Please wait a minute...
Journal of Integrative Agriculture  2016, Vol. 15 Issue (06): 1321-1229    DOI: 10.1016/S2095-3119(15)61173-X
Animal Science · Veterinary Science Advanced Online Publication | Current Issue | Archive | Adv Search |
Porcine LEM domain-containing 3: Molecular cloning, functional characterization, and polymorphism associated with ear size
LIANG Jing1*, LI Na1, 2*, ZHANG Long-chao1, WANG Li-gang1, LIU Xin1, ZHAO Ke-bin1, YAN Hua1, PU Lei1, ZHANG Yue-bo1, SHI Hui-bi1, ZHANG Qin2, WANG Li-xian1
1 Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation, Ministry of Agriculture/Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
2 Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture/College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract     Ear size exhibits remarkable diversity in pig breeds. LEM domain-containing 3 (LEMD3) on chromosome 5 is considered as an important candidate for porcine ear size. This is the first study on cloning and characterization of LEMD3 cDNA. The complete cDNA contains 4 843 bp, including a 2 736-bp open reading frame (ORF), a 37-bp 5´-untranslated region (UTR) and a 2 070-bp 3´-UTR. The complete LEMD3 gene is 126 241-bp and contains 13 exons and 12 introns. The ORF encodes a deduced LEMD3 protein of 911 amino acids, which shares 82–94% nucleic acid and 51–96% amino acid identity with other species. A phylogenetic tree constructed based on the amino acid sequences revealed that the porcine LEMD3 protein was closely related with cattle LEMD3. Resequencing of the ORF and promoter of LEMD3 from Minzhu pig and Large White revealed three single nucleotide polymorphisms (SNPs): L964C>A in the complete coding region, L4625A>G in the 3´ UTR, and L-394T>C in the promoter region. Genome-wide association study (GWAS) revealed that all of SNPs were shown significant association with ear size in Large White×Minzhu pig intercross population. With conditional GWAS, –log10(P-value) decreased by more than 80% when each of three SNPs was included as a fixed effect. These results suggested direct involvement of LEMD3 or close linkage to the causative mutation for ear size. The findings of this study might form the basis for understanding the genetic mechanism of ear size variation in pigs and provide potential molecular markers for screening ear size diversity in pig breeds.
Keywords:  association analysis        ear size        LEMD3        molecular cloning, pig  
Received: 30 March 2015   Accepted:
Fund: 

This research was supported by the Agricultural Science and Technology Innovation Program, China (ASTIP-IAS02), the National Key Technology R&D Program of China (2011BAD28B01), the Earmarked Fund for Modern Agro-Industry Technology Research System of China, and foundation from Chinese Academy of Agricultural Sciences (2014ZL006).

Corresponding Authors:  WANG Li-xian, Fax: +86-10-62818771, E-mail: iaswlx@263.net; ZHANG Qin, E-mail: qzhang@cau.edu.cn    
About author:  LIANG Jing, E-mail: jing_224@126.com

Cite this article: 

LIANG Jing, LI Na, ZHANG Long-chao, WANG Li-gang, LIU Xin, ZHAO Ke-bin, YAN Hua, PU Lei, ZHANG Yue-bo, SHI Hui-bi, ZHANG Qin, WANG Li-xian. 2016. Porcine LEM domain-containing 3: Molecular cloning, functional characterization, and polymorphism associated with ear size. Journal of Integrative Agriculture, 15(06): 1321-1229.

Ben-Asher E, Zelzer E, Lancet D. 2005. LEMD3: The gene responsible for bone density disorders (osteopoikilosis). Israel Medical Association Journal, 7, 273–274.

Bengtsson L. 2007. What MAN1 does to the smads. TGFbeta/BMP signaling and the nuclear envelope. FEBS Journal, 274, 1374–1382.

Bourgeois B, Gilquin B, Tellier-Lebegue C, Ostlund C, Wu W, Perez J, EI Hage P, Lallemand F, Worman H J, Zinn-Justin S. 2013. Inhibition of TGF-beta signaling at the nuclear envelope: characterization of interactions between MAN1, Smad2 and Smad3, and PPM1A. Science Signal, 6, doi: 10.1126/scisignal.2003411

Boyko A R, Quignon P, Li L, Schoenebeck J J, Degenhardt J D, Lohmueller K E, Zhao K, Brisbin A, Parker H G, vonHoldt B M, Cargill M, Auton A, Reynolds A, Elkahloun A G, Castelhano M, Mosher D S, Sutter N B, Johnson G S, Novembre J, Hubisz M J, et al. 2010. A simple genetic architecture underlies morphological variation in dogs. PLos Biology, 8, e1000451.

