Please wait a minute...
Journal of Integrative Agriculture  2013, Vol. 12 Issue (8): 1431-1440    DOI: 10.1016/S1671-2927(00)9057
Preface Advanced Online Publication | Current Issue | Archive | Adv Search |
Identification of Differentially Expressed Genes During Ethylene Climacteric of Melon Fruit by Suppression Subtractive Hybridization
 GAO Feng, NIU Yi-ding, HAO Jin-feng, BADE Rengui, ZHANG Li-quan , HASI Agula
Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology/College of Life Sciences, Inner Mongolia University, Hohhot 010021, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Melon (Cucumis melo L.) is an important horticultural crop worldwide. Ethylene regulates the ripening process and affects the ripening rate. To screen genes that are differentially expressed at the burst of ethylene climacteric in melon fruit, we performed suppression subtractive hybridization (SSH) to generate forward and reverse libraries, for which we sequenced 439 and 445 clones, respectively. Our BLAST analysis showed that the genes from the 2 libraries were involved in metabolism, signal transduction, cell structure, transcription, translation, and defense. Six genes were analyzed by qRT-PCR during the differential developmental stage of melon fruit. Our results provide new insight into the understanding of climacteric ripening of melon fruit.

Abstract  Melon (Cucumis melo L.) is an important horticultural crop worldwide. Ethylene regulates the ripening process and affects the ripening rate. To screen genes that are differentially expressed at the burst of ethylene climacteric in melon fruit, we performed suppression subtractive hybridization (SSH) to generate forward and reverse libraries, for which we sequenced 439 and 445 clones, respectively. Our BLAST analysis showed that the genes from the 2 libraries were involved in metabolism, signal transduction, cell structure, transcription, translation, and defense. Six genes were analyzed by qRT-PCR during the differential developmental stage of melon fruit. Our results provide new insight into the understanding of climacteric ripening of melon fruit.
Keywords:  Cucumis melo       ethylene climacteric       fruit ripening       differentially expressed mRNA       gene expression       suppression subtractive hybridization  
Received: 18 September 2012   Accepted:
Fund: 

This work was supported by the National Natural Science Foundation of China (30960159) and the Specialized Research Foundation for the Doctoral Program of Higher Education (200801260002).

Corresponding Authors:  Correspondence HASI Agula, Tel: +86-471-4992209, Fax: +86-471-4992435, E-mail: hasind@sina.com     E-mail:  hasind@sina.com
About author:  GAO Feng, E-mail: imgaofeng@163.com

Cite this article: 

GAO Feng, NIU Yi-ding, HAO Jin-feng, BADE Rengui, ZHANG Li-quan , HASI Agula. 2013. Identification of Differentially Expressed Genes During Ethylene Climacteric of Melon Fruit by Suppression Subtractive Hybridization. Journal of Integrative Agriculture, 12(8): 1431-1440.

[1]Asif M, Dhawan P, Nath P. 2000. A simple procedure forthe isolation of high quality RNA from ripening bananafruit. Plant Molecular Biology Reporter, 18, 109-115

[2]Buescher R H, Buescher R W. 2001. Production and stabilityof (E, Z)-2, 6-nonadienal, the major flavor volatile ofcucumbers Journal of Food Sciences, 66, 357-361

[3]Burg S P, Burg E A. 1962. Role of ethylene in fruit ripening.Plant Physiology, 37, 179-189

[4]Cheong J K, Virshup D M. 2011. Casein kinase 1: Complexityin the family. The International Journal of Biochemistry& Cell Biology, 43, 465-469

[5]Choi J W, Kim G B, Huh Y C, Kwon M R, Mok I G, Kim J W,Lee T S, Kim S, Im K H. 2004. Cloning of genesdifferentially expressed during the initial stage of fruitdevelopment in melon (Cucumis melo cv. Reticulatus).Molecules and Cells, 17, 237-241

[6]Clepet C, Joobeur T, Zheng Y, Jublot D, Huang M, TrunigerV, Boualem A, Hernandez-Gonzalez M, Dolcet-SanjuanR, Portnoy V, et al. 2011. Analysis of expressedsequence tags generated from full-length enrichedcDNA libraries of melon. BMC Genomics, 12, 252.

