Please wait a minute...
Journal of Integrative Agriculture  2015, Vol. 14 Issue (10): 1911-1922    DOI: 10.1016/S2095-3119(15)61045-0
Crop Genetics · Breeding · Germplasm Resources Advanced Online Publication | Current Issue | Archive | Adv Search |
Thellungiella halophila ThPIP1 gene enhances the tolerance of the transgenic rice to salt stress
 QIANG Xiao-jing, YU Guo-hong, JIANG Lin-lin, SUN Lin-lin, ZHANG Shu-hui, LI Wei, CHENG Xian-guo
1、Key Lab of Plant Nutrition and Fertilizers, Ministry of Agriculture/Institute of Agricultural Resources and Regional Planning,Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China
2、College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Aquaporin proteins were demonstrated to play an important regulatory role in transporting water and other small molecules. To better understand physiological functions of aquaporins in extremophile plants, a novel ThPIP1 gene from the Thellungiella halophila was isolated and functionally characterized in the transgenic rice. Data showed that the ThPIP1 protein encoded 284 amino acids, and was identified to be located on the plasma membrane. The expression of ThPIP1 gene in the shoots and roots of T. halophila seedlings were induced by high salinity. The transgenic rice overexpressing ThPIP1 gene significantly increased plants tolerance to salt stress through the pathway regulating the osmotic potentials, accumulation of organic small molecules substances and the ratio of K+/Na+ in the plant cells. Moreover, split-ubiquitin yeast two-hybrid assay showed that ThPIP1 protein specifically interacted with ThPIP2 and a non-specific lipid-transfer protein 2, suggesting that ThPIP1 probably play a key role in responding to the reactions of multiple external stimulus and in participating in different physiological processes of plants exposed to salt stress.

Abstract  Aquaporin proteins were demonstrated to play an important regulatory role in transporting water and other small molecules. To better understand physiological functions of aquaporins in extremophile plants, a novel ThPIP1 gene from the Thellungiella halophila was isolated and functionally characterized in the transgenic rice. Data showed that the ThPIP1 protein encoded 284 amino acids, and was identified to be located on the plasma membrane. The expression of ThPIP1 gene in the shoots and roots of T. halophila seedlings were induced by high salinity. The transgenic rice overexpressing ThPIP1 gene significantly increased plants tolerance to salt stress through the pathway regulating the osmotic potentials, accumulation of organic small molecules substances and the ratio of K+/Na+ in the plant cells. Moreover, split-ubiquitin yeast two-hybrid assay showed that ThPIP1 protein specifically interacted with ThPIP2 and a non-specific lipid-transfer protein 2, suggesting that ThPIP1 probably play a key role in responding to the reactions of multiple external stimulus and in participating in different physiological processes of plants exposed to salt stress.
Keywords:  ThPIP1       transgenic rice       salt stress       protein interaction       Thellungiella halophila  
Received: 05 January 2015   Accepted:
Fund: 

This work is supported by the National Key Project for Cultivation of New Varieties of Genetically Modified Organisms (2014ZX08002-005) and the National Basic Research Program of China (2015CB150801).

Corresponding Authors:  CHENG Xian-guo, Tel: +86-10-82105028,Fax: +86-10-82106225, E-mail: chengxianguo@caas.cn     E-mail:  chengxianguo@caas.cn

Cite this article: 

QIANG Xiao-jing, YU Guo-hong, JIANG Lin-lin, SUN Lin-lin, ZHANG Shu-hui, LI Wei, CHENG Xian-guo. 2015. Thellungiella halophila ThPIP1 gene enhances the tolerance of the transgenic rice to salt stress. Journal of Integrative Agriculture, 14(10): 1911-1922.

