Please wait a minute...
Journal of Integrative Agriculture  2017, Vol. 16 Issue (12): 2736-2745    DOI: 10.1016/S2095-3119(17)61750-7
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Action modes of transcription activator-like effectors (TALEs) of Xanthomonas in plants
XU Zheng-yin, ZOU Li-fang, MA Wen-xiu, CAI Lu-lu, YANG Yang-yang, CHEN Gong-you
School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, P.R.China
Download:  PDF (1305KB) ( )  
Export:  BibTeX | EndNote (RIS)      
Abstract  Plant-pathogenic Xanthomonas infects a wide variety of host plants and causes many devastating diseases on crops.  Transcription activator-like effectors (TALEs) are delivered by a type III secretion system (T3SS) of Xanthomonas into plant nuclei to directly bind specific DNA sequences (TAL effector-binding elements, EBEs) on either strand of host target genes with an unique modular DNA-binding domain and to bidirectionally drive host gene transcription.  The target genes in plants consist of host susceptibility (S) genes promoting disease (ETS) and resistance (R) genes triggering defense (ETI).  Here we generally summarized the discovery of TALEs in Xanthomonas species, their functions in bacterial pathogenicity in plants and their target genes in different host plants, and then focused on the newly revealed modes of protein action in triggering or suppressing plant defense.
Keywords:  Xanthomonas       TALE        iTALE        ETS        ETI       suppressor  
Received: 13 April 2017   Accepted:
Fund: 

This research was supported by the National Natural Science Foundation of China (31230059, 31471742), and the Special Fund for Agro-scientific Research in the Public Interest of China (201303015).

Corresponding Authors:  Correspondence CHEN Gong-you, Tel: +86-21-34205873, E-mail: gyouchen@sjtu.edu.cn    
About author:  XU Zheng-yin,E-mail:xuzy2015@sjtu.edu.cn;

Cite this article: 

XU Zheng-yin, ZOU Li-fang, MA Wen-xiu, CAI Lu-lu, YANG Yang-yang, CHEN Gong-you. 2017. Action modes of transcription activator-like effectors (TALEs) of Xanthomonas in plants. Journal of Integrative Agriculture, 16(12): 2736-2745.

Van den Ackerveken G, Marois E, Bonas U. 1996. Recognition of the bacterial avirulence protein AvrBs3 occurs inside the host plant cell. Cell, 87, 1307–1316.

Al-Saadi A, Reddy J D, Duan Y P, Brunings A M, Yuan Q, Gabriel D W. 2007. All five host-range variants of Xanthomonas citri carry one pthA homolog with 17.5 repeats that determines pathogenicity on citrus, but none determine host-range variation. Molecular Plant-Microbe Interactions, 20, 934–943.

Antony G, Zhou J, Huang S, Li T, Liu B, White F, Yang B. 2010. Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3. The Plant Cell, 22, 3864–3876.

Bai J, Choi S H, Ponciano G, Leung H, Leach J E. 2000. Xanthomonas oryzae pv. oryzae avirulence genes contribute differently and specifically to pathogen aggressiveness. Molecular Plant-Microbe Interactions, 13, 1322–1329.

Ballvora A, Pierre M, van den Ackerveken G, Schornack S, Rossier O, Ganal M, Lahaye T, Bonas U. 2001. Genetic mapping and functional analysis of the tomato Bs4 locus governing recognition of the Xanthomonas campestris pv. vesicatoria AvrBs4 protein. Molecular Plant-Microbe Interactions, 14, 629–638.

Boch J, Bonas U. 2010. Xanthomonas AvrBs3 family-type III effectors: Discovery and function. Annual Review of Phytopathology, 48, 419–436.

Boch J, Bonas U, Lahaye T. 2014. TAL effectors-pathogen strategies and plant resistance engineering. New Phytologist, 204, 823–832.

Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 326, 1509–1512.

Bogdanove A J, Koebnik R, Lu H, Furutani A, Angiuoli S V, Patil P B, Van Sluys M A, Ryan R P, Meyer D F, Han S W, Aparna G, Rajaram M, Delcher A L, Phillippy A M, Puiu D, Schatz M C, Shumway M, Sommer D D, Trapnell C, Benahmed F, et al. 2011. Two new complete genome sequences offer insight into host and tissue specificity of plant pathogenic Xanthomonas spp. Journal of Bacteriology, 193, 5450–5464.

