Please wait a minute...
Journal of Integrative Agriculture  2011, Vol. 10 Issue (8): 1139-1150    DOI: 10.1016/S1671-2927(11)60104-1
GENETICS & BREEDING · GERMPLASM RESOURCES · MOLECULAR GENETICS Advanced Online Publication | Current Issue | Archive | Adv Search |
A Non-Marker Mutagenesis Strategy to Generate Poly-hrp Gene Mutants in the Rice Pathogen Xanthomonas oryzae pv. oryzicola
School of Agriculture and Biology, Shanghai Jiao Tong University
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Xanthomonas oryzae pv. oryzicola (Xoc), the critical pathogen causing bacterial leaf streak in rice, possesses a hrp clusterthat is responsible for triggering hypersensitive response (HR) in non-host tobacco and pathogenicity in host rice, and isconsidered to be one of the model pathogens in the rice model plant. Here, we developed a high-throughput mutagenesissystem using a two-step integration mediated by a novel suicide vector pKMS1. It was used to generate single or poly-genemutants of hpa1, hpa2, hrcV, hrpE, hpaB, and hrpF gene for functional analysis. In total, five single, four double, and twotriple hrp gene mutants were constructed. The double and triple hrp gene deletion mutants triggered novel phenotypesin planta. Our data suggest that pKMS1 is a useful tool for non-marker mutagenesis of multiple genes in Xoc.

Abstract  Xanthomonas oryzae pv. oryzicola (Xoc), the critical pathogen causing bacterial leaf streak in rice, possesses a hrp clusterthat is responsible for triggering hypersensitive response (HR) in non-host tobacco and pathogenicity in host rice, and isconsidered to be one of the model pathogens in the rice model plant. Here, we developed a high-throughput mutagenesissystem using a two-step integration mediated by a novel suicide vector pKMS1. It was used to generate single or poly-genemutants of hpa1, hpa2, hrcV, hrpE, hpaB, and hrpF gene for functional analysis. In total, five single, four double, and twotriple hrp gene mutants were constructed. The double and triple hrp gene deletion mutants triggered novel phenotypesin planta. Our data suggest that pKMS1 is a useful tool for non-marker mutagenesis of multiple genes in Xoc.
Keywords:    
Received: 08 October 2010   Accepted:
Corresponding Authors:  Correspondence CHEN Gong-you, Professor, Tel: +86-21-34205873, Fax: +86-21-34205873, E-mail:gyouchen@sjtu.edu.cn     E-mail:  zoulifang202018@sjtu.edu.cn
About author:  ZOU Li-fang, E-mail: zoulifang202018@sjtu.edu.cn

Cite this article: 

ZOU Li-fang, LI Yu-rong , CHEN Gong-you. 2011. A Non-Marker Mutagenesis Strategy to Generate Poly-hrp Gene Mutants in the Rice Pathogen Xanthomonas oryzae pv. oryzicola. Journal of Integrative Agriculture, 10(8): 1139-1150.

[1]      Alfano J R, Collmer A. 1997. The type III (Hrp) secretionpathway of plant pathogenic bacteria: trafficking harpins,Avr proteins, and death. Journal of Bacteriology, 179, 5655-5662.
[2]      Bonas U. 1994. hrp genes of phytopathogenic bacteria. CurrentTopics in Microbiology and Immunology, 192, 79-98.
[3]      Büttner D, Bonas U. 2002a. Getting across-bacterial type IIIeffector proteins on their way to the plant cell. EMBO Journal,21, 5313-5322.
[4]      Büttner D, Bonas U. 2002b. Port of entry-the type III secretiontranslocon. Trends in Microbiology, 10,186-192.
[5]      Büttner D, Gurlebeck D, Noël L, Bonas U. 2004. HpaB fromXanthomonas campestris pv. vesicatoria acts as an exit controlprotein in type III-dependent protein secretion. MolecularMicrobiology, 54, 755-768.
