 2384-2396.
[14] CHI Qing, DU Lin-ying, MA Wen, NIU Ruo-yu, WU Bao-wei, GUO Li-jian, MA Meng, LIU Xiang-li, ZHAO Hui-xian. The miR164-TaNAC14 module regulates root development and abiotic-stress tolerance in wheat seedlings[J]. >Journal of Integrative Agriculture, 2023, 22(4): 981-998.
[15] DENG Jian-yu, LAN Chen-yi-hang, ZHOU Jun-xiang, YAO Yu-bo, YIN Xiao-hui, FU Kai-yun, DING Xin-hua, GUO Wen-chao, LIU Wen, WANG Na, Fumin WANG.

Analysis of sex pheromone production and field trapping of the Asian corn borer (Ostrinia furnacalis Guenée) in Xinjiang, China [J]. >Journal of Integrative Agriculture, 2023, 22(4): 1093-1103.

No Suggested Reading articles found!