Please wait a minute...
Journal of Integrative Agriculture  2012, Vol. 12 Issue (4): 600-610    DOI: 10.1016/S1671-2927(00)8580
PLANT PROTECTION Advanced Online Publication | Current Issue | Archive | Adv Search |
Xoryp_08180 of Xanthomonas oryzae pv. oryzicola, Encoding a Hypothetical Protein, is Regulated by HrpG and HrpX and Required for Full Virulence in Rice
 SHEN Yi-ping, ZOU Li-fang, LI Yu-rong, ZOU Hua-song, LIU Xi-ling , CHEN Gong-you
1.School of Agriculture and Biology, Shanghai Jiao Tong University/Key Laboratory of Urban (South), Ministry of Agriculture, Shanghai 200240, P.R.China
2.Department of Plant Protection, Nanjing Agricultural University/Key Laboratory of Integrated Management of Crop Diseases and Pests,Ministry of Education, Nanjing 210095, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Xanthomonas oryzae pv. oryzicola (Xoc) causes a destructive bacterial leaf streak disease in rice. Some of the gene products annotated as hypothetical proteins in the genome of Xoc may contribute to its virulence in rice. A mutant, Mxoc1679, screened from our previous Tn5-tagged mutant library for Xoc strain RS105, showed reduced virulence in rice. In this mutant, a gene named as Xoryp_08180 was disrupted by Tn5 insertion. Xoryp_08180 encodes a 1 306-aa hypothetical protein which is highly conserved in Xanthomonas spp. Non-polar mutation of Xoryp_08180 in RS105 strain led to a significant reduction in bacterial virulence and growth in rice, a delayed hypersensitive response (HR) in non-host tobacco, and a decrease in extracellular protease activity. The deficiencies above were restored to wild-type level in the complementary strain by expressing Xoryp_08180 in trans. In addition, the expression of Xoryp_08180 was repressed in hrpG and hrpX mutants in planta but not in a nutrient-rich condition. These results suggested that Xoryp_08180 is a virulence factor required for extracellular protease production, HR induction and full virulence of Xoc.

Abstract  Xanthomonas oryzae pv. oryzicola (Xoc) causes a destructive bacterial leaf streak disease in rice. Some of the gene products annotated as hypothetical proteins in the genome of Xoc may contribute to its virulence in rice. A mutant, Mxoc1679, screened from our previous Tn5-tagged mutant library for Xoc strain RS105, showed reduced virulence in rice. In this mutant, a gene named as Xoryp_08180 was disrupted by Tn5 insertion. Xoryp_08180 encodes a 1 306-aa hypothetical protein which is highly conserved in Xanthomonas spp. Non-polar mutation of Xoryp_08180 in RS105 strain led to a significant reduction in bacterial virulence and growth in rice, a delayed hypersensitive response (HR) in non-host tobacco, and a decrease in extracellular protease activity. The deficiencies above were restored to wild-type level in the complementary strain by expressing Xoryp_08180 in trans. In addition, the expression of Xoryp_08180 was repressed in hrpG and hrpX mutants in planta but not in a nutrient-rich condition. These results suggested that Xoryp_08180 is a virulence factor required for extracellular protease production, HR induction and full virulence of Xoc.
Keywords:  Xanthomonas oryzae pv. oryzicola      Xoryp_08180      hypothetical protein      virulence      hypersensitive response      extracellular protease  
Received: 15 April 2011   Accepted:
Fund: 

This work was supported by the National Natural Science Foundation of China (31071656, 31000071), the National Transgenic Major Program, China (2008ZX08001-002) and the Special Fund for Agro-scientific Research in the Public Interest, China (NYHYZX07-056).