[6]      Büttner D, Lorenz C, Weber E, Bonas U. 2006. Targeting of twoeffector protein classes to the type III secretion system by aHpaC- and HpaB-dependent protein complex fromXanthomonas campestris pv. vesicatoria. MolecularMicrobiology, 59, 513-527.
[7]      Büttner D, Nennstiel D, Klusener B, Bonas U. 2002. Functionalanalysis of HrpF, a putative type III translocon protein fromXanthomonas campestris pv. vesicatoria. Journal ofBacteriology, 184, 2389-2398.
[8]      Büttner D, Noël L, Stuttmann J, Bonas U. 2007. Characterizationof the nonconserved hpaB-hrpF region in the hrppathogenicity island from Xanthomonas campestris pv.vesicatoria. Molecular Plant-Microbe Interaction, 20, 1063-1074.
[9]      Castañeda A, Reddy J D, El-Yacoubi B, Gabriel D W. 2005.Mutagenesis of all eight avr genes in Xanthomonas campestrispv. campestris had no detected effect on pathogenicity, butone avr gene affected race specificity. Molecular Plant-Microbe, 18, 1306-1317.
[10]   Charkowski A O, Alfano J R, Preston G, Yuan J, He S Y, CollmerA. 1998. The Pseudomonas syringae pv. tomato HrpWprotein has domains similar to harpins and pectate lyasesand can elicit the plant hypersensitive response and bind topectate. Journal of Bacteriology, 180, 5211-5217.
[11]   Choi S H, Leach J E. 1994. Genetic manipulation of Xanthomonasoryzae pv. oryzae. International Rice Research Notes, 19,31-32.
[12]   Fang Z D, Ren X Z, Chen T Y, Fang H Z. 1957. Comparison onpathogenic bacteria of rice leaf blight, rice leaf streak and Li’sgrass streak. Acta Phytopathology Sinica, 3, 99-122. (inChinese)
[13]   Goryshin I Y, Jendrisak J, Hoffman L M, Meis R, Rezniko W S.2000. Insertional transposon mutagenesis by electroporationof released Tn5 transposition complexes. NatureBiotechnology, 18, 97-100.
[14]   Guo Y H, Xu Z G, Hu B S, Shen X P, Chen Z Y, Liu Y F. 2004.Virulence differentiation of Xanthomonas oryzae pv. oryzicolain southern region of China. Chinese Journal of Rice Science,18, 83-85. (in Chinese)
[15]   He S Y, Huang H C, Collmer A. 1993. Pseudomonas syringaepv. syringae harpinPss: a protein that is secreted via the Hrppathway and elicits the hypersensitive response in plants.Cell, 73, 1255-1266.
[16]   He S Y. 1998. Type III protein secretion systems in plant andanimal pathogenic bacteria. Annual Review of Phytopathology,36, 363-392.
[17]   Katzen F, Becker A, Ielmini M V, Oddo C G, Ielpi A L. 1999.New mobilizable vectors suitable for gene replacement inGram-negative bacteria and their use in mapping of the 3´end of the Xanthomonas campestris pv. campestris gumoperon. Applied and Environment Microbiology, 65, 278-282.
[18]   Kim J G, Park B K, Yoo C H, Jeon E, Oh J, Hwang I. 2003.Characterization of the Xanthomonas axonopodis pv. glycinesHrp pathogenicity island. Journal of Bacteriology, 185, 3155-3166.
[19]   Kvitko B H, Ramos A R, Morello J E, Oh H S, Collmer A. 2007.Identification of harpins in Pseudomonas syringae pv. tomatoDC3000, which are functionally similar to HrpK1 inpromoting translocation of type III secretion systemeffectors. Journal of Bacteriol, 189, 8059-8072.
[20]   Niño-Liu D O, Ronald P C, Bogdanove A J. 2006. Xanthomonasoryzae pathovars: model pathogens of a model crop. MolecularPlant Pathology, 7, 303-324.
[21]   Ou S H. 1985. Rice Disease. Commonwealth Agricultural Bureaux,UK.Reyrat J M, Pelicic V, Gicquel B, Brappuoli R. 1998. Counterselectable markers: untapped tools for bacterial genetics andpathogenesis. Infect Immunity, 66, 4011-4017.