[7]Diatchenko L, Lau Y F, Campbell A P, Chenchik A,Moqadam F, Huang B, Lukyanov S, Lukyanov K,Gurskaya N, Sverdlov E D, et al. 1996. Suppressionsubtractive hybridization: a method for generatingdifferentially regulated or tissue-specific cDNA probesand libraries. Proceedings of the National Academy ofSciences of the United States of America, 93, 6025-6030

[8]Dickson J M J J, Vincze E, Grant M R, Smith L A, Rodber KA, Farnden K J F, Reynolds P H S. 1992. Molecularcloning of the gene encoding developing seed lasparaginasefrom Lupinus angustifolius. PlantMolecular Biology, 20, 333-336

[9]de Godoy A, Cordenunsi B R, Lajolo F M, do Nascimento JR O. 2010. Differential display and suppressionsubtractive hybridization analysis of the pulp ofripening banana. Scientia Horticulturae, 124, 51-56

[10]Ezura H, Owino W O. 2008. Melon, an alternative modelplant for elucidating fruit ripening. Plant Science, 175,121-129

[11]Fotopoulos V, Gilbert M J, Pittman J K, Marvier A C,Buchanan A J, Sauer N, Hall J L, Williams L E. 2003. Themonosaccharide transporter gene, AtSTP4, and the cellwallinvertase, At beta fruct1, are induced in Arabidopsisduring infection with the fungal biotroph Erysiphecichoracearum. Plant Physiology, 132, 821-829

[12]Fragoso S, Espindola L, Paez-Valencia J, Gamboa A,Camacho Y, Martinez-Barajas E, Coello P. 2009. SnRK1isoforms AKIN10 and AKIN11 are differentiallyregulated in Arabidopsis plants under phosphatestarvation. Plant Physiology, 149, 1906-1916

[13]Fuchs S, Grill E, Meskiene I, Schweighofer A. 2012. Type2C protein phosphatases in plants. FEBS Journal, doi:10.1111/j.1742-46582012.08670.xGiovannoni J J. 2001. Molecular biology of fruit maturationand ripening. Annual Review of Plant Physiology andPlant Molecular Biology, 52, 725-749

[14]Giovannoni J J. 2004. Genetic regulation of fruitdevelopment and ripening. The Plant Cell, 16, 170-180

[15]Giovannoni J J. 2007. Fruit ripening mutants yield insightsinto ripening control. Current Opinion in Plant Biology,10, 283-289

[16]Goulao L F, Oliveira C M. 2007. Molecular identification ofnovel differentially expressed mRNAs up-regulatedduring ripening of apples. Plant Science, 172, 306-318

[17]Guy C L, Li Q B. 1998. The organization and evolution ofthe spinach stress 70 molecular chaperone gene family.The Plant Cell, 10, 539-556

[18]Hagen G, Guilfoyle T. 2002. Auxin-responsive geneexpression: genes, promoters and regulatory factors.Plant Molecular Biology, 49, 373-385

[19]Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas W J,Wang X, Xie B, Ni P, et al. 2009. The genome of thecucumber, Cucumis sativus L. Nature Genetics, 41,1275-1281

[20]Ibdah M, Azulay Y, Portnoy V, Wasserman B, Bar E, MeirA, Burger Y, Hirschberg J, Schaffer A A, Katzir N, et al.2006. Functional characterization of CmCCD1, acarotenoid cleavage dioxygenase from melon.Phytochemistry, 67, 1579-1589

[21]Jin Z Q, Xu B Y, Liu J H, Su W, Zhang J B, Yang X L, Jia CH, Li M Y. 2009. Identification of genes differentiallyexpressed at the onset of the ethylene climacteric inbanana. Postharvest Biology and Technology, 52, 307-309

[22]Katzir N, Harel-Bega R, Protnoy V, Tzuri G, Koren E, Lev S,Bar E, Tadmor Y, Burger Y, Lewinsohn E, et al. 2008.Melon fruit quality: a genomic approach, In: Pitrat M,ed., Cucurbitaceae 2008, Proceedings of the IXthEUCARPIA Meeting on Genetics and Breeding ofCucurbitaceae. INRA. Centre de Recherche d'Avignon.Unité Génétique et Amélioration des Fruits et Légumes,Montfavet (France), Avignon, France. pp. 231-240

[23]Kesari R, Trivedi P K, Nath P. 2007. Ethylene-inducedripening in banana evokes expression of defense andstress related genes in fruit tissue. Postharvest Biologyand Technology, 46, 136-143