Corresponding Authors:  Correspondence CHEN Gong-you, Tel: +86-21-34205873, Fax: +86-21-34205873, E-mail: gyouchen@sjtu.edu.cn     E-mail:  gyouchen@sjtu.edu.cn
About author:  SHEN Yi-ping, Tel: +86-21-34205873, E-mail: yipingshen.syp@gmail.com

Cite this article: 

SHEN Yi-ping, ZOU Li-fang, LI Yu-rong, ZOU Hua-song, LIU Xi-ling , CHEN Gong-you. 2012. Xoryp_08180 of Xanthomonas oryzae pv. oryzicola, Encoding a Hypothetical Protein, is Regulated by HrpG and HrpX and Required for Full Virulence in Rice. Journal of Integrative Agriculture, 12(4): 600-610.

[1]Aldon D, Brito B, Boucher C, Genin S. 2000. A bacterial sensor of plant cell contact controls the transcriptional induction of Ralstonia solanacearum pathogenicity genes. EMBO Journal, 19, 2304-2314.

[2]Arlat M, Gough C L, Barber C E, Boucher C, Daniels M J. 1991. Xanthomonas campestris contains a cluster of hrp genes related to the larger hrp cluster of Pseudomonas solanacearum. Molecular Plant-Microbe Interactions, 4, 593-601.

[3]Brito B, Aldon D, Barberis P, Boucher C, Genin S. 2002. A signal transfer system through three compartments transduces the plant cell contact-dependent signal controlling Ralstonia solanacearum hrp genes. Molecular Plant-Microbe Interactions, 15, 109-119.

[4]Büttner D, Bonas U. 2002a. Getting across-bacterial type III effector proteins on their way to the plant cell. EMBO Journal, 21, 5313-5322.

[5]Büttner D, Bonas U. 2002b. Port of entry-the type III secretion translocon. Trends in Microbiology, 10, 186-192.

[6]Büttner D, Nennstiel D, Klüsener B, Bonas U. 2002. Functional analysis of HrpF, a putative type III translocon protein from Xanthomonas campestris pv. vesicatoria. Journal of Bacteriology, 184, 2389-2398.

[7]Chatterjee S, Sonti S R. 2002. rpfF mutants of Xanthomonas oryzae pv. oryzae are deficient for virulence and growth under low iron conditions. Molecular Plant-Microbe Interactions, 15, 463-471.

[8]Chu C C. 1978. The N6 medium and its application to another culture of cereal crops. In: Proceeding of Symposium on Plant Tissue Culture. Science Press, Bejing, China. pp. 43-50. (in Chinese)

[9]Furutani A, Nakayama T, Ochiai H, Kaku H, Kubo Y, Tsuge S. 2006. Identification of novel HrpXo regulons preceded by two cis-acting elements, a plant-inducible promoter box and a -10 box-like sequence, from the genome database of Xanthomonas oryzae pv. oryzae. FEMS Microbiology Letters, 259, 133-141.

[10]Furutani A, Takaoka M, Sanada H, Noguchi Y, Oku T, Tsuno K, Ochiai H, Tsuge S. 2009. Identification of novel type III secretion effectors in Xanthomonas oryzae pv. oryzae. Molecular Plant-Microbe Interactions, 22, 96-106.

[11]Guo Y, Figueiredo F, Jones J, Wang N. 2011. HrpG and HrpX play global roles in coordinating different virulence traits of Xanthomonas axonopodis pv. citri. Molecular Plant-Microbe Interactions, 24, 649-661.

[12]He S Y, Nomura K, Whittam T S. 2004. Type III protein secretion mechanism in mammalian and plant pathogens. Biochimica et Biophysica Acta, 1694, 181-206.

[13]Hueck C J. 1998. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiology and Molecular Biology Reviews, 62, 379-433.

[14]Jiang J, Zou H S, Li Y R, Chen G Y. 2009. Expression of the hrcC, hrpE and hpa3 genes is not regulated by the hrpG and hrpX genes in a rice pathogen Xanthomonas oryzae pv. oryzicola. Acta Microbiologica Sinica, 49, 1018-1025. (in Chinese)

[15]Johnson T L, Abendroth J, Hol W G, Sandkvist M. 2006. Type II secretion: from structure to function. FEMS Microbiology Letters, 255, 175-186.

