Please wait a minute...
Journal of Integrative Agriculture  2013, Vol. 12 Issue (1): 19-26    DOI: 10.1016/S2095-3119(13)60201-4
Crop Genetics · Breeding · Germplasm Resources Advanced Online Publication | Current Issue | Archive | Adv Search |
Combining Ability and Parent-Offspring Correlation of Maize (Zea may L.) Grain b-Carotene Content with a Complete Diallel
 LI Run, XIAO Lan-hai, WANG Jing, LU Yan-li, RONG Ting-zhao, PAN Guang-tang, WU Yuan-qi, TANGQilin, LAN Hai, CAO Mo-ju
Maize Research Institute, Sichuan Agricultural University/Key Laboratory of Crop Genetic Resource and Improvement, Ministry of Education/Key Laboratory of Maize Biology and Genet ic Breeding on Southwest , Minist ry of Agriculture, Chengdu 611130, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Vitamin A deficiency has become a worldwide problem. Biofortified foods can potentially be an inexpensive, locally adaptable, and long-term solution to dietary-nutrient deficiency. In order to improve the b-carotene content in maize grain by breeding and minimize vitamin A deficiency, a complete diallel cross was designed with eight inbred lines of maize, and 64 combinations were obtained in this study. The experimental combinations were planted in Yunnan and Sichuan provinces, respectively, with a random complete block design. The b-carotene contents in the grains of the experimental materials were analyzed by high-performance liquid chromatography. Among the tested materials, the effect difference of general combining ability of the b-carotene content was significant; however, the effect difference of the special combining ability and the reciprocal effect were not significant. The b-carotene content of maize grain was not influenced significantly by the cross and the reciprocal cross. There was a significant correlation about the b-carotene content in the maize grains between the F1 and their parents. The combinations with high b-carotene content were obviously influenced by the environment, and the mean value of b-carotene content for the experimental materials planted in Ya’an of Sichuan was higher than that planted in Yuanjiang of Yunnan, with the results being significant at the 0.01 level.

Abstract  Vitamin A deficiency has become a worldwide problem. Biofortified foods can potentially be an inexpensive, locally adaptable, and long-term solution to dietary-nutrient deficiency. In order to improve the b-carotene content in maize grain by breeding and minimize vitamin A deficiency, a complete diallel cross was designed with eight inbred lines of maize, and 64 combinations were obtained in this study. The experimental combinations were planted in Yunnan and Sichuan provinces, respectively, with a random complete block design. The b-carotene contents in the grains of the experimental materials were analyzed by high-performance liquid chromatography. Among the tested materials, the effect difference of general combining ability of the b-carotene content was significant; however, the effect difference of the special combining ability and the reciprocal effect were not significant. The b-carotene content of maize grain was not influenced significantly by the cross and the reciprocal cross. There was a significant correlation about the b-carotene content in the maize grains between the F1 and their parents. The combinations with high b-carotene content were obviously influenced by the environment, and the mean value of b-carotene content for the experimental materials planted in Ya’an of Sichuan was higher than that planted in Yuanjiang of Yunnan, with the results being significant at the 0.01 level.
Keywords:  maize       b-carotene content       complete diallel cross       combining ability  
Received: 19 December 2011   Accepted:
Fund: 

This work was supported by the Harvest-Plus China Program, the National High-Tech R&D Program of China (2011AA10A103), and the Sichuan Maize Breeding Program in the 12th Five-Year Plan, China.

Corresponding Authors:  Correspondence CAO Mo-ju, Mobile: 13882439529, Fax: +86-835-2882154, E-mail: caomoju@gmail.com, caomj@sicau.edu.cn     E-mail:  caomoju@gmail.com

Cite this article: 

LI Run, XIAO Lan-hai, WANG Jing, LU Yan-li, RONG Ting-zhao, PAN Guang-tang, WU Yuan-qi, TANGQilin , LAN Hai, CAO Mo-ju. 2013. Combining Ability and Parent-Offspring Correlation of Maize (Zea may L.) Grain b-Carotene Content with a Complete Diallel. Journal of Integrative Agriculture, 12(1): 19-26.

