Please wait a minute...
Journal of Integrative Agriculture  2016, Vol. 15 Issue (10): 2192-2202    DOI: 10.1016/S2095-3119(15)61244-8
Crop Genetics · Breeding · Germplasm Resources Advanced Online Publication | Current Issue | Archive | Adv Search |
Association mapping of quantitative trait loci for yield-related agronomic traits in rice (Oryza sativa L.)
XU Fei-fei1, JIN Liang2, HUANG Yan1, TONG Chuan1, CHEN Ya-ling1, BAO Jin-song1
1 Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, P.R.China
2 Research & Development Centre of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou 311202, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract      High yield in rice mainly depends on large grain weight, ideal plant architecture and proper flowering time adapting to various geographic regions. To help achieve higher yield, phenotype variations of heading date (HD), plant architecture and grain shape in a panel of 416 rice accessions were investigated in this study. A total of 143 markers including 100 simple sequence repeat (SSR) markers and 43 gene-tagged markers were employed in association mapping to detect quantitative trait loci (QTL) responsible for these variations. Among the 7 subpopulations, POP5 in japonica group showed the largest values of HD and grain width (GW), but the smallest values of grain length (GL) and grain length to width ratio (GLW). Among the six indica groups, POP7 had the largest values of HD, GL, GLW, and 1 000-grain weight (TGW). A total of 27 QTLs were detected underlying these phenotypic variations in single year, while 12 of them could be detected in 2006 and 2007. GS3 marker was closely associated with GL, GW and GLW, and widely distributed in different groups. The starch synthesis related gene markers, SSI, SSIIa, SBE1, AGPL4, and ISA1, were linked to plant height (PH), panicle length (PL), flag leaf length (FLL), GW, and GLW. The SSR markers, RM267, RM340 and RM346, were linked to at least two traits. Therefore, these new markers will probably be used to improve rice grain yield or plant architecture when performing marker-assisted selection of proper alleles.
Keywords:  yield        plant architecture        heading date        association mapping        marker-assisted selection  
Received: 15 September 2015   Accepted:
Fund: 

This work was financially supported by the Fundamental Research Funds for the Central Universities at Zhejiang University, China (2016XZZX001-09).

Corresponding Authors:  BAO Jin-song, E-mail: jsbao@zju.edu.cn   

Cite this article: 

XU Fei-fei, JIN Liang, HUANG Yan, TONG Chuan, CHEN Ya-ling, BAO Jin-song. 2016. Association mapping of quantitative trait loci for yield-related agronomic traits in rice (Oryza sativa L.). Journal of Integrative Agriculture, 15(10): 2192-2202.

Agrama H A, Eizenga G C, Yan W. 2007. Association mapping of yield and its components in rice cultivars. Molecular Breeding, 19, 341–356.

Ashikari M, Sakakibara H, Lin S Y, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. 2005. Cytokinin oxidase regulates rice grain production. Science, 309, 741–745.

Begum H, Spindel J E, Lalusin A, Borromeo T, Gregorio G, Hernandez J, Virk P, Collard B, McCouch S R. 2015. Genome-wide association mapping for yield and other agronomic traits in an elite breeding population of tropical rice (Oryza sativa). PLOS ONE, 10, e0119873.

Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. 2007. TASSEL, software for association mapping of complex traits in diverse samples. Bioinformatics, 23, 2633–2635.

Bryant R, Proctor A, Hawkridge M, Jackson A, Yeater K, Counce P, Yan W, McClung A, Fjellstrom R. 2011. Genetic variation and association mapping of silica concentration in rice hulls using a germplasm collection. Genetica, 139, 1383–1398.

Chen W, Gao Y, Xie W, Gong L, Lu K, Wang W, Li Y, Liu X, Zhang H, Dong H, Zhang W, Zhang L, Yu S, Wang G, Lian X, Luo J. 2014. Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nature Genetics, 46, 714–721.

Cui D, Xu C, Yang C, Zhang Q, Zhang J, Ma X, Qiao Y, Cao G, Zhang S, Han L. 2015. Association mapping of salinity and alkalinity tolerance in improved japonica rice (Oryza sativa L. subsp. japonica Kato) germplasm. Genetic Resource and Crop Evolution, 62, 539–550.