[16]Koebnik R, Krüger A, Thieme F, Urban A, Bonas U. 2006. Specific binding of the Xanthomonas campestris pv. vesicatoria AraC-type transcriptional activator HrpX to plant-inducible promoter boxes. Journal of Bacteriology, 188, 7652-7660.

[17]Lee B M, Park Y J, Park D S, Kang H W, Kim J G, Song E S, Park I C, Yoon U H, Hahn J H, Koo B S, et al. 2005. The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice. Nucleic Acids Research, 33, 577-586.

[18]McNeil M, Darvill A G, Fry S C, Albersheim P. 1984. Structure and function of the primary cell walls of plants. Annual Review of Biochemistry, 53, 625-663.

[19]Niño-Liu D O, Ronald P C, Bogdanove A J. 2006. Xanthomonas oryzae pathovars: model pathogens of a model crop. Molecular Plant Pathology, 7, 303-324.

[20]Noël L, Thieme F, Nennstiel D, Bonas U. 2001. cDNA-AFLP analysis unravels a genome-wide hrpG-regulon in the plant pathogen Xanthomonas campestris pv. vesicatoria. Molecular Microbiology, 41, 1271-1281.

[21]Ochiai H, Inoue Y, Takeya M, Kaku H. 2005. Genome sequence of Xanthomonas oryzae pv. oryzae suggests contribution of large numbers of effector genes and insertion sequences to its race diversity. Japan Agricultural Research Quarterly, 39, 275-287.

[22]Ou S H. 1985. Rice Diseases. Common Wealth Agricultural Bureau, Kew, Surrey. Reddy P R, Ou S H. 1974. Differentiation of Xanthomonas translucens f.sp. oryzicola (Fang et al.) Bradbury, the leaf-streak pathogen, from Xanthomonas oryzae (Uyeda and Ishiyama) Dowson, the blight pathogen of rice, by enzymatic tests. International Journal of Systematic Bacteriology, 24, 450-452.

[23]Salzberg S L, Sommer D D, Schatz M C, Phillippy A M, Rabinowicz P D, Tsuge S, Furutani A, Ochiai H, Delcher A L, Kelley D, et al. 2008. Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A. BMC Genomics, 9, 204.

[24]Sambrook J, Fritsch E F, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA. Schulte R, Bonas U. 1992a. A Xanthomonas pathogenicity locus is induced by sucrose and sulfur-containing amino acids. The Plant Cell, 4, 79-86.

[25]Schulte R, Bonas U. 1992b. Expression of the Xanthomonas campestris pv. vesicatoria hrp gene cluster, which determines pathogenicity and hypersensitivity on pepper and tomato, is plant inducible. Journal of Bacteriology, 174, 815-823.

[26]da Silva A C, Ferro J A, Reinach F C, Farah C S, Furlan L R, Quaggio R B, Monteiro-Vitorello C B, van Sluys M A, Almeida N F, Alves L M, et al. 2002. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature, 417, 459-463.

[27]Sugio A, Yang B, White F F. 2005. Characterization of the hrpF pathogenicity peninsula of Xanthomonas oryzae pv. oryzae. Molecular Plant-Microbe Interactions, 18, 546-554.

[28]Swings J, van den Mooter M, Vauterin L, Hoste B, Gillis M, Mew T W, Kersters K. 1990. Reclassification of the causal agents of bacterial blight (Xanthomonas campestris pv. oryzae) and bacterial leaf streak (Xanthomonas campestris pv. oryzicola) of rice as pathovars of Xanthomonas orzae (ex Ishiyama 1922) sp. nov., nom. rev. International Journal of Systematic Bacteriology, 40, 309-311.

[29]Tang J L, Feng J X, Li Q Q, Wen H X, Zhou D L, Wilson T J, Dow J M, Ma Q S, Daniels M J. 1996. Cloning and characterization of the rpfC gene of Xanthomonas oryzae pv. oryzae: involvement in exopolysaccharide production and virulence to rice. Molecular Plant-Microbe Interactions, 9, 664-666.