Alexandersson E, Fraysse L, Sjovall-Larsen S, Gustavsson S,Fellert M, Karlsson M, Johanson U, Kjellbom P. 2005. Whole gene family expression and drought stress regulation ofaquaporins. Plant Molecular Biology, 59, 469-484

Bae E K, Lee H, Lee J S, Noh E W 2011. Drought, salt andwounding stress induce the expression of the plasmamembrane intrinsic protein 1 gene in poplar (Populusalba×P. tremula var. glandulosa). Gene, 483, 43-48

Bienert G P, Heinen R B, Berny M C, Chaumont F. 2014. Maizeplasma membrane aquaporin ZmPIP2;5, but not ZmPIP1;2,facilitates transmembrane diffusion of hydrogen peroxide.Biochimica et Biophysica Acta, 1838, 216-222

Bienert G P, Moller A L B, Kristiansen K A, Schulz A,Moller I M, Schjoerring J K, Jahn T P. 2007. Specificaquaporins facilitate the diffusion of hydrogen peroxideacross membranes. Journal of Biological Chemistry, 282,1183-1192

Boutrot F, Guirao A, Alary R, Joudrier P, Gautier M F. 2005.Wheat non-specific lipid transfer protein genes displaya complex pattern of expression in developing seeds.Biochimica et Biophysica Acta, 1730, 114-125

Chen S, Polle A. 2010. Salinity tolerance of Populus. PlantBiology, 12, 317-333

Chen W, Yin X, Wang L, Tian J, Yang R Y, Liu D F, Yu Z H, MaN, Gao J P. 2013. Involvement of rose aquaporin RhPIP1;1in ethylene-regulated petal expansion through interactionwith RhPIP2;1. Plant Molecular Biology, 83, 219-233

Cui Y, Wang Q. 2006. Physiological responses of maize toelemental sulphur and cadmium stress. Plant Soil andEnvironment, 52, 523-529

Gomes D, Agasse A, Thiebaud P, Delrot S, Geros H, ChaumontF. 2009. Aquaporins are multifunctional water and solutetransporters highly divergent in living organisms. Biochimicaet Biophysica Acta, 1788, 1213-1228

Guo L, Wang Z Y, Lin H, Cui W E, Chen J, Liu M H, Chen Z L,Qu L J, Gu H Y. 2006. Expression and functional analysisof the rice plasma-membrane intrinsic protein gene family.Cell Research, 16, 277-286

Guo Y H, Jia W J, Song J, Wang D A, Chen M, Wang B S.2012. Thellungilla halophila is more adaptive to salinitythan Arabidopsis thaliana at stages of seed germinationand seedling establishment. Acta Physiologiae Plantarum,34, 1287-1294

Hu W, Yuan Q Q, Wang Y, Cai R, Deng X M, Wang J, Zhou S Y,Chen M J, Chen L H, Huang C, Ma Z B, Yang G X, He G Y.2012. Overexpression of a wheat aquaporin gene, TaAQP8,enhances salt stress tolerance in transgenic tobacco. Plantand Cell Physiology, 53, 2127-2141

Jang J Y, Kim D G, Kim Y O, Kim J S, Kang H S. 2004. Anexpression analysis of a gene family encoding plasmamembrane aquaporins in response to abiotic stresses inArabidopsis thaliana. Plant Molecular Biology, 54, 713-725

Li D D, Wu Y J, Ruan X M, Li B, Zhu L, Wang H, Li X B. 2009.Expressions of three cotton genes encoding the PIP proteinsare regulated in root development and in response tostresses. Plant Cell Reports, 28, 291-300

Liu C W, Fukumoto T, Matsumoto T, Gena P, Frascaria D,Kaneko T, Katsuhara M, Zhong S H, Sun X L, Zhu YM, Iwasaki I, Ding X D, Calamita G, Kitagawa Y. 2013.Aquaporin OsPIP1;1 promotes rice salt resistance andseed germination. Plant Physiology and Biochemistry, 63,151-158

Livak K J, Schmittgen T D. 2001. Analysis of relative geneexpression data using real-time quantitative PCR and the2-△△Ct method. Methods, 25, 402-408