Cui D, Xu C Y, Tang C F, Yang C G, Yu T Q, A X X, Cao G L, Xu F R, Zhang J G, Han L Z. 2013. Genetic structure and association mapping of cold tolerance in improved japonica rice germplasm at the booting stage. Euphytica, 193, 369–382.

Dang X, Thu Giang Tran T, Dong G, Wang H, Edzesi W M, Hong D. 2014. Genetic diversity and association mapping of seed vigor in rice (Oryza sativa L.). Planta, 239, 1309–1319.

Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A. 2004. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes & Development, 18, 926–936.

Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q. 2006. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theoretical and Applied Genetics, 112, 1164–1171.

Hall D, Tegstrom C, Ingvarsson P K. 2010. Using association mapping to dissect the genetic basis of complex traits in plants. Briefings in Functional Genomics, 9, 157–165.

Hardy O J, Vekemans X. 2002. SPAGEDi, a versatile computer program to analyse spatial genetic structure at the individual or population levels. Molecular Ecology Notes, 2, 618–620.

Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, et al. 2010. Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics, 42, 961–976.

Huang X, Zhao Y, Wei X, Li C, Wang A, Zhao Q, Li W, Guo Y, Deng L, Zhu C, Fan D, Lu Y, Weng Q, Liu K, Zhou T, Jing Y, Si L, Dong G, Huang T, Lu T, et al. 2012. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nature Genetics, 44, 32–53.

Huang X Z, Qian Q, Liu Z B, Sun H Y, He S Y, Luo D, Xia G M, Chu C C, Li J Y, Fu X D. 2009. Natural variation at the DEP1 locus enhances grain yield in rice. Nature Genetics, 41, 494–497.

Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B I, Onishi A, Miyagawa H, Katoh E. 2013. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nature Genetics, 45, 707

Jia L, Yan W, Zhu C, Agrama H A, Jackson A, Yeater K, Li X, Huang B, Hu B, McClung A, Wu D. 2012. Allelic analysis of sheath blight resistance with association mapping in rice. PLOS ONE, 7, e32703.

Jiao Y Q, Wang Y H, Xue D W, Wang J, Yan M X, Liu G F, Dong G J, Zeng D L, Lu Z F, Zhu X D, Qian Q, Li J Y. 2010. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nature Genetics, 42, 541-U536.

Jin L, Lu Y, Xiao P, Sun M, Corke H, Bao J. 2010. Genetic diversity and population structure of a diverse set of rice germplasm for association mapping. Theoretical and Applied Genetics, 121, 475–487.

Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M. 2002. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant and Cell Physiology, 43, 1096–1105.

Komorisono M, Ueguchi-Tanaka M, Aichi I, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M, Sazuka T. 2005. Analysis of the rice mutant dwarf and gladius leaf 1. Aberrantkatanin-mediated microtubule organization causes up-regulation of gibberellin biosynthetic genes independently of gibberellin signaling. Plant Physiology, 138, 1982–1993.

Li G, Na Y W, Kwon S W, Park Y J. 2014. Association analysis of seed longevity in rice under conventional and high-temperature germination conditions. Plant Systematics and Evolution, 300, 389–402.

Li X, Yan W, Agrama H, Jia L, Jackson A, Moldenhauer K, Yeater K, McClung A, Wu D. 2012. Unraveling the complex trait of harvest index with association mapping in rice (Oryza sativa L.). PLOS ONE, 7, e29350.

Li X, Yan W, Agrama H, Jia L, Shen X, Jackson A, Moldenhauer K, Yeater K, McClung A, Wu D. 2011. Mapping QTLs for improving grain yield using the USDA rice mini-core collection. Planta, 234, 347–361. 

Li X Y, Qian Q, Fu Z M, Wang Y H, Xiong G S, Zeng D L, Wang X Q, Liu X F, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J Y. 2003. Control of tillering in rice. Nature, 422, 618–621.

Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, Li X, Xiao J, He Y, Zhang Q. 2011. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nature Genetics, 43, 1266-U1134.

Liu E, Liu X, Zeng S, Zhao K, Zhu C, Liu Y, Breria M C, Zhang B, Hong D. 2015. Time-course association mapping of the grain-filling rate in rice (Oryza sativa L.). PLOS ONE, 10, e0119959.

