Please wait a minute...
Journal of Integrative Agriculture  2012, Vol. 12 Issue (6): 954-961    DOI: 10.1016/S1671-2927(00)8618
PLANT PROTECTION Advanced Online Publication | Current Issue | Archive | Adv Search |
Evolution of Xanthomonas Gene Content: Gene Gain/Loss History and Species Divergence
 JIN Gu-lei, ZHANG Guo-qing, ZHU Jun, ZHOU Xue-ping, SUN Guo-chang, LI Bin, ZHU Bo
1.State Key Laboratory of Rice Biology and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture/Institute of Biotechnology, Zhejiang University, Hangzhou 310029, P.R.China
2.Institute of Bioinformatics, Zhejiang University, Hangzhou 310029, P.R.China
3.Crop Management Station, Jiaxing 314051, P.R.China
4.State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control/Institute of Plant Protection and Microbiology,Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Horizontal gene transfer (HGT) plays key roles in the evolution of pathogenetic bacteria, especially in pathogenetic associated genes. In this study, the evolutionary dynamics of Xanthomonas at species level were determined by the comparative analysis of the complete genomes of 15 Xanthomonas strains. A concatenated multiprotein phyletic pattern and a dataset with Xanthomonas clusters of orthologous genes were constructed. Mathematical extrapolation estimates that the core genome will reach a minimum of about 1 547 genes while the pan-genome will increase up to 22 624 genes when sequencing 1 000 genomes. The HGT extent in this genus was assessed by using a Markov-based probabilistic method. The reconstructed gene gain/loss history, which contained several features consistent with biological observations, showed that nearly 60% of the Xanthomonas genes were acquired by HGT. A large fraction of variability was in the clade ancestor nodes and “leaves of the tree”. Coexpression analysis suggested that the pathogenic and metabolic variation between Xanthomonas oryzae pv. oryzicola and Xanthomonas oryzae pv. oryzae might due to recently-transferred genes. Our results strongly supported that the gene gain/loss may play an important role in divergence and pathogenicity variation of Xanthomonas species.

Abstract  Horizontal gene transfer (HGT) plays key roles in the evolution of pathogenetic bacteria, especially in pathogenetic associated genes. In this study, the evolutionary dynamics of Xanthomonas at species level were determined by the comparative analysis of the complete genomes of 15 Xanthomonas strains. A concatenated multiprotein phyletic pattern and a dataset with Xanthomonas clusters of orthologous genes were constructed. Mathematical extrapolation estimates that the core genome will reach a minimum of about 1 547 genes while the pan-genome will increase up to 22 624 genes when sequencing 1 000 genomes. The HGT extent in this genus was assessed by using a Markov-based probabilistic method. The reconstructed gene gain/loss history, which contained several features consistent with biological observations, showed that nearly 60% of the Xanthomonas genes were acquired by HGT. A large fraction of variability was in the clade ancestor nodes and “leaves of the tree”. Coexpression analysis suggested that the pathogenic and metabolic variation between Xanthomonas oryzae pv. oryzicola and Xanthomonas oryzae pv. oryzae might due to recently-transferred genes. Our results strongly supported that the gene gain/loss may play an important role in divergence and pathogenicity variation of Xanthomonas species.
Keywords:  Xanthomonas      core and pan-genome      gene gain/loss      horizontal gene transfer  
Received: 16 May 2011   Accepted:
Fund: 

This project was supported by the Natural Science Foundation of Zhejiang Province of China (Y3090150), the Fundamental Research Funds for the Central Universities, China, the Zhejiang Provincial Project, China (2010R10091), the Research Project for Commonweal Industry of Agricultural Ministry, China (nyhyzx 201003029; 201003066), the Specialized Research Fund for the Doctoral Program of Higher Education, China (20090101120083), and the Key Subject Construction Program for Modern Agricultural Biotechnology and Crop Disease Control of Zhejiang, China.

Corresponding Authors:  LI Bin, Tel: +86-571-88982412, E-mail: libin0571@zju.edu.cn; ZHU Bo, Tel: +86-571-88982412, E-mail:bzhu@zju.edu.cn     E-mail:  libin0571@zju.edu.cn
About author:  JIN Gu-lei, E-mail: guleijin@zju.edu.cn

Cite this article: 

JIN Gu-lei, ZHANG Guo-qing, ZHU Jun, ZHOU Xue-ping, SUN Guo-chang, LI Bin, ZHU Bo . 2012. Evolution of Xanthomonas Gene Content: Gene Gain/Loss History and Species Divergence. Journal of Integrative Agriculture, 12(6): 954-961.