Locatelli F, Vannini C, Magnani E, Coraggio I, Bracale M. 2003.Efficiency of transient transformation in tobacco protoplastsis independent of plasmid amount. Plant Cell Reports, 21,865-871

Mahajan S, Tuteja N. 2005. Cold, salinity and drought stresses:An overview. Archives of Biochemistry and Biophysics,444, 139-158

Mahdieh M, Mostajeran A, Horie T, Katsuhara M. 2008. Droughtstress alters water relations and expression of PIP-typeaquaporin genes in Nicotiana tabacum plants. Plant andCell Physiology, 49, 801-813

Matsumoto T, Lian H L, Su W A, Tanaka D, Liu C W, IwasakiI, Kitagawa Y. 2009. Role of the aquaporin PIP1 subfamilyin the chilling tolerance of rice. Plant and Cell Physiology,50, 216-229

Maurel C. 2007. Plant aquaporins: Novel functions andregulation properties. FEBS Letters, 581, 2227-2236

Maurel C, Verdoucq L, Luu D T, Santoni V. 2008. Plantaquaporins: Membrane channels with multiple integratedfunctions. Annual Review of Plant Biology, 59, 595-624

Mut P, Bustamante C, Martinez G, Alleva K, Sutka M, CivelloM, Amodeo G. 2008. A fruit-specific plasma membraneaquaporin subtype PIP1;1 is regulated during strawberry(Fragaria×ananassa) fruit ripening. Physiologia Plantarum,132, 538-551

Möckli N, Deplazes A, Hassa P O, Zhang Z L, Peter M, HottigerM O, Stagljar I, Auerbach D. 2007. Yeast split-ubiquitinbasedcytosolic screening system to detect interactionsbetween transcriptionally active proteins. BioTechniques,42, 725-730

Otto, B, Uehlein N, Sdorra S, Fischer M, Ayaz M, Belastegui-Macadam X, Heckwolf M, Lachnit M, Pede N, Priem N,Reinhard A, Siegfart S, Urban M, Kaldenhoff R. 2010.Aquaporin tetramer composition modifies the function oftobacco aquaporins. Journal of Biological Chemistry, 285,31253-31260

Ruiz-Lozano J M, Porcel R, Azcon C, Aroca R. 2012.Regulation by arbuscular mycorrhizae of the integratedphysiological response to salinity in plants: New challengesin physiological and molecular studies. Journal ofExperimental Botany, 63, 4033-4044

Sade N, Vinocur B J, Diber A, Shatil A, Ronen G, Nissan H,Wallach R, Karchi H, Moshelion M. 2009. Improving plantstress tolerance and yield production: Is the tonoplastaquaporin SlTIP2;2 a key to isohydric to anisohydricconversion? New Phytologist, 181, 651-661

Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M.2005. Identification of 33 rice aquaporin genes and analysisof their expression and function. Plant and Cell Physiology, 46, 1568-1577

Schnurbusch T, Hayes J, Hrmova M, Baumann U, RameshS A, Tyerman S D, Langridge P, Sutton T. 2010. Borontoxicity tolerance in barley through reduced expression ofthe multifunctional aquaporin HvNIP2;1. Plant Physiology,153, 1706-1715

Surbanovski N, Sargent D J, Else M A, Simpson D W, ZhangH M, Grant O M. 2013. Expression of Fragaria vesca PIPaquaporins in response to drought stress: PIP downregulationcorrelates with the decline in substrate moisturecontent. PLOS ONE, 8, e74945.

Wang L L, Chen A P, Zhong N Q, Liu N, Wu X M, Wang F,Yang C L, Romero M F, Xia G X. 2014. The Thellungiellasalsuginea tonoplast aquaporin TsTIP1;2 functions inprotection against multiple abiotic stresses. Plant and CellPhysiology, 55, 148-161

Wang N J, Lee C C, Cheng C S, Lo W C, Yang Y F, Chen MN, Lyu P C. 2012. Construction and analysis of a plantnon-specific lipid transfer protein database (nsLTPDB).BMC Genomics, 13, S9.