[30]Tsuge S, Terashima S, Furutani A, Ochiai H, Oku T, Tsuno K, Kaku H, Kubo Y. 2005. Effects on promoter activity of base substitutions in the cis-acting regulatory element of HrpXo regulons in Xanthomonas oryzae pv. oryzae. Journal of Bacteriology, 187, 2308-2314.

[31]Wang L, Makino S, Subedee A, Bogdanove A J. 2007. Novel candidate virulence factors in rice pathogen Xanthomonas oryzae pv. oryzicola as revealed by mutational analysis. Applied and Environmental Microbiology, 73, 8023-8027.

[32]Weber E, Koebnik R. 2005. Domain structure of HrpE, the Hrp pilus subunit of Xanthomonas campestris pv. vesicatoria. Journal of Bacteriology, 187, 6175-6186.

[33]Wengelnik K, Bonas U. 1996. HrpXv, an AraC-type regulator, activates expression of five of the six loci in the hrp cluster of Xanthomonas campestris pv. vesicatoria. Journal of Bacteriology, 178, 3462-3469.

[34]Wengelnik K, Rossier O, Bonas U. 1999. Mutations in the regulatory gene hrpG of Xanthomonas campestris pv. vesicatoria result in constitutive expression of all hrp genes. Journal of Bacteriology, 181, 6828-6831.

[35]Wengelnik K, van den Ackerveken G, Bonas U. 1996. HrpG, a key hrp regulatory protein of Xanthomonas campestris pv. vesicatoria is homologous to twocomponent response regulators. Molecular Plant-Microbe Interactions, 9, 704-712.

[36]Xiao Y L, Li Y R, Liu Z Y, Xiang Y, Chen G Y. 2007. Establishment of the hrp-inducing systems for the expression of the hrp genes of Xanthomonas oryzae pv. oryzicola. Acta Microbiologica Sinica, 47, 396-401. (in Chinese)

[37]Zhao Y, Qian G, Yin F, Fan J, Zhai Z, Liu C, Hu B, Liu F. 2011. Proteomic analysis of the regulatory function of DSF-dependent quorum sensing in Xanthomonas oryzae pv. oryzicola. Microbial Pathogens, 50, 48-55.

[38]Zou H S, Yuan L, Guo W, Li Y R, Che Y Z, Zou L F, Chen G Y. 2011. Construction of a Tn5-tagged mutant library of Xanthomonas oryzae pv. oryzicola as an invaluable resource for functional genomics. Current Microbiology, 62, 908-916.