[24]Klee H J. 1993. Ripening physiology of fruit from transgenictomato (Lycopersicon esculentum) plants with reducedethylene synthesis. Plant Physiology, 102, 911-916

[25]Li X, Sun H, Pei J, Dong Y, Wang F, Chen H, Sun Y, WangN, Li H, Li Y. 2012. De novo sequencing and comparativeanalysis of the blueberry transcriptome to discoverputative genes related to antioxidants. Gene, 511, 54-61

[26]Li Z, Yao L, Yang Y, Li A. 2006. Transgenic approach toimprove quality traits of melon fruit. ScientiaHorticulturae, 108, 268-277

[27]Lin B L, Wang J S, Liu H C, Chen R W, Meyer Y, Barakat A,Delseny M. 2001. Genomic analysis of the Hsp70superfamily in Arabidopsis thaliana. Cell StressChaperones, 6, 201-208

[28]Lois L M, Rodríguez-Concepción M, Gallego F, Campos N,Boronat A. 2000. Carotenoid biosynthesis duringtomato fruit development: regulatory role of 1-deoxy-D-xylulose 5-phosphate synthase. Plant Journal, 22,503-513

[29]Mahalingam R, Gomez-Buitrago A, Eckardt N, Shah N,Guevara-Garcia A, Day P, Raina R, Fedoroff N V. 2003.Characterizing the stress/defense transcriptome ofArabidopsis. Genome Biology, 4, R20.Manrique-Trujillo S M, Ramírez-López A C, Ibarra-LacletteE, Gómez-Lim M A. 2007. Identification of genesdifferentially expressed during ripening of banana.Journal of Plant Physiology, 164, 1037-1050

[30]Martin C, Paz-Ares J. 1997. MYB transcription factors inplants. Trends in Genetics, 13, 67-73

[31]Matus J, Aquea F, Arce-Johnson P. 2008. Analysis of thegrape MYB R2R3 subfamily reveals expanded winequality-related clades and conserved gene structureorganization across Vitis and Arabidopsis genomes.BMC Plant Biology, 8, 83.Moreno E, Obando J, Dos-Santos N, Fernández-Trujillo J,Monforte A, Garcia-Mas J. 2008. Candidate genes andQTLs for fruit ripening and softening in melon.Theoretical and Applied Genetics, 116, 589-602

[32]Nafees A K. 2006. Ethylene Action in Plants. Springer,Heidelberg, Berlin.Nagasawa M, Mori H, Shiratake K, Yamaki S. 2005. Isolationof cDNAs for genes expressed after/during fertilizationand fruit set of melon (Cucumis melo L.). Journal of theJapanese Society for Horticultural Science, 74, 23-30

[33]Nakamura Y, Sawada H, Kobayashi S, Nakajima I,Yoshikawa M. 1999. Expression of soybean ?-1,3-endoglucanase cDNA and effect on disease tolerancein kiwifruit plants Plant Cell Reports, 18, 527-532

[34]Nieto C, Morales M, Orjeda G, Clepet C, Monfort A,Sturbois B, Puigdomènech P, Pitrat M, Caboche M,Dogimont C, et al. 2006. An eIF4E allele confersresistance to an uncapped and non-polyadenylatedRNA virus in melon. Plant Journal, 48, 452-462

[35]Nishiyama K, Guis M, Rose J K C, Kubo Y, Bennett K A,Wangjin L, Kato K, Ushijima K, Nakano R, Inaba A, etal. 2007. Ethylene regulation of fruit softening and cellwall disassembly in Charentais melon. Journal ofExperimental Botany, 58, 1281-1290

[36]van Nocker S, Ludwig P. 2003. The WD-repeat proteinsuperfamily in Arabidopsis: conservation anddivergence in structure and function. BMC Genomics,4, 50.