Wang X, Li Y, Ji W, Bai X, Cai H, Zhu D, Sun X L, Chen L J, ZhuY M. 2011. A novel Glycine soja tonoplast intrinsic proteingene responds to abiotic stress and depresses salt anddehydration tolerance in transgenic Arabidopsis thaliana.Journal of Plant Physiology, 168, 1241-1248

Willigen V C, Postaire O, Tournaire-Roux C, Boursiac Y,Maurel C. 2006. Expression and inhibition of aquaporins ingerminating Arabidopsis seeds. Plant and Cell Physiology,47, 1241-1250

Xin S C, Yu G H, Sun L L, Qiang X J, Xu N, Cheng X G. 2014.Expression of tomato SlTIP2;2 enhances the tolerance tosalt stress in the transgenic Arabidopsis and interacts withtarget proteins. Journal of Plant Research, 127, 695−708.

Xu Y, Hu w, Liu J H, Zhang J B, Jia C H, Miao H X, Xu B Y,Jin Z Q. 2014 A banana aquaporin gene, MaPIP1;1, isinvolved in tolerance to drought and salt stresses. BMCPlant Biology, 14, 59.

Zhang J, Li D, Zou D, Luo F, Wang X, Zheng Y, Li X. 2013.A cotton gene encoding a plasma membrane aquaporinis involved in seedling development and in response todrought stress. Acta Biochimica et Biophysica Sinica(Shanghai), 45, 104-114.

Zhou L, Wang C, Liu R, Han Q, Vandeleur R K, Du J, TyermanS, Shou H. 2014. Constitutive overexpression of soybeanplasma membrane intrinsic protein GmPIP1;6 confers salttolerance. BMC Plant Biology, 14, 181.
[1] MA Xiao-wen, MA Qiu-xiang, MA Mu-qing, CHEN Yan-hang, GU Jin-bao, LI Yang, HU Qing, LUO Qing-wen, WEN Ming-fu, ZHANG Peng, LI Cong, WANG Zhen-yu.

Cassava MeRS40 is required for the regulation of plant salt tolerance [J]. >Journal of Integrative Agriculture, 2023, 22(5): 1396-1411.