Burger B, Hershkovitz D, Indelman M, Kovac M, Galambos J, Haeusermann P, Sprecher E, Itin P H. 2010. Buschke-Ollendorff syndrome in a three-generation family: Influence of a novel LEMD3 mutation to tropoelastin expression. European Journal of Dermatology, 20, 693–697.

Burland T G. 2000. DNASTAR’s laser gene sequence analysis software. Methods in Molecular Biology, 132, 71–91.

Capon F, Allen M H, Ameen M, Burden A D, Tillman D, Barker J N, Trembath R C. 2004. A synonymous SNP of the corneodesmosin gene leads to increased mRNA stability and demonstrates association with psoriasis across diverse ethnic groups. Human Molecular Genetics, 13, 2361–2368.

Caputo S, Couprie J, Duband-Goulet I, Konde E, Lin F, Braud S, Gondry M, Gilquin B, Worman H J, Zinn-Justin S. 2006. The carboxyl-terminal nucleoplasmic region of MAN1 exhibits a DNA binding winged helix domain. Journal of Biological Chemistry, 281, 18208–18215.

Chomczynski P, Sacchi N. 2006. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: Twenty-something years on. Nature Protocols, 1, 581–585.

Duan J, Wainwright M S, Comeron J M, Saitou N, Sanders A R, Gelernter J, Gejman P V. 2003. Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. Human Molecular Genetics, 12, 205–216.

Hellemans J, Preobrazhenska O, Willaert A, Debeer P, Verdonk P C, Costa T, Janssens K, Menten B, Van Roy N, Vermeulen S J, Savarirayan R, Van Hul W, Vanhoenacker F, Huylebroeck D, De Paepe A, Naeyaert J M, Vandesompele J, Speleman F, Verschueren K, Coucke P J, et al. 2004. Loss-of-function mutations in LEMD3 result in osteopoikilosis, Buschke-Ollendorff syndrome and melorheostosis. Nature Genetics, 36, 1213–1218.

Jarvela A M, Hinman V F. 2015. Evolution of transcription factor function as a mechanism for changing metazoan developmental gene regulatory networks. Evodevo, 6, doi: 10.1186/2041-9139-6-3

Konde E, Bourgeois B, Tellier-Lebegue C, Wu W, Perez J, Caputo S, Attanda W, Gasparini S, Charbonnier J B, Gilquin B, Worman H J, Zinn-Justin S. 2010. Structural analysis of the Smad2-MAN1 interaction that regulates transforming growth factor-beta signaling at the inner nuclear membrane. Biochemistry (US), 49, 8020–8032.

Li P H, Xiao S J, Wei N, Zhang Z Y, Huang R H, Gu Y Q, Guo Y M, Ren J, Huang L S, Chen C Y. 2012. Fine mapping of a QTL for ear size on porcine chromosome 5 and identification of high mobility group AT-hook 2 (HMGA2) as a positional candidate gene. Genetics Selection Evolution, 44, doi: 10.1186/1297-9686-44-6

Lin F, Blake D L, Callebaut I, Skerjanc I S, Holmer L, McBurney M W, Paulin-Levasseur M, Worman H J. 2000. MAN1, an inner nuclear membrane protein that shares the LEM domain with lamina-associated polypeptide 2 and emerin. Journal of Biological Chemistry, 275, 4840–4847.

Liu X, Wang LG, Liang J, Yan H, Zhao K B, Li N, Zhang L C, Wang L X. 2014. Genome-wide association study for certain carcass traits and organ weights in a Large White×Minzhu intercross porcine population. Journal of Integrative Agriculture, 13, 2721–2730.

Luo W Z, Cheng D X, Chen S K, Wang L G, Li Y, Ma X J, Song X, Liu X, Li W, Liang J , Yan H, Zhao K, Wang C, Wang L, Zhang L. 2012. Genome-wide association analysis of meat quality traits in a porcine Large White×Minzhu intercross population. International Journal of Biological Sciences, 8, 580–595.

Ma J, Qi W, Ren D, Duan Y, Qiao R, Guo Y, Yang Z, Li L, Milan D, Ren J, Huang L. 2009. A genome scan for quantitative trait loci affecting three ear traits in a White Duroc×Chinese Erhualian resource population. Animal Genetics, 40, 463–467.

Mans B J, Anantharaman V, Aravind L, Koonin E V. 2004. Comparative genomics, evolution and origins of the nuclear envelope and nuclear pore complex. Cell Cycle, 3, 1612–1637.