Bogdanove A J, Schornack S, Lahaye T, Parker J E, Ellis J G. 2010. TAL effectors: Finding plant genes for disease and defense. Current Opinion in Plant Biology, 13, 394–401.

Bonas U, Stall R E, Staskawicz B. 1989. Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria. Molecular Genetics and Genomics, 218, 127–136.

Booher N J, Carpenter S C, Sebra R P, Wang L, Salzberg S L, Leach J E, Bogdanove A J. 2015. Single molecule real-time sequencing of Xanthomonas oryzae genomes reveals a dynamic structure and complex TAL (transcription activator-like) effector gene relationships. Microbial Genomics, 1, doi: 10.1099/mgen.0.000032

Büttner D, Gürlebeck D, Noël L D, Bonas U. 2004. HpaB from Xanthomonas campestris pv. vesicatoria acts as an exit control protein in type III-dependent protein secretion. Molecular Microbiology, 54, 755–768.

Cai L L, Cao Y Y, Xu Z Y, Ma W X, Zakria M, Zou L F, Cheng Z Q, Chen G Y. 2017. A transcription activator-like effector Tal7 of Xanthomonas oryzae pv. oryzicola activates rice gene Os09g29100 to suppress rice immunity. Scientific Reports, 7, doi: 10.1038/s41598-017-04800-8

Cernadas R A, Doyle E L, Niño-Liu D O, Wilkins K E, Bancroft T, Wang L, Schmidt C L, Caldo R, Yang B, White F F, Nettleton D, Wise R P, Bogdanove A J. 2014. Code-assisted discovery of TAL effector targets in bacterial leaf streak of rice reveals contrast with bacterial blight and a novel susceptibility gene. PLoS Pathogens, 10, e1003972.

Chen L Q. 2014. Sweet sugar transporters for phloem transport and pathogen nutrition. New Phytologist, 201, 1150–1155.

Chen L Q, Hou B H, Lalonde S, Takanaga H, Hartung M L, Qu X Q, Guo W J, Kim J G, Underwood W, Chaudhuri B, Chermak D, Antony G, White F F, Somerville S C, Mudgett M B, Frommer W B. 2010. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature, 468, 527–532.

Chu Z, Yuan M, Yao J, Ge X, Yuan B, Xu C, Li X, Fu B, Li Z, Bennetzen J L, Zhang Q, Wang S. 2006. Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes & Development, 20, 1250–1255.

Cohn M, Bart R S, Shybut M, Dahlbeck D, Gomez M, Morbitzer R, Hou B H, Frommer W B, Lahaye T, Staskawicz B J. 2014. Xanthomonas axonopodis virulence is promoted by a transcription activator-like effector-mediated induction of a SWEET sugar transporter in cassava. Molecular Plant-Microbe Interactions, 27, 1186–1198.

Core L J, Waterfall J J, Lis J T. 2008. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science, 322, 1845–1848.

Deng D, Yan N. 2012. Structural basis for sequence-specific recognition of DNA by TAL effectors. Science, 335, 720–723.

Dhadi S R, Deshpande A, Driscoll K, Ramakrishna W. 2013. Major cis-regulatory elements for rice bidirectional promoter activity reside in the 5´-untranslated regions. Gene, 526, 400–410.

Dou D, Zhou J M. 2012. Phytopathogen effectors subverting host immunity: Different foes, similar battleground. Cell Host & Microbe, 12, 484–495.

Duan Y P, Castañeda A, Zhao G, Erdos G, Gabriel D W. 1999. Expression of a single, host-specific, bacterial pathogenicity gene in plant cells elicits division, enlargement, and cell death. Molecular Plant-Microbe Interactions, 12, 556–560.

Dye D W, Bradbury J F, Goto M, Hayward A C, Lelliott R A, Schroth M N. 1980. International standards for naming pathovars of phytopathogenic bacteria and a list of pathovar names and pathotype strains. Review of Plant Pathology, 59, 153–168.

El Yacoubi B, Brunings A M, Yuan Q, Shankar S, Gabriel D W. 2007. In planta horizontal transfer of a major pathogenicity effector gene. Applied & Environmental Microbiology, 73, 1612–1621.

Eom J S, Chen L Q, Sosso D, Julius B T, Lin I W, Qu X Q, Braun D M, Frommer W B. 2015. SWEETs, transporters for intracellular and intercellular sugar translocation. Current Opinion in Plant Biology, 25, 53–62.