[22]   Rossier O, van den Ackerveken G, Bonas U. 2000. HrpB2 andHrpF from Xanthomonas are type III-secreted proteins andessential for pathogenicity and recognition by the host plant.Molecular Microbiology, 38, 828-838.
[23]   Sarker M R, Cornelis G R. 1997. An improved version of suicidevector pKNG101 for gene replacement in gram-negativebacteria. Molecular Microbiology, 23, 410-411.
[24]   Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, PühlerA. 1994. Small mobilizable multi-purpose cloning vectorsderived from the Escherichia coli plasmids pK18 and pK19:selection of defined deletions in the chromosome ofCorynebacterium glutamicum. Gene, 145, 69-73.
[25]   Sugio A, Yang B, White F F. 2005. Characterization of the hrpFpathogenicity peninsula of Xanthomonas oryzae pv. oryzae.Molecular Plant-Microbe Interaction, 18, 546-554.
[26]   Sun Q H, Wu W, Qian W, Hu J, Fang R X, He C Z. 2003. Highqualitymutant libraries of Xanthomonas oryzae pv. oryzaeand X. campestris pv. campestris generated by an efficienttransposon mutagenesis system. FEMS Microbiology Letters,226, 145-150.
[27]   Voelker L L, Dybvig K. 1998. Transposon mutagenesis. Methodsin Molecular Biology, 235-238.
[28]   Weber E, Koebnik R. 2005. Domain structure of HrpE, the Hrppilus subunit of Xanthomonas campestris pv. vesicatoria.Journal of Bacteriology, 17, 6175-6186.
[29]   Wei Z M, Laby R J, Zumoff C H, Bauer D W, He S Y, CollmerA, Beer S V. 1992. Harpin, elicitor of the hypersensitiveresponse produced by the plant pathogen Erwinia amylovora.Science, 257, 85-88.
[30]   Weller G R, Kysela B, Roy R, Tonkin L M, Scanlan E, Della M,Devine S K, Day J P, Wilkinson A, di Fagagna F D, et al.2002. Identification of a DNA nonhomologous end-joiningcomplex in bacteria. Science, 297, 1686-1689.
[31]   Wengelnik K, Bonas U. 1996. HrpXv, an AraC-type regulator,activates expression of five out of six loci in the hrp clusterof Xanthomonas campestris pv. vesicatoria. Journal ofBacteriology, 178, 3462-3469.
[32]   Wengelnik K, van den Ackerveken G, Bonas U. 1996. HrpG, akey hrp regulatory protein of Xanthomonas campestris pv.vesicatoria is homologous to two-component responseregulators. Molecular Plant-Microbe Interactions, 9, 704-712.
[33]   Wengelnik K, Rossier O, Bonas U. 1999. Mutations in theregulatory gene hrpG of Xanthomonas campestris pv.vesicatoria result in constitutive expression of all hrp genes.Journal of Bacteriology, 181, 6828-6831.
[34]   Zhang X Z, Yan X, Cui Z L, Hong Q, Li S P. 2006. SmazF, anovel counter-selectable marker for unmarked chromosomalmanipulation in Bacillus subtilis. Nucleic Acids Research,34, 2-8.
[35]   Zhu W, Magbanua M M, White F F. 2000. Identification of twonovel hrp-associated genes in the hrp gene cluster ofXanthomonas oryzae pv. oryzae. Journal of Bacteriology,182, 1844-1853.
[36]   Zou L F, Wang X P, Xiang Y, Zhang B, Li Y R, Xiao Y L, WangJ S, Walmsley A R, Chen G Y. 2006. Elucidation of the hrpclusters of Xanthomonas oryzae pv. oryzicola that controlthe hypersensitive response in nonhost tobacco andpathogenicity in susceptible host rice. Applied andEnvironment Microbiology, 72, 6212-6224.
No related articles found!
No Suggested Reading articles found!