[1]Aluru M, Xu Y, Guo R, Wang Z G, Li S S, White W, WangK, Rodermel S. 2008. Generation of transgenic maizewith enhanced provitamin A content. JournalExperimental Botany, 59, 3551-3562

[2]Brunson A M, Quackenbush F W. 1962. Breeding cornwith high provitamin A in the grain. Crop Science, 2,344-347

[3]Chander S, Guo Y Q, Yang X H, Zhang J, Lu X Q, Yan J B,Rocheford T R, Li J S. 2008. Using molecular markers toidentify two major loci controlling carotenoid contentsin maize grain. Theoretical and Applied Genetics, 116,223-233

[4]Chander S, Meng Y, Zhang Y, Yan J, Li J. 2008. Comparisonof nutritional traits variability in selected eighty-seveninbreds from Chinese maize (Zea mays L.) germplasm.Jounal of Agricultural and Food Chemistry, 56, 6506-6511

[5]Senete C T, Guimaraes P E O, Paes M C D, Souza J C. 2011.Diallel analysis of maize inbred lines for carotenoidsand grain yield. Euphytica, 182, 395-404

[6]DellaPenna D, Pogson B J. 2006. Vitamin synthesis in plants:tocopherols and carotenoids. Annual Review of PlantBiology, 57, 711-738

[7]Diretto G, Al-Babili S, Tavazza R, Scossa F, Papacchioli V,Migliore M, Beyer P, Giuliano G. 2010. Transcriptionalmetabolicnetworks in beta-carotene-enriched potatotubers: the long and winding road to the Goldenphenotype. Plant Physiology, 154, 899-912

[8]Egesel C O, Wong J C, Lambert R J, Rocheford T R. 2003.Combining ability of maize inbreds for carotenoids andtocopherols. Crop Science, 43, 818-823

[9]Harjes C E, Rocheford T R, Bai L, Brutnell T P, Kandianis CB, Sowinski S G, Stapleton AE, Vallabhaneni R,WilliamsM, Wurtzel E T, et al. 2008. Natural genetic variation inlycopene epsilon cyclase tapped for maize biofortification.Science, 319, 330-333

[10]Hoisington D. 2002. Opportunities for nutritionallyenhanced maize and wheat varieties to combat proteinand micronutrient malnutrition. Food and NutritionBulletin, 23, 376-377

[11]Howe J A, Tanumihardjo S A. 2006. Evaluation of analyticalmethods for carotenoid extraction from biotortified maize(Zea mays sp.). Journal of Agricultural and FoodChemistry, 54, 7992-7997

[12]Hui B L. 2005. Carotenoid Chemistry Biochemistry. LightIndustry Press of China, Beijing. (in Chinese)

[13]Kimura M, Kobori C N, Rodriguez-Amaya D B, Nestel P.2007. Screening and HPLC methods for carotenoids insweetpotato, cassava and maize for plant breeding trials.Food Chemistry, 100, 1734-1746

[14]Kurilich A C, Juvik J A. 1999. Simultaneous quantificationof carotenoids and tocopherols in corn kernel extractsby HPLC. Journal of Liquid Chromatography andRelated Technologies, 22, 2925-2934

[15]Li F Q, Vallabhaneni R, Wurtzel E T. 2008a. PSY3, a newmember of the phytoene synthase gene family conservedin the poaceae and regulator of abiotic stress-inducedroot carotenogenesis. Plant Physiology, 146, 1333-1345

[16]Li F Q, Vallabhaneni R, Yu J, Rocheford T, Wurtzel E T.2008b. The maize phytoene synthase gene family:overlapping roles for carotenogenesis in endosperm,photomorphogenesis, and thermal stress tolerance.Plant Physiology, 147, 1334-1346

[17]Menkir A, Liu WP,WhiteWS, Maziya-Dixon B, RochefordT. 2008. Carotenoid diversity in tropical-adapted yellowmaize inbred lines. Food Chemistry, 109, 521-529

[18]Ming D X. 2008. Field Experiment and Statistical Analysis.Science Press, Beijing. (in Chinese)

[19]Paine J A, Shipton C A, Chaggar S, Howells R M, KennedyM J, Vernon G, Wright S Y, Hinchliffe E, Adams J L,Silverstone A L, et al. 2005. Improving the nutritional value of Golden Rice through increased pro-vitamin Acontent. Nature Biotechnology, 23,482-487

[20]Rodriguez-Amaya D B, Kimura M. 2004. HarvestPlusHandbook for Carotenoid Analysis. HarvestPlusTechnical Monograph 2. International Food PolicyResearch Institute (IFPRI) and International Center forTropica Agriculture (CIAT), Washington, D.C.