De Feyter R, Yang Y, Gabriel D W. 1993. Gene-for-genes interactions between cotton R genes and Xanthomonas campestris pv. malvacearum avr genes. Molecular Plant-Microbe Interactions, 6, 225–237.

Fujikawa T, Ishihara H, Leach J E, Tsuyumu S. 2006. Suppression of defense response in plants by the avrBs3/pthA gene family of Xanthomonas spp. Molecular Plant-Microbe Interactions, 19, 342–349.

Gabriel D W, Burges A, Lazo G R. 1986. Gene-for-gene interactions of five cloned avirulence genes from Xanthomonas campestris pv. malvacearum with specific resistance genes in cotton. Proceedings of the National Academy of Sciences of the United States of America, 83, 6415–6419.

Gonzalez C, Szurek B, Manceau C, Mathieu T, Séré Y, Verdier V. 2007. Molecular and pathotypic characterization of new Xanthomonas oryzae strains from West Africa. Molecular Plant-Microbe Interactions, 20, 534–546.

Gu K, Tian D, Qiu C, Yin Z. 2009. Transcription activator-like type III effector AvrXa27 depends on OsTFIIAγ5 for the activation of Xa27 transcription in rice that triggers disease resistance to Xanthomonas oryzae pv. oryzae. Molecular Plant Pathology, 10, 829–835.

Gu K, Yang B, Tian D, Wu L, Wang D, Sreekala C, Yang F, Chu Z, Wang G L, White F F, Yin Z. 2005. R gene expression induced by a type-III effector triggers disease resistance in rice. Nature, 435, 1122–1125.

Gürlebeck D, Szurek B, Bonas U. 2005. Dimerization of the bacterial effector protein AvrBs3 in the plant cell cytoplasm prior to nuclear import. The Plant Journal, 42, 175–187.

Hayward A C. 1993. The hosts of Xanthomonas. In: Swings J G, Civerolo E L, eds., Xanthomonas. Chapman & Hall, London. pp. 1–119.

Hopkins C M, White F F, Choi S H, Guo A, Leach J E. 1992. Identification of a family of avirulence genes from Xanthomonas oryzae pv. oryzae. Molecular Plant-Microbe Interactions, 5, 451–459.

Høiby T, Zhou H, Mitsiou D J, Stunnenberg H G. 2007. A facelift for the general transcription factor TFIIA. Biochimica et Biophysica Acta, 1769, 429–436.

Hu Y, Zhang J, Jia H, Sosso D, Li T, Frommer W B, Yang B, White F F, Wang N, Jones J B. 2014. Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease. Proceedings of the National Academy of Sciences of the United States of America, 111, E521–E529.

Huang S, Antony G, Li T, Liu B, Obasa K, Yang B, White F F. 2016. The broadly effective recessive resistance gene xa5 of rice is a virulence effector-dependent quantitative trait for bacterial blight. The Plant Journal, 86, 186–194.

Hummel A W, Doyle E L, Bogdanove A J. 2012. Addition of transcription activator-like effector binding sites to a pathogen strain-specific rice bacterial blight resistance gene makes it effective against additional strains and against bacterial leaf streak. New Phytologist, 195, 883–893.

Hutin M, Césari S, Chalvon V, Michel C, Tran T T, Boch J, Koebnik R, Szurek B, Kroj T. 2016. Ectopic activation of the rice NLR heteropair RGA4/RGA5 confers resistance to bacterial blight and bacterial leaf streak diseases. The Plant Journal, 88, 43–55.

Hutin M, Pérez-Quintero A L, Lopez C, Szurek B. 2015a. MorTAL Kombat: The story of defense against TAL effectors through loss-of-susceptibility. Frontiers in Plant Science, 6, doi: 10.3389/fpls.2015.00535

Hutin M, Sabot F, Ghesquière A, Koebnik R, Szurek B. 2015b. A knowledge-based molecular screen uncovers a broad spectrum OsSWEET14 resistance allele to bacterial blight from wild rice. The Plant Journal, 84, 694–703.

Iyer A S, McCouch S R. 2004. The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance. Molecular Plant-Microbe Interactions, 17, 1348–1354.