Maekawa M, Takamure I, Ahmed N, Kyozuka J. 2005. Bunketsu-waito, one of the tillering dwarfs, is controlled by a single recessive gene in rice (Oryza sativa L.). Breeding Science, 55, 193–196.

Miura K, Ikeda M, Matsubara A, Song X J, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M. 2010. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nature Genetics, 42, 545–549.

Miyata M, Yamamoto T, Komori T, Nitta N. 2007. Marker-assisted selection and evaluation of the QTL for stigma exsertion under japonica rice genetic background. Theoretical and Applied Genetics, 114, 539–548.

Pan Y, Zhang H, Zhang D, Li J, Xiong H, Yu J, Li J, Rashid MAR, Li G, Ma X, Cao G, Han L, Li Z. 2015. Genetic analysis of cold tolerance at the germination and booting stages in rice by association mapping. PLOS ONE, 10, e0120590.

Pritchard J K, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics, 155, 945–959.

Rathi S, Pathak K, Yadav R N S, Kumar B, Sarma R N. 2014. Association studies of dormancy and cooking quality traits in direct-seeded indica rice. Journal of Genetics, 93, 3–12.

Shao Y F, Jin L, Zhang G, Lu Y, Shen Y, Bao J S. 2011. Association mapping of grain color, phenolic content, flavonoid content and antioxidant capacity in dehulled rice. Theoretical and Applied Genetics, 122, 1005–1016.

She K C, Kusano H, Koizumi K, Yamakawa H, Hakata M, Imamura T, Fukuda M, Naito N, Tsurumaki Y, Yaeshima M, Tsuge T, Matsumoto K, Kudoh M, Itoh E, Kikuchi S, Kishimoto N, Yazaki J, Ando T, Yano M, Aoyama T, et al. 2010. A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality. The Plant Cell, 22, 3280–3294.

Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M. 2008. Deletion in a gene associated with grain size increased yields during rice domestication. Nature Genetics, 40, 1023–1028.

Song X J, Huang W, Shi M, Zhu M Z, Lin H X. 2007. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics, 39, 623–630.

Spielmeyer W, Ellis M H, Chandler P M. 2002. Semidwarf (sd-1),

“green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proceedings of the National Academy of Sciences of the United States of America, 99, 9043–9048.

Sun L J, Li X J, Fu Y C, Zhu Z F, Tan L B, Liu F X, Sun X Y, Sun X W, Sun C Q. 2013. GS6, a member of the GRAS gene family, negatively regulates grain size in rice. Journal of Integrative Plant Biology, 55, 938–949.

Ueda Y, Frimpong F, Qi Y, Matthus E, Wu L, Höller S, Kraska T, Frei M. 2015. Genetic dissection of ozone tolerance in rice (Oryza sativa L.) by a genome-wide association study. Journal of Experimental Botany, 66, 293–306.

Wang C R, Chen S, Yu S B. 2011. Functional markers developed from multiple loci in GS3 for fine marker-assisted selection of grain length in rice. Theoretical and Applied Genetics, 122, 905–913.

Wang E, Wang J, Zhu X, Hao W, Wang L, Li Q, Zhang L, He W, Lu B, Lin H. 2008. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nature Genetics, 40, 1370–1374.

Wang P, Zhou G, Cui K, Li Z, Yu S. 2012. Clustered QTL for source leaf size and yield traits in rice (Oryza sativa L.). Molecular Breeding, 29, 99–113.

Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q. 2012. Control of grain size, shape and quality by OsSPL16 in rice. Nature Genetics, 44, 950–954.

Xu F F, Zhang G, Tong C, Sun X, Corke H, Sun M, Bao J S. 2013. Association mapping of starch physicochemical properties with starch biosynthesizing genes in waxy rice (Oryza sativa L.). Journal of Agricultural and Food Chemistry, 61, 10110–10117.

Xu F F, Tang F F, Shao Y F, Chen Y L, Tong C, Bao J S. 2014. Genotype×environment interactions for agronomic traits of rice revealed by association mapping. Rice Science, 21, 133–141.

Xu F F, Huang Y, Bao J S. 2015. Identification of QTLs for agronomic traits in indica rice using an RIL population. Genes & Genomics, 37, 809–817.

Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X. 2008. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature Genetics, 40, 761–767.

Yamamoto T, Lin H, Sasaki T, Yano M. 2000. Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics, 154, 885–891.

Yamamoto T, Taguchi-Shiobara F, Ukai Y, Sasaki T, Yano M. 2001. Mapping quantitative trait loci for days-to-heading, and culm, panicle and internode lengths in a BC1F3 population using an elite rice variety, Koshihikari, as the recurrent parent. Breeding Science, 51, 63–71.

Yang F, Chen Y, Tong C, Huang Y, Xu F, Li K, Corke H, Sun M, Bao J S. 2014. Association mapping of starch physicochemical properties with starch synthesis-related gene markers in nonwaxy rice (Oryza sativa L.). Molecular Breeding, 34, 1747–1763.

Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. 2000. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the arabidopsis flowering time gene CONSTANS. The Plant Cell, 12, 2473–2483.

Ying J Z, Gao J P, Shan J X, Zhu M Z, Shi M, Lin H X. 2012. Dissecting the genetic basis of extremely large grain shape in rice cultivar ‘JZ1560’. Journal of Genetics and Genomics, 39, 325–333

Yu J M, Pressoir G, Briggs W H, Bi I V, Yamasaki M, Doebley J F, McMullen M D, Gaut B S, Nielsen D M, Holland J B, Kresovich S, Buckler E S. 2006. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics, 38, 203–208.

Zhang L, Wang J, Wang J, Wang L, Ma B, Zeng L, Qi Y, Li Q, He Z. 2015. Quantitative trait locus analysis and fine mapping of the qPL6 locus for panicle length in rice. Theoretical and Applied Genetics, 128, 1151–1161.

Zhang P, Liu X, Tong H, Lu Y, Li J. 2014. Association mapping for important agronomic traits in core collection of rice (Oryza sativa L.) with SSR markers. PLOS ONE, 9, e0111508.

Zhang X, Wang J, Huang J, Lan H, Wang C, Yin C, Wu Y, Tang H, Qian Q, Li J. 2012. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proceedings of the National Academy of Sciences of the United States of America, 109, 21534–21539.

Zhao W G, Chung J W, Kwon S W, Lee J H, Ma K H, Park Y J. 2013. Association analysis of physicochemical traits on eating quality in rice (Oryza sativa L.). Euphytica, 191, 9–21.

Zheng H, Zhao H, Liu H, Wang J, Zou D. 2014. QTL analysis of Na+ and K+ concentrations in shoots and roots under NaCl stress based on linkage and association analysis in japonica rice. Euphytica, 201, 109–121.