[1]Aritua V, Parkinson N, Thwaites R, Heeney J V, Jones D R, Tushemereirwe W, Crozier J, Reeder R, Stead D E, Smith J. 2008. Characterization of the Xanthomonas sp causing wilt of enset and banana and its proposed reclassification as a strain of X. vasicola. Plant Pathology, 57, 170-177.

[2]Blaby-Haas C E, de Crecy-Lagard V. 2011. Mining highthroughput experimental data to link gene and function. Trends in Biotechnology, 29, 174-182.

[3]Büttner D, Bonas U. 2010. Regulation and secretion of Xanthomonas virulence factors. FEMS Microbiology Reviews, 34, 107-133.

[4]de Buck E, Lammertyn E, Anné J. 2008. The importance of the twin-arginine translocation pathway for bacterial virulence. Trends in Microbiology, 16, 442-453.

[5]Capella-Gutierrez S, Silla-Martinez J M, Gabaldon T. 2009. trimAl: a tool for automated alignment trimming in largescale phylogenetic analyses. Bioinformatics, 25, 1972-1973.

[6]Champoiseau P, Daugrois J H, Pieretti I, Cociancich S, Royer M, Rott P. 2006. High variation in pathogenicity of genetically closely related strains of Xanthomonas albilineans, the sugarcane leaf scald pathogen, in guadeloupe. Phytopathology, 96, 1081-1091.

[7]Cohen O, Pupko T. 2010. Inference and characterization of horizontally transferred gene families using stochastic mapping. Molecular Biology and Evolution, 27, 703-713.

[8]Collado-Vides J, Salgado H, Morett E, Gama-Castro S, Jimenez-Jacinto V, Martinez-Flores I, Medina-Rivera A, Muniz-Rascado L, Peralta-Gil M, Santos-Zavaleta A. 2009. Bioinformatics resources for the study of gene regulation in bacteria. Journal of Bacteriology, 191, 23-31.

[9]Comas I, Moya A, Azad R K, Lawrence J G, Gonzalez-Candelas F. 2006. The evolutionary origin of Xanthomonadales genomes and the nature of the horizontal gene transfer process. Molecular Biology and Evolution, 23, 2049-2057.

[10]Csürös M, Holey J A, Rogozin I B. 2007. In search of lost introns. Bioinformatics, 23, i87-i96. Csürös M, Rogozin I B, Koonin E V. 2008. Extremely intronrich genes in the alveolate ancestors inferred with a flexible maximum-likelihood approach. Molecular Biology and Evolution, 25, 903-911.

[11]Edgar R C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792-1797.

[12]Felsenstein J. 1995. PHYLIP (Phylogeny Inference Package). ver. 3.57 c. Department of Genetics, University of Washington, Seattle.

[13]Gentleman R C, Carey V J, Bates D M, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y C, Gentry J, et al. 2004. Bioconductor: open software development for computational biology and bioinformatics. Genome Biology, 5, R80.

[14]Guindon S, Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 52, 696-704.

[15]Johnson T L, Abendroth J, Hol W G J, Sandkvist M. 2006. Type II secretion: from structure to function. FEMS Microbiology Letters, 255, 175-186.

[16]Jones D T, Taylor W R, Thornton J M. 1994. A mutation data matrix for transmembrane proteins. FEBS Letters, 339, 269-275.

[17]Juhas M, van der Meer J R, Gaillard M, Harding R M, Hood D W, Crook D W. 2009. Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiology Reviews, 33, 376-393.

[18]Keshavarzi M, Soylu S, Brown I, Bonas U, Nicole M, Rossiter J, Mansfield J. 2004. Basal defenses induced in pepper by lipopolysaccharides are suppressed by Xanthomonas campestris pv. vesicatoria. Molecular Plant-Microbe Interactions, 17, 805-815.

[19]Kettler G C, Martiny A C, Huang K, Zucker J, Coleman M L, Rodrigue S, Chen F, Lapidus A, Ferriera S, Johnson J, et al. 2007. Patterns and implications of gene gain and loss in the evolution of Prochlorococcus. PLoS Genetics, 3, 2515-2528.

[20]Lapierrel P, Gogarten J P. 2009. Estimating the size of the bacterial pan-genome. Trends in Genetics, 25, 107-110.