[2] XU Xiao-hui, LI Wen-lan, YANG Shu-ke, ZHU Xiang-zhen, SUN Hong-wei, LI Fan, LU Xing-bo, CUI Jin-jie. Identification, evolution, expression and protein interaction analysis of genes encoding B-box zinc-finger proteins in maize[J]. >Journal of Integrative Agriculture, 2023, 22(2): 371-388.
[3] WANG Chu-kun, ZHAO Yu-wen, HAN Peng-liang, YU Jian-qiang, HAO Yu-jin, XU Qian, YOU Chun-xiang, HU Da-gang. Auxin response factor gene MdARF2 is involved in ABA signaling and salt stress response in apple[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2264-2274.
[4] SONG Ya-na, CHEN Zai-jie, WU Ming-ji, LI Gang, WANG Feng. Changes in bacterial community and abundance of functional genes in paddy soil with cry1Ab transgenic rice[J]. >Journal of Integrative Agriculture, 2021, 20(6): 1674-1686.
[5] LI Peng-cheng, YANG Xiao-yi, WANG Hou-miao, PAN Ting, YANG Ji-yuan, WANG Yun-yun, XU Yang, YANG Ze-feng, XU Chen-wu. Metabolic responses to combined water deficit and salt stress in maize primary roots[J]. >Journal of Integrative Agriculture, 2021, 20(1): 109-119.
[6] LIU Min-min, LI Ya-lun, LI Guang-cun, DONG Tian-tian, LIU Shi-yang, LIU Pei, WANG Qing-guo. Overexpression of StCYS1 gene enhances tolerance to salt stress in the transgenic potato (Solanum tuberosum L.) plant[J]. >Journal of Integrative Agriculture, 2020, 19(9): 2239-2246.
[7] ZHANG Guan-chu, DAI Liang-xiang, DING Hong, CI Dun-wei, NING Tang-yuan, YANG Ji-shun, ZHAO Xin-hua, YU Hai-qiu, ZHANG Zhi-meng . Response and adaptation to the accumulation and distribution of photosynthetic product in peanut under salt stress[J]. >Journal of Integrative Agriculture, 2020, 19(3): 690-699.
[8] HAN Peng-liang, DONG Yuan-hua, JIANG Han, HU Da-gang, HAO Yu-jin. Molecular cloning and functional characterization of apple U-box E3 ubiquitin ligase gene MdPUB29 reveals its involvement in salt tolerance[J]. >Journal of Integrative Agriculture, 2019, 18(7): 1604-1612.
[9] ZHONG Yun-peng, QI Xiu-juan, CHEN Jin-yong, LI Zhi, BAI Dan-feng, WEI Cui-guo, FANG Jin-bao . Growth and physiological responses of four kiwifruit genotypes to salt stress and resistance evaluation[J]. >Journal of Integrative Agriculture, 2019, 18(1): 83-95.
[10] HUANG Ying, ZHANG Xiao-xia, LI Yi-hong, DING Jian-zhou, DU Han-mei, ZHAO Zhuo, ZHOU Li-na, LIU Chan, GAO Shi-bin, CAO Mo-ju, LU Yan-li, ZHANG Su-zhi. Overexpression of the Suaeda salsa SsNHX1 gene confers enhanced salt and drought tolerance to transgenic Zea mays[J]. >Journal of Integrative Agriculture, 2018, 17(12): 2612-2623.
[11] HAN Jiao, YU Guo-hong, WANG Li, LI Wei, HE Rui, WANG Bing, HUANG Sheng-cai, CHENG Xian-guo. A mitochondrial phosphate transporter, McPht gene, confers an acclimation regulation of the transgenic rice to phosphorus deficiency[J]. >Journal of Integrative Agriculture, 2018, 17(09): 1932-1945.
[12] XUE Chen-chen, XU Jin-yan, WANG Can, GUO Na, HOU Jin-feng, XUE Dong, ZHAO Jin-ming, XING Han. Molecular cloning and functional characterization of a soybean GmGMP1 gene reveals its involvement in ascorbic acid biosynthesis and multiple abiotic stress tolerance in transgenic plants[J]. >Journal of Integrative Agriculture, 2018, 17(03): 539-553.
[13] LI Ming-na, LONG Rui-cai, FENG Zi-rong, LIU Feng-qi, SUN Yan, ZHANG Kun, KANG Jun-mei, WANG Zhen, CAO Shi-hao. Transcriptome analysis of salt-responsive genes and SSR marker exploration in Carex rigescens using RNA-seq[J]. >Journal of Integrative Agriculture, 2018, 17(01): 184-196.
[14] ZHANG Jia, HU Yong, XU Li-he, HE Qin, FAN Xiao-wei, XING Yong-zhong. The CCT domain-containing gene family has large impacts on heading date, regional adaptation, and grain yield in rice[J]. >Journal of Integrative Agriculture, 2017, 16(12): 2686-2697.
[15] Sajid Hussain, ZHANG Jun-hua, ZHONG Chu, ZHU Lian-feng, CAO Xiao-chuang, YU Sheng-miao, Allen Bohr James, HU Ji-jie, JIN Qian-yu. Effects of salt stress on rice growth, development characteristics, and the regulating ways: A review[J]. >Journal of Integrative Agriculture, 2017, 16(11): 2357-2374.
No Suggested Reading articles found!