[37]Ontivero M, Zamora M G, Salazar S, Ricci J C D, CastagnaroA P. 2011. Isolation of a strawberry gene fragmentencoding an actin depolymerizing factor-like proteinfrom genotypes resistant to Colletotrichum acutatum.Genome, 54, 1041-1044

[38]Owino W, Ma B, Sun H, Shoji T, Ezura H. 2007.Characteristics of an ethylene inducible ethylenereceptor Cm-ETR2 in melon fruit. In: Ramina A, ChangC, Giovannoni J, Klee H, Perata P, Woltering E, eds.,Advances in Plant Ethylene Research. Springer,Netherlands. pp. 39-40

[39]Palapol Y, Ketsa S, Lin-Wang K, Ferguson I, Allan A. 2009.A MYB transcription factor regulates anthocyaninbiosynthesis in mangosteen (Garcinia mangostana L.)fruit during ripening. Planta, 229, 1323-1334

[40]Pech J C, Bouzayen M, Latchq A. 2008. Climacteric fruitripening: ethylene-dependent and independentregulation of ripening pathways in melon fruit. PlantScience, 175, 114-120

[41]Pimentel P, Salvatierra A, Moya-León M A, Herrera R. 2010.Isolation of genes differentially expressed duringdevelopment and ripening of Fragaria chiloensis fruitby suppression subtractive hybridization. Journal ofPlant Physiology, 167, 1179-1187

[42]Pitrat M. 2002. Gene list for melon. Cucurbit GeneticsCooperative Report, 25, 76-93

[43]Portnoy V, Benyamini Y, Bar E, Harel-Beja R, Gepstein S,Giovannoni J, Schaffer A, Burger J, Tadmor Y,Lewinsohn E, et al. 2008. The molecular and biochemicalbasis for varietal variation in sesquiterpene content inmelon (Cucumis melo L.) rinds. Plant MolecularBiology, 66, 647-661

[44]Portnoy V, Diber A, Pollock S, Karchi H, Lev S, Tzuri G,Harel-Beja R, Forer R, Portnoy V H, Lewinsohn E, et al.2011. Use of non-normalized, non-amplified cDNA for454-based RNA sequencing of fleshy melon fruit. PlantGenome, 4, 36-46

[45]Pua E C, Lee Y C. 2003. Expression of a ripening-relatedcytochrome P450 cDNA in Cavendish banana (Musaacuminata cv. Williams). Gene, 305, 133-140

[46]Qiao G, Wen X, Yu L, Ji X. 2012. Identification of differentiallyexpressed genes preferably related to drought responsein pigeon pea (Cajanus cajan) inoculated by arbuscularmycorrhizae fungi (AMF). Acta PhysiologiaePlantarum, 34, 1711-1721

[47]Reddy A R, Ramakrishna W, Sekhar A C, Ithal N, Babu P R,Bonaldo M F, Soares M B, Bennetzen J L. 2002. Novelgenes are enriched in normalized cDNA libraries fromdrought-stressed seedlings of rice (Oryza sativa L.subsp. indica cv. Nagina 22). Genome, 45, 204-211

[48]Ren G, An K, Liao Y, Zhou X, Cao Y, Zhao H, Ge X, Kuai B.2007. Identification of a novel chloroplast proteinAtNYE1 regulating chlorophyll degradation during leafsenescence in Arabidopsis. Plant Physiology, 144,1429-1441

[49]Rodríguez-Concepción M, Ahumada I, Diez-Juez E, Sauret-Güeto S, Lois L M, Gallego F, Carretero-Paulet L,Campos N, Boronat A. 2001. 1-Deoxy-d-xylulose 5-phosphate reductoisomerase and plastid isoprenoidbiosynthesis during tomato fruit ripening. PlantJournal, 27, 213-222

[50]Rose J K, Saladié M, Catalá C. 2004. The plot thickens: newperspectives of primary cell wall modification. CurrentOpinion in Plant Biology, 7, 296-301

[51]Schwab W, Vidovich-Rikanati R, Lewinsohn E. 2008.Biosynthesis of plant-derived flavor compounds. PlantJournal, 54, 712-732

[52]Segond D, Dellagi A, Lanquar V, Rigault M, Patrit O,Thomine S, Expert D. 2009. NRAMP genes function inArabidopsis thaliana resistance to Erwiniachrysanthemi infection. Plant Journal, 58, 195-207

[53]Shinozaki K, Yamaguchi S, Urao T, Koizumi M. 1992.Nucleotide sequence of a gene from Arabidopsisthaliana encoding a myb homologue. Plant MolecularBiology, 19, 493-499

[54]Stracke R, Werber M, Weisshaar B. 2001. The R2R3-MYBgene family in Arabidopsis thaliana. Current Opinionin Plant Biology, 4, 447-456