[21]Lee B M, Park Y J, Park D S, Kang H W, Kim J G, Song E S, Park I C, Yoon U H, Hahn J H, Koo B S, et al. 2005. The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice. Nucleic Acids Research, 33, 577-586.

[22]Li L, Stoeckert C J, Roos D S. 2003. OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Research, 13, 2178-2189.

[23]Lima W, Paquola A C M, Varani A, Vansluys M A, Menck C M. 2008. Laterally transferred genomic islands in Xanthomonadales related to pathogenicity and primary metabolism. FEMS Microbiology Letters, 281, 87-97.

[24]Moscou M J, Bogdanove A J. 2009. A simple cipher governs DNA recognition by TAL effectors. Science, 326, 1501-1501.

[25]Ni Liu D O, Ronald P C, Bogdanove A J. 2006. Xanthomonas oryzae pathovars: model pathogens of a model crop. Molecular Plant Pathology, 7, 303-324.

[26]Pieretti I, Royer M, Barbe V, Carrere S, Koebnik R, Cociancich S, Couloux A, Darrasse A, Gouzy J, Jacques M A, et al. 2009. The complete genome sequence of Xanthomonas albilineans provides new insights into the reductive genome evolution of the xylem-limited Xanthomonadaceae. BMC Genomics, 10, 616.

[27]Sarkar S F, Guttman D S. 2004. Evolution of the core genome of Pseudomonas syringae, a highly clonal, endemic plant pathogen. Applied and Environmental Microbiology, 70, 1999-2012.

[28]Seo Y S, Sriariyanun M, Wang L, Pfeiff J, Phetsom J, Lin Y, Jung K H, Chou H H, Bogdanove A, Ronald P. 2008. A two-genome microarray for the rice pathogens Xanthomonas oryzae pv. oryzae and X. oryzae pv. oryzicola and its use in the discovery of a difference in their regulation of hrp genes. BMC Microbiology, 8, 99.

[29]Steel M. 1994. Recovering a tree from the leaf colourations it generates under a markov model. Applied Mathematics Letters, 7, 19-23.

[30]Studholme D J, Kemen E, MacLean D, Schornack S, Aritua V, Thwaites R, Grant M, Smith J, Jones J D G. 2010. Genome-wide sequencing data reveals virulence factors implicated in banana Xanthomonas wilt. FEMS Microbiology Letters, 310, 182-192.

[31]Tettelin H, Masignani V, Cieslewicz M J, Donati C, Medini D, Ward N L, Angiuoli S V, Crabtree J, Jones A L, Durkin A S, et al. 2005. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial an-genome? Proceedings of the National Academy of Sciences of the United States of America, 102, 13950-13955.

[32]Verniere C, Pruvost O, Civerolo E L, Gambin O, Jacquemoudcollet J P, Luisetti J. 1993. Evaluation of the biolog substrate utilization system to identify and assess metabolic variation among strains of Xanthomonas campestris pv. citri. Applied and Environmental Microbiology, 59, 243-249.

[33]Wattam A R, Williams K P, Snyder E E, Almeida N F, Shukla M, Dickerman A W, Crasta O R, Kenyon R, Lu J, Shallom J M, et al. 2009. Analysis of ten brucella genomes reveals evidence for horizontal gene transfer despite a preferred intracellular lifestyle. Journal of Bacteriology, 191, 3569-3579.

[34]White F F, Potnis N, Jones J B, Koebnik R. 2009. The type III effectors of Xanthomonas. Molecular Plant Pathology, 10, 749-766.