Min S K, Eui N K, Hojoung L, Jin W K, Se C C, Ki D K. 2005. Digital image analysis to measure lesion area of cucumber anthracnose by Colletotrichum orbiculare. Journal of General Plant Pathology, 71, 418–421.

Mullenbach R, Lagoda P J, Welter C. 1989. An efficient salt-chloroform extraction of DNA from blood and tissues. Trends in Genetics, 5, 391.

Mumm S, Wenkert D, Zhang X F, McAlister W H, Mier R J, Whyte M P. 2007. Deactivating germline mutations in LEMD3 cause osteopoikilosis and buschke-ollendorff syndrome, but not sporadic melorheostosis. Journal of Bone and Mineral Research, 22, 243–250.

Osada S I, Ohmori S, Taira M. 2003. XMAN1, an inner nuclear membrane protein, antagonizes BMP signaling by interacting with Smad1 in Xenopus embryos. Development, 130, 1783–1794.

Paulin-Levasseur M, Blake D L, Julien M, Rouleau L. 1996. The MAN antigens are non-lamin constituents of the nuclear lamina in vertebrate cells. Chromosoma, 104, 367–379.

Raju G P, Dimova N, Klein P S, Huang H C. 2003. SANE, a novel LEM domain protein, regulates bone morphogenetic protein signaling through interaction with Smad1. Journal of Biological Chemistry, 278, 428–437.

Ren J, Duan Y Y, Qiao R M, Yao F, Zhang Z Y, Yang B, Guo Y M, Xiao S J, Wei R X, Ouyang Z X, Ding N, Ai H, Huang L. 2011. A missense mutation in PPARD causes a major QTL effect on ear eize in pigs. PLoS Genetics, 7,  e1002043.

Rothschild M F, Ruvinsky A. 1998. The Genetics of the Pig. CAB International, Oxon, UK.

Safe S, Imanirad P, Sreevalsan S, Nair V, Jutooru I. 2014. Transcription factor Sp1, also known as specificity protein 1 as a therapeutic target. Expert Opinion on Therapeutic Targets, 18, 759–769.

Sankpal U T, Goodison S, Abdelrahim M, Basha R. 2011. Targeting Sp1 transcription factors in prostate cancer therapy. Medicinal Chemistry, 7, 518–525.

Snider L. 2012. Photoshop CS6: The Missing Manual. O’Reilly Media, Sebastopol, CA. pp. 165–167.

Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599.

Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. 1997. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876–4882.

Vaysse A, Ratnakumar A, Derrien T, Axelsson E, Pielberg G R, Sigurdsson S, Fall T, Seppala E H, Hansen M S T, Lawley C T, Karlsson E K, Bannasch D, Vilà C, Lohi H, Galibert F, Fredholm M, Häggström J, Hedhammar A, André C, Lindblad-Toh K, et al. 2011. Identification of genomic regions associated with phenotypic variation between dog breeds using selection mapping. Plos Genetics, 7, e1002316.

Wei W H, de Koning D J, Penman J C, Finlayson H A, Archibald A L, Haley C S. 2007. QTL modulating ear size and erectness in pigs. Animal Genetics, 38, 222–226.

Wilkinson S, Lu Z H, Megens H J, Archibald A L, Haley C, Jackson I J, Groenen M A, Crooijmans R P, Ogden R, Wiener P. 2013. Signatures of diversifying selection in european pig breeds. Plos Genetics, 9, e1003453.

Yadegari M, Whyte M P, Mumm S, Phelps R G, Shanske A, Totty W G, Cohen S R. 2010. Buschke-Ollendorff syndrome absence of LEMD3 mutation in an affected family. Archives of Dermatology, 146, 63–68.

Yuste-Chaves M, Canueto J, Santos-Briz A, Ciria S, Gonzalez-Sarmiento R, Unamuno P. 2011. Buschke-Ollendorff syndrome with striking phenotypic variation resulting from a novel c.2203C>T nonsense mutation in LEMD3. Pediatric Dermatology, 28, 447–450.

Zhang L C, Liang J, Luo W Z, Liu X, Yan H, Zhao K B, Shi H B, Zhang Y B, Wang L G, Wang L X. 2014. Genome-wide scan reveals LEMD3 and WIF1 on SSC5 as the candidates for porcine ear size. PloS ONE, 9, e102085.

Zhang Y, Castori M, Ferranti G, Paradisi M, Wordsworth B P. 2009. Novel and recurrent germline LEMD3 mutations causing Buschke-Ollendorff syndrome and osteopoikilosis but not isolated melorheostosis. Clinical Genetics, 75, 556–561.