[55]Sung D Y, Vierling E, Guy C L. 2001. Comprehensiveexpression profile analysis of the Arabidopsis Hsp70gene family. Plant Physiology, 126, 789-800

[56]Theologis A. 1992. One rotten apple spoils the wholebushel: the role of ethylene in fruit ripening. Cell, 70,181-184

[57]Thomine S, Lelièvre F, Debarbieux E, Schroeder J I, Barbier-Brygoo H. 2003. AtNRAMP3, a multispecific vacuolarmetal transporter involved in plant responses to irondeficiency. Plant Journal, 34, 685-695

[58]Timpte C, Lincoln C, Pickett F B, Turner J, Estelle M. 1995.The AXR1 and AUX1 genes of Arabidopsis function inseparate auxin-response pathways. Plant Journal, 8,561-569

[59]Torill K U. 2004. Leucine-rich repeat receptor kinases inplants: structure, function, and signal transductionpathways. International Review of Cytology, 234, 1-46

[60]Vaid N, Pandey P K, Tuteja N. 2012. Genome-wide analysisof lectin receptor-like kinase family from Arabidopsisand rice. Plant Molecular Biology, 80, 365-388

[61]Whitaker B D, Lester G E. 2006. Cloning of phospholipaseDa and lipoxygenase genes CmPLDa1 and CmLOX1and their expression in fruit, floral, and vegetativetissues of ‘Honey Brew’ hybrid Honeydew melon.Journal of the American Society for HorticulturalScience, 131, 544-550

[62]Xu B, Su W, Liu J, Wang J, Jin Z. 2007. Differentiallyexpressed cDNAs at the early stage of banana ripeningidentified by suppression subtractive hybridization andcDNA microarray. Planta, 226, 529-539

[63]Yahyaoui F E L, Wongs-Aree C, Latché A, Hackett R,Grierson D, Pech J C. 2002. Molecular and biochemicalcharacteristics of a gene encoding an alcohol acyltransferaseinvolved in the generation of aroma volatileesters during melon ripening. European Journal ofBiochemistry, 269, 2359-2366

[64]Yang S F, Hoffman N E. 1984. Ethylene biosynthesis andits regulation in higher plant. Annual Review of PlantPhysiology and Plant Molecular Biology, 35, 155-189

[65]Zimmermann I M, Heim M A, Weisshaar B, Uhrig J F. 2004.Comprehensive identification of Arabidopsis thalianaMYB transcription factors interacting with R/B-likeBHLH proteins. Plant Journal, 40, 22-34

[66]Zhang X, Guo X, Lei C, Cheng Z, Lin Q, Wang J, Wu F,Wang J, Wan J. 2011. Overexpression of SlCZFP1, anovel TFIIIA-type zinc finger protein from tomato,confers enhanced cold tolerance in transgenicArabidopsis and rice. Plant Molecular BiologyReporter, 29, 185-196.
[1] YANG Wei-bing, ZHANG Sheng-quan, HOU Qi-ling, GAO Jian-gang, WANG Han-Xia, CHEN Xian-Chao, LIAO Xiang-zheng, ZHANG Feng-ting, ZHAO Chang-ping, QIN Zhi-lie.

Transcriptomic and metabolomic analysis provides insights into lignin biosynthesis and accumulation and differences in lodging resistance in hybrid wheat [J]. >Journal of Integrative Agriculture, 2024, 23(4): 1105-1117.

[2] Atiqur RAHMAN, Md. Hasan Sofiur RAHMAN, Md. Shakil UDDIN, Naima SULTANA, Shirin AKHTER, Ujjal Kumar NATH, Shamsun Nahar BEGUM, Md. Mazadul ISLAM, Afroz NAZNIN, Md. Nurul AMIN, Sharif AHMED, Akbar HOSAIN. Advances in DNA methylation and its role in cytoplasmic male sterility in higher plants[J]. >Journal of Integrative Agriculture, 2024, 23(1): 1-19.
[3] ZHAO Shu-ping, DENG Kang-ming, ZHU Ya-mei, JIANG Tao, WU Peng, FENG Kai, LI Liang-jun.

Optimization of slow-release fertilizer application improves lotus rhizome quality by affecting the physicochemical properties of starch [J]. >Journal of Integrative Agriculture, 2023, 22(4): 1045-1057.