Zhu C, Gore M, Buckler E S, Yu J. 2008. Status and prospects of association mapping in plants. Plant Genome, 1, 5–20.
[1] WEI Huan-he, GE Jia-lin, ZHANG Xu-bin, ZHU Wang, DENG Fei, REN Wan-jun, CHEN Ying-long, MENG Tian-yao, DAI Qi-gen. Decreased panicle N application alleviates the negative effects of shading on rice grain yield and grain quality[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2041-2053.
[2] DING Yong-gang, ZHANG Xin-bo, MA Quan, LI Fu-jian, TAO Rong-rong, ZHU Min, Li Chun-yan, ZHU Xin-kai, GUO Wen-shan, DING Jin-feng. Tiller fertility is critical for improving grain yield, photosynthesis and nitrogen efficiency in wheat[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2054-2066.
[3] LIU Dan, ZHAO De-hui, ZENG Jian-qi, Rabiu Sani SHAWAI, TONG Jing-yang, LI Ming, LI Fa-ji, ZHOU Shuo, HU Wen-li, XIA Xian-chun, TIAN Yu-bing, ZHU Qian, WANG Chun-ping, WANG De-sen, HE Zhong-hu, LIU Jin-dong, ZHANG Yong. Identification of genetic loci for grain yield‑related traits in the wheat population Zhongmai 578/Jimai 22[J]. >Journal of Integrative Agriculture, 2023, 22(7): 1985-1999.
[4] GAO Peng, ZHANG Tuo, LEI Xing-yu, CUI Xin-wei, LU Yao-xiong, FAN Peng-fei, LONG Shi-ping, HUANG Jing, GAO Ju-sheng, ZHANG Zhen-hua, ZHANG Hui-min. Improvement of soil fertility and rice yield after long-term application of cow manure combined with inorganic fertilizers[J]. >Journal of Integrative Agriculture, 2023, 22(7): 2221-2232.
[5] LI Qian-chuan, XU Shi-wei, ZHUANG Jia-yu, LIU Jia-jia, ZHOU Yi, ZHANG Ze-xi. Ensemble learning prediction of soybean yields in China based on meteorological data[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1909-1927.
[6] ZHANG Chong, WANG Dan-dan, ZHAO Yong-jian, XIAO Yu-lin, CHEN Huan-xuan, LIU He-pu, FENG Li-yuan, YU Chang-hao, JU Xiao-tang. Significant reduction of ammonia emissions while increasing crop yields using the 4R nutrient stewardship in an intensive cropping system[J]. >Journal of Integrative Agriculture, 2023, 22(6): 1883-1895.
[7] ZHAO Xiao-dong, QIN Xiao-rui, LI Ting-liang, CAO Han-bing, XIE Ying-he. Effects of planting patterns plastic film mulching on soil temperature, moisture, functional bacteria and yield of winter wheat in the Loess Plateau of China[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1560-1573.
[8] ZHANG Zhen-zhen, CHENG Shuang, FAN Peng, ZHOU Nian-bing, XING Zhi-peng, HU Ya-jie, XU Fang-fu, GUO Bao-wei, WEI Hai-yan, ZHANG Hong-cheng. Effects of sowing date and ecological points on yield and the temperature and radiation resources of semi-winter wheat[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1366-1380.
[9] LI Min, ZHU Da-wei, JIANG Ming-jin, LUO De-qiang, JIANG Xue-hai, JI Guang-mei, LI Li-jiang, ZHOU Wei-jia. Dry matter production and panicle characteristics of high yield and good taste indica hybrid rice varieties[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1338-1350.
[10] WANG Xin-yu, YANG Guo-dong, XU Le, XIANG Hong-shun, YANG Chen, WANG Fei, PENG Shao-bing. Grain yield and nitrogen use efficiency of an ultrashort-duration variety grown under different nitrogen and seeding rates in direct-seeded and double-season rice in Central China[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1009-1020.
[11] ZHAO Shu-ping, DENG Kang-ming, ZHU Ya-mei, JIANG Tao, WU Peng, FENG Kai, LI Liang-jun.

Optimization of slow-release fertilizer application improves lotus rhizome quality by affecting the physicochemical properties of starch [J]. >Journal of Integrative Agriculture, 2023, 22(4): 1045-1057.

[12] ZHANG Bing-chao, HU Han, GUO Zheng-yu, GONG Shuai, SHEN Si, LIAO Shu-hua, WANG Xin, ZHOU Shun-li, ZHANG Zhong-dong. Plastic-film-side seeding, as an alternative to traditional film mulching, improves yield stability and income in maize production in semi-arid regions[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1021-1034.
[13] SHI Wen-xuan, ZHANG Qian, LI Lan-tao, TAN Jin-fang, XIE Ruo-han, WANG Yi-lun. Hole fertilization in the root zone facilitates maize yield and nitrogen utilization by mitigating potential N loss and improving mineral N accumulation[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1184-1198.
[14] Sunusi Amin ABUBAKAR, Abdoul Kader Mounkaila HAMANI, WANG Guang-shuai, LIU Hao, Faisal MEHMOOD, Abubakar Sadiq ABDULLAHI, GAO Yang, DUAN Ai-wang. Growth and nitrogen productivity of drip-irrigated winter wheat under different nitrogen fertigation strategies in the North China Plain[J]. >Journal of Integrative Agriculture, 2023, 22(3): 908-922.
[15] FENG Xu-yu, PU Jing-xuan, LIU Hai-jun, WANG Dan, LIU Yu-hang, QIAO Shu-ting, LEI Tao, LIU Rong-hao. Effect of fertigation frequency on soil nitrogen distribution and tomato yield under alternate partial root-zone drip irrigation[J]. >Journal of Integrative Agriculture, 2023, 22(3): 897-907.
No Suggested Reading articles found!