[35]White F F, Yang B. 2009. Host and Pathogen Factors Controlling the Rice-Xanthomonas oryzae Interaction. Plant Physiology, 150, 1677-1686.
[1] WANG Pei-hong, WANG Sai, NIE Wen-han, WU Yan, Iftikhar AHMAD, Ayizekeranmu YIMING, HUANG Jin, CHEN Gong-you, ZHU Bo. A transferred regulator that contributes to Xanthomonas oryzae pv. oryzicola oxidative stress adaptation and virulence by regulating the expression of cytochrome bd oxidase genes[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1673-1682.
[2] WANG Sai, WANG Pei-hong, NIE Wen-han, CUI Zhou-qi, LI Hong-yu, WU Yan, Ayizekeranmu YIMING, FU Luo-yi, Iftikhar AHMAD, CHEN Gong-you, ZHU Bo. Horizontal gene transfer of a syp homolog contributes to the virulence of Burkholderia glumae[J]. >Journal of Integrative Agriculture, 2021, 20(12): 3222-3229.
[3] TIAN Jing-jing, HUI Shu-gang, SHI Ya-rui, YUAN Meng. The key residues of OsTFIIAγ5/Xa5 protein captured by the arginine-rich TFB domain of TALEs compromising rice susceptibility and bacterial pathogenicity[J]. >Journal of Integrative Agriculture, 2019, 18(6): 1178-1188.
[4] XU Jin-bo, ZHANG Cui-ping, WUNIERBIEKE Mei-li, YANG Xiao-fei, LI Yi-lang, CHEN Xiao-bin, CHEN Gong-you, ZOU Li-fang. An improved protein expression system for T3SS genes regulation analysis in Xanthomonas oryzae pv. oryzae[J]. >Journal of Integrative Agriculture, 2019, 18(6): 1189-1198.
[5] XU Zheng-yin, ZOU Li-fang, MA Wen-xiu, CAI Lu-lu, YANG Yang-yang, CHEN Gong-you. Action modes of transcription activator-like effectors (TALEs) of Xanthomonas in plants[J]. >Journal of Integrative Agriculture, 2017, 16(12): 2736-2745.
[6] Gibson Kamau Gicharu, SUN Dong-ling, HU Xun, FAN Xiao-jing, ZHUO Tao, WU Chuan-wan, ZOU Hua-song. The sigma 54 genes rpoN1 and rpoN2 of Xanthomonas citri subsp. citri play different roles in virulence, nutrient utilization and cell motility[J]. >Journal of Integrative Agriculture, 2016, 15(9): 2032-2039.
[7] LI Wen, XU You-ping, Jean-Pierre Munyampundu, XU Xin, QI Xian-fei, GU Yuan, CAI Xin-zhong. Functional identification of phenazine biosynthesis genes in plant pathogenic bacteria Pseudomonas syringae pv. tomato and Xanthomonas oryzae pv. oryzae[J]. >Journal of Integrative Agriculture, 2016, 15(4): 812-821.
[8] Guo Jing, SonG Xue, Zou Li-fang, Zou Hua-song, CHen Gong-you. The small and large subunits of carbamoyl-phosphate synthase exhibit diverse contributions to pathogenicity in Xanthomonas citri subsp. citri[J]. >Journal of Integrative Agriculture, 2015, 14(7): 1338-1347.
[9] CAI Lu-lu, ZOU Li-fang, GE Ling, XUE Xiao-bo, ZOU Hua-song , CHEN Gong-you. An Inner Membrane Protein (Imp) of Xanthomonas oryzae pv. oryzicola Functions in Carbon Acquisition, EPS Production, Bacterial Motility and Virulence in Rice[J]. >Journal of Integrative Agriculture, 2014, 13(12): 2656-2668.
[10] JIANG Wei-yu, GENG Li-li, DAI Ping-li, LANG Zhi-hong, SHU Chang-long, LIN Yi, ZHOU Ting, SONG Fu-ping , ZHANG Jie. The Influence of Bt-Transgenic Maize Pollen on the Bacterial Diversity in the Midgut of Chinese Honeybees, Apis cerana cerana[J]. >Journal of Integrative Agriculture, 2013, 12(3): 474-482.
[11] HE Wen-ai, HUANG Da-hui, LI Rong-bai, YANG Hai-ning, HUANG Yue-yue, LIU Chi, MA Zeng-feng, YANG Yong . Identification of a Resistance Gene bls1 to Bacterial Leaf Streak in Wild Rice Oryza rufipogon Griff.[J]. >Journal of Integrative Agriculture, 2012, 12(6): 962-969.
[12] SHEN Yi-ping, ZOU Li-fang, LI Yu-rong, ZOU Hua-song, LIU Xi-ling , CHEN Gong-you. Xoryp_08180 of Xanthomonas oryzae pv. oryzicola, Encoding a Hypothetical Protein, is Regulated by HrpG and HrpX and Required for Full Virulence in Rice[J]. >Journal of Integrative Agriculture, 2012, 12(4): 600-610.
[13] ZOU Li-fang, LI Yu-rong , CHEN Gong-you. A Non-Marker Mutagenesis Strategy to Generate Poly-hrp Gene Mutants in the Rice Pathogen Xanthomonas oryzae pv. oryzicola[J]. >Journal of Integrative Agriculture, 2011, 10(8): 1139-1150.
No Suggested Reading articles found!