[4] MA Yu-xin, ZHOU Zhi-jun, CAO Hong-zhe, ZHOU Fan, SI He-long, ZANG Jin-ping, XING Ji-hong, ZHANG Kang, DONG Jin-gao. Identification and expression analysis of sugar transporter family genes reveal the role of ZmSTP2 and ZmSTP20 in maize disease resistance[J]. >Journal of Integrative Agriculture, 2023, 22(11): 3458-3473.
[5] ZHANG Yan-mei, AO De, LEI Kai-wen, XI Lin, Jerry W SPEARS, SHI Hai-tao, HUANG Yan-ling, YANG Fa-long. Dietary copper supplementation modulates performance and lipid metabolism in meat goat kids[J]. >Journal of Integrative Agriculture, 2023, 22(1): 214-221.
[6] JIANG Yong, MA Xin-yan, XIE Ming, ZHOU Zheng-kui, TANG Jing, CHANG Guo-bin, CHEN Guo-hong, HOU Shui-sheng. Dietary threonine deficiency affects expression of genes involved in lipid metabolism in adipose tissues of Pekin ducks in a genotype-dependent manner[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2691-2699.
[7] RONG Hao, YANG Wen-jing, XIE Tao, WANG Yue, WANG Xia-qin, JIANG Jin-jin, WANG You-ping. Transcriptional profiling between yellow- and black-seeded Brassica napus reveals molecular modulations on flavonoid and fatty acid content[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2211-2226.
[8] AN Feng, ZHANG Kang, ZHANG Ling-kui, LI Xing, CHEN Shu-min, WANG Hua-sen, CHENG Feng. Genome-wide identification, evolutionary selection, and genetic variation of DNA methylation-related genes in Brassica rapa and Brassica oleracea[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1620-1632.
[9] FAN Xiao-xue, BIAN Zhong-hua, SONG Bo, XU Hai. Transcriptome analysis reveals the differential regulatory effects of red and blue light on nitrate metabolism in pakchoi (Brassica campestris L.)[J]. >Journal of Integrative Agriculture, 2022, 21(4): 1015-1027.
[10] LIU Cong, LI De-xiong, HUANG Xian-biao, Zhang Fu-qiong, Xie Zong-zhou, Zhang Hong-yan, Liu Ji-hong. Manual thinning increases fruit size and sugar content of Citrus reticulata Blanco and affects hormone synthesis and sugar transporter activity[J]. >Journal of Integrative Agriculture, 2022, 21(3): 725-735.
[11] DUAN Yao-ke, HAN Rong, SU Yan, WANG Ai-ying, LI Shuang, SUN Hao, GONG Hai-jun. Transcriptional search to identify and assess reference genes for expression analysis in Solanum lycopersicum under stress and hormone treatment conditions[J]. >Journal of Integrative Agriculture, 2022, 21(11): 3216-3229.
[12] Kashif NOOR, Hafiza Masooma Naseer CHEEMA, Asif Ali KHAN, Rao Sohail Ahmad KHAN. Expression profiling of transgenes (Cry1Ac and Cry2A) in cotton genotypes under different genetic backgrounds[J]. >Journal of Integrative Agriculture, 2022, 21(10): 2818-2832.
[13] WANG Pei-pei, WANG Zhao-ke, GUAN Le, Muhammad Salman HAIDER, Maazullah NASIM, YUAN Yong-bing, LIU Geng-sen, LENG Xiang-peng. Versatile physiological functions of the Nudix hydrolase family in berry development and stress response in grapevine[J]. >Journal of Integrative Agriculture, 2022, 21(1): 91-112.
[14] GUO Bing-bing, LI Jia-ming, LIU Xing, QIAO Xin, Musana Rwalinda FABRICE, WANG Peng, ZHANG Shao-ling, WU Ju-you. Identification and expression analysis of the PbrMLO gene family in pear, and functional verification of PbrMLO23[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2410-2423.
[15] SHI Hai-yan, CAO Li-wen, XU Yue, YANG Xiong, LIU Shui-lin, LIANG Zhong-shuo, LI Guo-ce, YANG Yu-peng, ZHANG Yu-xing, CHEN Liang. Transcriptional profiles underlying the effects of salicylic acid on fruit ripening and senescence in pear (Pyrus pyrifolia Nakai)[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2424-2437.
No Suggested Reading articles found!