Jacques M A, Arlat M, Boulanger A, Boureau T, Carrère S, Cesbron S, Chen N W, Cociancich S, Darrasse A, Denancé N, Fischer-Le Saux M, Gagnevin L, Koebnik R, Lauber E, Noël L D, Pieretti I, Portier P, Pruvost O, Rieux A, Robène I, et al. 2016. Using ecology, physiology, and genomics to understand host specificity in Xanthomonas. Annual Review of Phytopathology, 54, 163–187.

Ji Z, Ji C, Liu B, Zou L, Chen G, Yang B. 2016. Interfering TAL effectors of Xanthomonas oryzae neutralize R-gene-mediated plant disease resistance. Nature Communications, 7, doi: 10.1038/ncomms13435

Ji Z, Zakria M, Zou L, Xiong L, Li Z, Ji G H, Chen G Y. 2014. Genetic diversity of transcriptional activator-like effector genes in chinese isolates of Xanthomonas oryzae pv. oryzicola. Phytopathology, 104, 672–682.

Jiang G H, Xia Z H, Zhou Y L, Wan J, Li D Y, Chen R S, Zhai W X, Zhu L H. 2006. Testifying the rice bacterial blight resistance gene xa5 by genetic complementation and further analyzing xa5 (Xa5) in comparison with its homolog TFIIAγ1. Molecular Genetics and Genomics, 275, 354–366.

Kay S, Boch J, Bonas U. 2005. Characterization of AvrBs3-like effectors from a Brassicaceae pathogen reveals virulence and avirulence activities and a protein with a novel repeat architecture. Molecular Plant-Microbe Interactions, 18, 838–848.

Kay S, Hahn S, Marois E, Hause G, Bonas U. 2007. A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science, 318, 648–651.

Kay S, Hahn S, Marois E, Wieduwild R, Bonas U. 2009. Detailed analysis of the DNA recognition motifs of the Xanthomonas type III effectors AvrBs3 and AvrBs3Δrep16. The Plant Journal, 59, 859–871.

Kourmpetli S, Lee K, Hemsley R, Rossignol P, Papageorgiou T, Drea S. 2013. Bidirectional promoters in seed development and related hormone/stress responses. BMC Plant Biology, 13, 187.

Lee B M, Park Y J, Park D S, Kang H W, Kim J G, Song E S, Park I C, Yoon U H, Hahn J H, Koo B S, Lee G B, Kim H, Park H S, Yoon K O, Kim J H, Jung C H, Koh N H, Seo J S, Go S J. 2005. The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice. Nucleic Acids Research, 33, 577–586.

Li T, Liu B, Spalding M H, Weeks D P, Yang B. 2012. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nature Biotechnology, 30, 390–392.

Li Z, Zou L, Ye G, Xiong L, Ji Z, Zakria M, Hong N, Wang G, Chen G. 2014. A potential disease susceptibility gene CsLOB of citrus is targeted by a major virulence effector PthA of Xanthomonas citri subsp. citri. Molecular Plant, 7, 912–915.

Liu Q, Yuan M, Zhou Y, Li X, Xiao J, Wang S. 2011. A paralog of the MtN3/saliva family recessively confers race-specific resistance to Xanthomonas oryzae in rice. Plant Cell & Environment, 34, 1958–1969.

Maeder M L, Linder S J, Reyon D, Angstman J F, Fu Y, Sander J D, Joung J K. 2013. Robust, synergistic regulation of human gene expression using TALE activators. Nature Methods, 10, 243–245.

Mak A N, Bradley P, Bogdanove A J, Stoddard B L. 2013. TAL effectors: function, structure, engineering and applications. Current Opinion in Structural Biology, 23, 93–99.

Mak A N, Bradley P, Cernadas R A, Bogdanove A J, Stoddard B L. 2012. The crystal structure of TAL effector PthXo1 bound to its DNA target. Science, 335, 716–719.

Makino S, Sugio A, White F, Bogdanove A J. 2006. Inhibition of resistance gene-mediated defense in rice by Xanthomonas oryzae pv. oryzicola. Molecular Plant-Microbe Interactions, 19, 240–249.

Marois E, Van den Ackerveken G, Bonas U. 2002. The Xanthomonas type III effector protein AvrBs3 modulates plant gene expression and induces cell hypertrophy in the susceptible host. Molecular Plant-Microbe Interactions, 15, 637–646.

Mew T W, Alvarez A M, Leach J E, Swings J. 1993. Focus on bacterial blight of rice. Plant Disease, 77, 5–12.