[21]Rojas B A, Sprague G F. 1952. A comparision of variancecomponents in corn yield traits: III. general and specificcombining ability and their interaction with locationand years. Agronomy Journal, 44, 462-466

[22]Rong T Z, Pan G T, Huang Y B. 2003. Quantitive Genetics.Chinese Science and Technology Press, Beijing. (inChinese)

[23]Shankar A H, Genton B, Semba R D, Baisor M, Paino J,Tamja S, Adiguma T, Wu L, Rare L, Tielsch T M, et al.1999. Effect of vitamin A supplementation on morbiditydue to Plasmodium falciparum in young children inPapua New Guinea: a randomised trial. Lancet, 354,203-209

[24]Sommer A, West K P. 1996. Vitamin A deficiency: HealthSurvival and Vision. Oxford University Press, New York.Taylor M, Ramsay G. 2005. Carotenoid biosynthesis inplant storage organs: rencent advances and prospectsfor improving plant food quality. PhysiologiaPlantarum, 124, 143-151

[25]Vallabhaneni R, Wurtzel E T. 2009. Timing and biosyntheticpotential for carotenoid accumulation in geneticallydiverse germplasm of maize. Plant Physiology, 150,562-572

[26]Villamor E, Fawzi WW. 2000. Vitamin A supplementation:implication for morbidity and mortality in children.Journal of Infectious Diseases, 182, 122-133

[27]West C E. 2000. Vitamin A and measles. Nutrition Review,58, s46-s54.Xie Y P, Ma F, Li H M, Li X Y, Li Q, Ma D F. 2004.Introduction, selection, innovation and application ofhigh-carotene sweetpotato parental materials. Rain FedCrops, 4, 209-211

[28]Xie Y P, Ma F, Li H M, Li X Y, Li Q, Ma D F, Xu S L. 2006.Determination and inheritance tendency of carotenecontents of F1 progeny in sweetpotato. JiangsuAgricutural Science, 3, 54-56 (in Chinese)

[29]Zhou Y, Han Y, Li Z, Fu Y, Fu Z, Xu S, Li J, Yan J, Yang X.2012. ZmcrtRB3 encoding a carotenoid hydroxylase thataffects the accumulation of ?-carotene in maize kernel.Journal of Integrative Plant Biology, 54, 260-269

[30]Zili? S, Serpen A, Akyllyoelu G, Gökmen V, Vanèetovi? J.2012. Phenolic compounds, carotenoids, anthocyanins,and antioxidant capacity of colored maize (Zea mays L.)kernels. Journal of Agricultural and Food Chemistry,60, 1224-1231
[1] Peng Liu, Langlang Ma, Siyi Jian, Yao He, Guangsheng Yuan, Fei Ge, Zhong Chen, Chaoying Zou, Guangtang Pan, Thomas Lübberstedt, Yaou Shen. Population genomic analysis reveals key genetic variations and the driving force for embryonic callus induction capability in maize[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2178-2195.
[2] Jiang Liu, Wenyu Yang. Soybean maize strip intercropping: A solution for maintaining food security in China[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2503-2506.
[3] Hui Fang, Xiuyi Fu, Hanqiu Ge, Mengxue Jia, Jie Ji, Yizhou Zhao, Zijian Qu, Ziqian Cui, Aixia Zhang, Yuandong Wang, Ping Li, Baohua Wang. Genetic analysis and candidate gene identification of salt tolerancerelated traits in maize[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2196-2210.
[4] Hui Chen, Hongxing Chen, Song Zhang, Shengxi Chen, Fulang Cen, Quanzhi Zhao, Xiaoyun Huang, Tengbing He, Zhenran Gao. Comparison of CWSI and Ts-Ta-VIs in moisture monitoring of dryland crops (sorghum and maize) based on UAV remote sensing[J]. >Journal of Integrative Agriculture, 2024, 23(7): 2458-2475.
[5] Qilong Song, Jie Zhang, Fangfang Zhang, Yufang Shen, Shanchao Yue, Shiqing Li.