Zhang Z G, Li B D, Chen X H. 1986. Pig Breeds in China. Shanghai Scientific and Technical Publisher, China. (in Chinese)

Zhou G L, Dudgeon C, Li M, Cao Y, Zhang L C, Jin H G. 2010. Molecular cloning of the HGD gene and association of SNPs with meat quality traits in Chinese red cattle. Molecular Biology Reports, 37, 603–611.

Zhou S H, Eid K, Glowacki J. 2004. Cooperation between TGF-beta and Wnt pathways during chondrocyte and adipocyte differentiation of human marrow stromal cells. Journal of Bone and Mineral Research, 19, 463–470.
[1] LI Yu-dong, WANG Wei-jia, LI Zi-wei, WANG Ning, XIAO Fan, GAO Hai-he, GUO Huai-shun, LI Hui, WANG Shou-zhi. Integration of association and computational methods reveals functional variants of LEPR gene for abdominal fat content in chickens[J]. >Journal of Integrative Agriculture, 2021, 20(10): 2734-2748.
[2] MIAO Li-li, LI Yu-ying, ZHANG Hong-juan, ZHANG Hong-ji, LIU Xiu-lin, WANG Jing-yi, CHANG Xiao-ping, MAO Xin-guo, JING Rui-lian. TaSnRK2.4 is a vital regulator in control of thousand-kernel weight and response to abiotic stress in wheat[J]. >Journal of Integrative Agriculture, 2021, 20(1): 46-54.
[3] HUANG Jun-fang, LI Long, MAO Xin-guo, WANG Jing-yi, LIU Hui-min, LI Chao-nan, JING Rui-lian. dCAPS markers developed for nitrate transporter genes TaNRT2L12s associating with 1 000-grain weight in wheat[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1543-1553.
[4] ZHAO Bing-ru, FU Xue-feng, TIAN Ke-chuan, HUANG Xi-xia, DI Jiang, BAI Yan, XU Xin-ming, TIAN Yue-zhen, WU Wei-wei, ABLAT Sulayman, ZENG Wei-dan, HANIKEZI Tulafu. Identification of SNPs and expression patterns of FZD3 gene and its effect on wool traits in Chinese Merino sheep (Xinjiang Type)[J]. >Journal of Integrative Agriculture, 2019, 18(10): 2351-2360.
[5] WANG Yi-xue, XU Qiao-fang, CHANG Xiao-ping, HAO Chen-yang, LI Run-zhi, JING Rui-lian. A dCAPS marker developed from a stress associated protein gene TaSAP7-B governing grain size and plant height in wheat[J]. >Journal of Integrative Agriculture, 2018, 17(2): 276-284.
[6] YUE Ai-qin, LI Ang, MAO Xin-guo, CHANG Xiao-ping, LI Run-zhi, JING Rui-lian. Single-nucleotide polymorphisms, mapping and association analysis of 1-FFT-A1 gene in wheat[J]. >Journal of Integrative Agriculture, 2017, 16(04): 789-799.
[7] LI Qian, WANG Jing-yi, Nadia Khan, CHANG Xiao-ping, LIU Hui-min, JING Rui-lian. Polymorphism and association analysis of a drought-resistant gene TaLTP-s in wheat[J]. >Journal of Integrative Agriculture, 2016, 15(06): 1198-1206.
[8] ZHAO Jing-lan, WANG Hong-wei, ZHANG Xiao-cun, DU Xu-ye, LI An-fei, KONG Ling-rang. Association analysis of grain traits with SSR markers between Aegilops tauschii and hexaploid wheat (Triticum aestivum L.)[J]. >Journal of Integrative Agriculture, 2015, 14(10): 1936-1948.
[9] JIA Yin-hua, SUN Jun-ling, WANG Xi-wen, ZHOU Zhong-li, PAN Zao-e, HE Shou-pu, PANG Bao-yin, WANG Li-ru , DU Xiong-ming. Molecular Diversity and Association Analysis of Drought and Salt Tolerance in Gossypium hirsutum L. Germplasm[J]. >Journal of Integrative Agriculture, 2014, 13(8): 1845-1853.
[10] WANG Li-man, ZHU You-min, TONG Xiang-chao, HU Wen-jing, CAI Cai-ping , GUO Wang-zhen. Molecular Cloning and Characterization of an Allene Oxide Cyclase Gene Associated with Fiber Strength in Cotton[J]. >Journal of Integrative Agriculture, 2014, 13(10): 2113-2121.
No Suggested Reading articles found!