Moscou M J, Bogdanove A J. 2009. A simple cipher governs DNA recognition by TAL effectors. Science, 326, 1501.

Niño-Liu D O, Ronald P C, Bogdanove A J. 2006. Xanthomonas oryzae pathovars: Model pathogens of a model crop. Molecular Plant Pathology, 7, 303–324.

Ochiai H, Inoue Y, Takeya M, Sasaki A, Kaku H. 2005. Genome sequence of Xanthomonas oryzae pv. oryzae suggests contribution of large numbers of effector genes and insertion sequences to its race diversity. Japan Agricultural Research Quarterly, 39, 275–287.

Park H J, Han S W, Oh C, Lee S, Ra D, Lee S H, Heu S. 2008. Avirulence gene diversity of Xanthomonas axonopodis pv. glycines isolated in Korea. Journal of Microbiology & Biotechnology, 18, 1500–1509.

Read A C, Rinaldi F C, Hutin M, He Y, Triplett L R, Bogdanove A J. 2016. Suppression of Xo1-mediated disease resistance in rice by a truncated, non-DNA-binding TAL effector of Xanthomonas oryzae. Frontiers in Plant Science, 7, doi: 10.3389/fpls.2016.01516

Römer P, Hahn S, Jordan T, Strauß T, Bonas U, Lahaye T. 2007. Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science, 318, 645–648.

Römer P, Recht S, Lahaye T. 2009a. A single plant resistance gene promoter engineered to recognize multiple tal effectors from disparate pathogens. Proceedings of the National Academy of Sciences of the United States of America, 106, 20526–20531.

Römer P, Recht S, Strauß T, Elsaesser J, Schornack S, Boch J, Wang S, Lahaye T. 2010. Promoter elements of rice susceptibility genes are bound and activated by specific TAL effectors from the bacterial blight pathogen, Xanthomonas oryzae pv. oryzae. New Phytologist, 187, 1048–1057.

Römer P, Strauss T, Hahn S, Scholze H, Morbitzer R, Grau J, Bonas U, Lahaye T. 2009b. Recognition of AvrBs3-like proteins is mediated by specific binding to promoters of matching pepper Bs3 alleles. Plant Physiology, 150, 1697–1712.

Salzberg S L, Sommer D D, Schatz M C, Phillippy A M, Rabinowicz P D, Tsuge S, Furutani A, Ochiai H, Delcher A L, Kelley D, Madupu R, Puiu D, Radune D, Shumway M, Trapnell C, Aparna G, Jha G, Pandey A, Patil P B, Ishihara H, et al. 2008. Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A. BMC Genomics, 9, 204.

Scholze H, Boch J. 2011. TAL effectors are remote controls for gene activation. Current Opinion in Microbiology, 14, 47–53.

Schornack S, Ballvora A, Gürlebeck D, Peart J, Baulcombe D, Ganal M, Baker B, Bonas U, Lahaye T. 2004. The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NB-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3. The Plant Journal, 37, 46–60.

Schornack S, Meyer A, Römer P, Jordan T, Lahaye T. 2006. Gene-for-gene-mediated recognition of nuclear-targeted AvrBs3-like bacterial effector proteins. Journal of Plant Physiology, 163, 256–272.

Schornack S, Moscou M J, Ward E R, Horvath D M. 2013. Engineering plant disease resistance based on TAL effectors. Annual Review of Phytopathology, 51, 383–406.

da Silva A C, Ferro J A, Reinach F C, Farah C S, Furlan L R, Quaggio R B, Monteiro-Vitorello C B, Van Sluys M A, Almeida N F, Alves L M, do Amaral A M, Bertolini M C, Camargo L E, Camarotte G, Cannavan F, Cardozo J, Chambergo F, Ciapina L P, Cicarelli R M, Coutinho L L, et al. 2002. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature, 417, 459–463.

Strauß T, van Poecke R M, Strauß A, Römer P, Minsavage G V, Singh S, Wolf C, Strauß A, Kim S, Lee H A, Yeom S I, Parniske M, Stall R E, Jones J B, Choi D, Prins M, Lahaye T. 2012. RNA-seq pinpoints a Xanthomonas TAL-effector activated resistance gene in a large-crop genome. Proceedings of the National Academy of Sciences of the United States of America, 109, 19480–19485.