Optimized nitrogen application for maximizing yield and minimizing nitrogen loss in film mulching spring maize production on the Loess Plateau, China [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1671-1684.

[6] Jiangkuan Cui, Haohao Ren, Bo Wang, Fujie Chang, Xuehai Zhang, Haoguang Meng, Shijun Jiang, Jihua Tang.

Hatching and development of maize cyst nematode Heterodera zeae infecting different plant hosts [J]. >Journal of Integrative Agriculture, 2024, 23(5): 1593-1603.

[7] Haiqing Gong, Yue Xiang, Jiechen Wu, Laichao Luo, Xiaohui Chen, Xiaoqiang Jiao, Chen Chen.

Integrating phosphorus management and cropping technology for sustainable maize production [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1369-1380.

[8] Pengcheng , Shuangyi Yin, Yunyun Wang, Tianze Zhu, Xinjie Zhu, Minggang Ji, Wenye Rui, Houmiao Wang Chenwu Xu, Zefeng Yang.

Dynamics and genetic regulation of macronutrient concentrations during grain development in maize [J]. >Journal of Integrative Agriculture, 2024, 23(3): 781-794.

[9] Peng Wang, Lan Yang, Xichao Sun, Wenjun Shi, Rui Dong, Yuanhua Wu, Guohua Mi.

Lateral root elongation in maize is related to auxin synthesis and transportation mediated by N metabolism under a mixed NO3 and NH4+ supply [J]. >Journal of Integrative Agriculture, 2024, 23(3): 1048-1060.

[10] Weina Zhang, Zhigan Zhao, Di He, Junhe Liu, Haigang Li, Enli Wang.

Combining field data and modeling to better understand maize growth response to phosphorus (P) fertilizer application and soil P dynamics in calcareous soils [J]. >Journal of Integrative Agriculture, 2024, 23(3): 1006-1021.

[11] Cheng Guo, Xiaojie Zhang, Baobao Wang, Zhihuan Yang, Jiping Li, Shengjun Xu, Chunming Wang, Zhijie Guo, Tianwang Zhou, Liu Hong, Xiaoming Wang, Canxing Duan.

Identification, pathogenicity, and fungicide sensitivity of Eutiarosporella dactylidis associated with leaf blight on maize in China [J]. >Journal of Integrative Agriculture, 2024, 23(3): 888-900.

[12] Binbin Li, Xianmin Chen, Tao Deng, Xue Zhao, Fang Li, Bingchao Zhang, Xin Wang, Si Shen, Shunli Zhou.

Timing effect of high temperature exposure on the plasticity of internode and plant architecture in maize [J]. >Journal of Integrative Agriculture, 2024, 23(2): 551-565.

[13] Minghui Cao, Yan Duan, Minghao Li, Caiguo Tang, Wenjie Kan, Jiangye Li, Huilan Zhang, Wenling Zhong, Lifang Wu.

Manure substitution improves maize yield by promoting soil fertility and mediating the microbial community in lime concretion black soil [J]. >Journal of Integrative Agriculture, 2024, 23(2): 698-710.

[14] Jingui Wei, Qiang Chai, Wen Yin, Hong Fan, Yao Guo, Falong Hu, Zhilong Fan, Qiming Wang. Grain yield and N uptake of maize in response to increased plant density under reduced water and nitrogen supply conditions[J]. >Journal of Integrative Agriculture, 2024, 23(1): 122-140.
[15] YUE Kai, LI Ling-ling, XIE Jun-hong, Zechariah EFFAH, Sumera ANWAR, WANG Lin-lin, MENG Hao-feng, LI Lin-zhi. Integrating microRNAs and mRNAs reveals the hormones synthesis and signal transduction of maize under different N rates[J]. >Journal of Integrative Agriculture, 2023, 22(9): 2673-2686.
No Suggested Reading articles found!