Streubel J, Baum H, Grau J, Stuttmann J, Boch J. 2017. Dissection of TALE-dependent gene activation reveals that they induce transcription cooperatively and in both orientations. PLoS ONE, 12, e0173580.

Streubel J, Pesce C, Hutin M, Koebnik R, Boch J, Szurek B. 2013. Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. oryzae. New Phytologist, 200, 808–819.

Sugio A, Yang B, Zhu T, White F F. 2007. Two type III effector genes of Xanthomonas oryzae pv. oryzae control the induction of the host genes OsTFIIAγ1 and OsTFX1 during bacterial blight of rice. Proceedings of the National Academy of Sciences of the United States of America, 104, 10720–10725.

Swarup S, De Feyter R, Brlansky R H, Gabriel D W. 1991. A pathogenicity locus from Xanthomonas citri enables strains from several pathovars of X. campestris to elicit cankerlike lesions on citrus. Phytopathology, 81, 802–809.

Swarup S, Yang Y, Kingsley M T, Gabriel D W. 1992. An Xanthomonas citri pathogenicity gene, pthA, pleiotropically encodes gratuitous avirulence on nonhosts. Molecular Plant-Microbe Interactions, 5, 204–213.

Szurek B, Marois E, Bonas U, Van den Ackerveken G. 2001. Eukaryotic features of the Xanthomonas type III effector AvrBs3: Protein domains involved in transcriptional activation and the interaction with nuclear import receptors from pepper. The Plant Journal, 26, 523–534.

Szurek B, Rossier O, Hause G, Bonas U. 2002. Type III-dependent translocation of the Xanthomonas AvrBs3 protein into the plant cell. Molecular Microbiology, 46, 13–23.

Tian D, Wang J, Zeng X, Gu K, Qiu C, Yang X, Zhou Z, Goh M, Luo Y, Murata-Hori M, White F F, Yin Z. 2014. The rice TAL effector-dependent resistance protein XA10 triggers cell death and calcium depletion in the endoplasmic reticulum. The Plant Cell, 26, 497–515.

Triplett L R, Cohen S P, Heffelfinger C, Schmidt C L, Huerta A I, Tekete C, Verdier V, Bogdanove A J, Leach J E. 2016. A resistance locus in the American heirloom rice variety Carolina Gold Select is triggered by TAL effectors with diverse predicted targets and is effective against African strains of Xanthomonas oryzae pv. oryzicola. The Plant Journal, 87, 472–483.

Uhde-Stone C, Cheung E, Lu B. 2014. TALE activators regulate gene expression in a position- and strand-dependent manner in mammalian cells. Biochemical and Biophysical Research Communications, 443, 1189–1194.

Wang C, Zhang X, Fan Y, Gao Y, Zhu Q, Zheng C, Qin T, Li Y, Che J, Zhang M, Yang B, Liu Y, Zhao K. 2015. XA23 is an executor R protein and confers broad-spectrum disease resistance in rice. Molecular Plant, 8, 290–302.

Wang L, Rinaldi F C, Singh P, Doyle E L, Dubrow Z E, Tran T T, Pérez-Quintero A L, Szurek B, Bogdanove A J. 2017. TAL effectors drive transcription bidirectionally in plants. Molecular Plant, 10, 285–296.

White F F, Yang B. 2009. Host and pathogen factors controlling the rice-Xanthomonas oryzae interaction. Plant Physiology, 150, 1677–1686.

Wichmann G, Bergelson J. 2004. Effector genes of Xanthomonas axonopodis pv. vesicatoria promote transmission and enhance other fitness traits in the field. Genetics, 166, 693–706.

Yang B, Sugio A, White F F. 2006. Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proceedings of the National Academy of Sciences of the United States of America, 103, 10503–10508.

Yang B, White F F. 2004. Diverse members of the AvrBs3/pthA family of type III effectors are major virulence determinants in bacterial blight disease of rice. Molecular Plant-Microbe Interactions, 17, 1192–1200.

Yang B, Zhu W, Johnson L B, White F F. 2000. The virulence factor AvrXa7 of Xanthomonas oryzae pv. oryzae is a type III secretion pathway-dependent nuclear-localized double-stranded DNA-binding protein. Proceedings of the National Academy of Sciences of the United States of America, 97, 9807–9812.

Yang Y, De Feyter R, Gabriel D W. 1994. Host-specific symptoms and increased release of Xanthomonas citri and X. campestris pv. malvacearum from leaves are determined by the 102-bp tandem repeats of pthA and avrb6, respectively. Molecular Plant-Microbe Interactions, 7, 345–355.

Yang Y, Gabriel D W. 1995. Xanthomonas avirulence/pathogenicity gene family encodes functional plant nuclear targeting signals. Molecular Plant-Microbe Interactions, 8, 627–631.

Yang Y N, Yuan Q P, Gabriel D W. 1996. Watersoaking function(s) of XcmH1005 are redundantly encoded by members of the Xanthomonas avr/pth gene family. Molecular Plant-Microbe Interactions, 9, 105–113.

Ye G, Hong N, Zou L F, Zou H S, Zakria M, Wang G P, Chen G Y. 2013. tale-Based genetic diversity of Chinese isolates of the citrus canker pathogen Xanthomonas citri subsp. citri. Plant Disease, 97, 1187–1194.

Yuan M, Ke Y, Huang R, Ma L, Yang Z, Chu Z, Xiao J, Li X, Wang S. 2016. A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria. elife, 5, doi: 10.7554/eLife.19605

Yu Y, Streubel J, Balzergue S, Champion A, Boch J, Koebnik R, Feng J, Verdier V, Szurek B. 2011. Colonization of rice leaf blades by an African strain of Xanthomonas oryzae pv. oryzae depends on a new TAL effector that induces the rice nodulin-3 Os11N3 gene. Molecular Plant-Microbe Interactions, 24, 1102–1113.

Zeng X, Tian D, Gu K, Zhou Z, Yang X, Luo Y, White F F, Yin Z. 2015. Genetic engineering of the Xa10 promoter for broad-spectrum and durable resistance to Xanthomonas oryzae pv. oryzae. Plant Biotechnology Journal, 13, 993–1001.

Zhang J, Yin Z, White F. 2015. TAL effectors and the executor R genes. Frontiers in Plant Science, 6, doi: 10.3389/fpls.2015.00641

Zhou H, Liu B, Weeks D P, Spalding M H, Yang B. 2014. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Research, 42, 10903–10914.

Zhou J, Peng Z, Long J, Sosso D, Liu B, Eom J S, Huang S, Liu S, Vera Cruz C, Frommer W B, White F F, Yang B. 2015. Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. The Plant Journal, 82, 632–643.

Zhu W, Yang B, Chittoor J M, Johnson L B, White F F. 1998. AvrXa10 contains an acidic transcriptional activation domain in the functionally conserved C terminus. Molecular Plant-Microbe Interactions, 11, 824–832.

Zhu W, Yang B, Wills N, Johnson L B, White F F. 1999. The C terminus of AvrXa10 can be replaced by the transcriptional activation domain of VP16 from the herpes simplex virus. The Plant Cell, 11, 1665–1674.

Zou H S, Yuan L, Guo W, Li Y R, Che Y Z, Zou L F, Chen G Y. 2011. Construction of a Tn5-tagged mutant library of Xanthomonas oryzae pv. oryzicola as an invaluable resource for functional genomics. Current Microbiology, 62, 908–916.
[1] LI Chao-hui, FAN Zhi-li, HUANG Xin-yi, WANG Qin-hu, JIANG Cong, XU Jin-rong, JIN Qiao-jun. Mutations in FgPrp6 suppressive to the Fgprp4 mutant in Fusarium graminearum[J]. >Journal of Integrative Agriculture, 2022, 21(5): 1375-1388.
[2] LIU Hui, LIU Chang, ZHAO Yu-hang, HAN Xue-jie, ZHOU Zheng-wei, WANG Chen, LI Rong-feng, LI Xue-ling . Comparing successful gene knock-in efficiencies of CRISPR/Cas9 with ZFNs and TALENs gene editing systems in bovine and dairy goat fetal fibroblasts[J]. >Journal of Integrative Agriculture, 2018, 17(2): 406-414.
[3] FENG Chong, LI Xi-rui, CUI Hui-ting, LONG Chuan, LIU Xia, TIAN Xing-hua, PAN Deng-ke, LUO Yuzhu. Highly efficient generation of GGTA1 knockout pigs using a combination of TALEN mRNA and magnetic beads with somatic cell nuclear transfer[J]. >Journal of Integrative Agriculture, 2016, 15(7): 1540-1449.
No Suggested Reading articles found!