[39]Zou L F, Wang X P, Xiang Y, Zhang B, Li Y R, Xiao Y L, Wang J S, Walmsley A R, Chen G Y. 2006. Elucidation of the hrp clusters of Xanthomonas oryzae pv. oryzicola that control the hypersensitive response in nonhost tobacco and pathogenicity in susceptible host rice. Applied Environmental Microbiology, 72, 6212-6224.
[1] Ambreen LEGHARI, Shakeel Ahmed LAKHO, Faiz Muhammad KHAND, Khaliq ur Rehman BHUTTO, Sameen Qayoom LONE, Muhammad Tahir ALEEM, Iqra BANO, Muhammad Ali CHANDIO, Jan Muhammad SHAH, LIN Hui-xing, FAN Hong-jie. Molecular epidemiology, characterization of virulence factors and antibiotic-resistance profile of Streptococcus agalactiae isolated from dairy farms in China and Pakistan[J]. >Journal of Integrative Agriculture, 2023, 22(5): 1514-1528.
[2] XU Bin, MA Zhe, ZHOU Hong, LIN Hui-xing, FAN Hong-jie. The vital role of CovS in the establishment of Streptococcus equi subsp. zooepidemicus virulence[J]. >Journal of Integrative Agriculture, 2023, 22(2): 568-584.
[3] WANG Pei-hong, WANG Sai, NIE Wen-han, WU Yan, Iftikhar AHMAD, Ayizekeranmu YIMING, HUANG Jin, CHEN Gong-you, ZHU Bo. A transferred regulator that contributes to Xanthomonas oryzae pv. oryzicola oxidative stress adaptation and virulence by regulating the expression of cytochrome bd oxidase genes[J]. >Journal of Integrative Agriculture, 2022, 21(6): 1673-1682.
[4] YIN Jun-jie, XIONG Jun, XU Li-ting, CHEN Xue-wei, LI Wei-tao. Recent advances in plant immunity with cell death: A review[J]. >Journal of Integrative Agriculture, 2022, 21(3): 610-620.
[5] YU Wen-ying, LIN Mei, YAN Hui-juan, WANG Jia-jia, ZHANG Sheng-min, LU Guo-dong, WANG Zong-hua, Won-Bo SHIM. The peroxisomal matrix shuttling receptor Pex5 plays a role of FB1 production and virulence in Fusarium verticillioides[J]. >Journal of Integrative Agriculture, 2022, 21(10): 2957-2972.
[6] SHI Dong-ya, REN Wei-chao, WANG Jin, ZHANG Jie, Jane Ifunanya MBADIANYA, MAO Xue-wei, CHEN Chang-jun. The transcription factor FgNsf1 regulates fungal development, virulence and stress responses in Fusarium graminearum[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2156-2169.
[7] TIAN Li, HUANG Cai-min, ZHANG Dan-dan, LI Ran, CHEN Jie-yin, SUN Wei-xia, QIU Nian-wei, DAI Xiao-feng. Extracellular superoxide dismutase VdSOD5 is required for virulence in Verticillium dahliae[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1858-1870.
[8] Bongekile NGOBESE, Oliver Tendayi ZISHIRI, Mohamed Ezzat EL ZOWALATY. Molecular detection of virulence genes in Campylobacter species isolated from livestock production systems in South Africa[J]. >Journal of Integrative Agriculture, 2020, 19(6): 1656-1670.
[9] CHEN Bin, TIAN Yan-li, ZHAO Yu-qiang, WANG Yuan-jie, CHUAN Jia-cheng, LI Xiang, HU Bai-shi. Genomic characteristics of Dickeya fangzhongdai isolates from pear and the function of type IV pili in the chromosome[J]. >Journal of Integrative Agriculture, 2020, 19(4): 906-920.
[10] QIN Jia-xing, LI Bao-hua, ZHOU Shan-yue. A novel glycoside hydrolase 74 xyloglucanase CvGH74A is a virulence factor in Coniella vitis[J]. >Journal of Integrative Agriculture, 2020, 19(11): 2725-2735.
[11] YUAN Long-yu, HAO Yuan-hao, CHEN Qiao-kui, PANG Rui, ZHANG Wen-qing. Pancreatic triglyceride lipase is involved in the virulence of the brown planthopper to rice plants[J]. >Journal of Integrative Agriculture, 2020, 19(11): 2758-2766.
[12] ZHANG Hang, YANG Feng, LI Xin-pu, LUO Jin-yin, WANG Ling, ZHOU Yu-long, YAN Yong, WANG Xu-rong, LI Hong-sheng. Detection of antimicrobial resistance and virulence-related genes in Streptococcus uberis and Streptococcus parauberis isolated from clinical bovine mastitis cases in northwestern China[J]. >Journal of Integrative Agriculture, 2020, 19(11): 2784-2791.
[13] WANG Qian-nan, HUANG Pan-pan, ZHOU Shan-yue. Functional characterization of the catalytic and bromodomain of FgGCN5 in development, DON production and virulence of Fusarium graminearum[J]. >Journal of Integrative Agriculture, 2020, 19(10): 2477-2487.
[14] ZHENG Na, ZHANG Liu-ping, GE Feng-yong, HUANG Wen-kun, KONG Ling-an, PENG De-liang, LIU Shi-ming. Conidia of one Fusarium solani isolate from a soybean-production field enable to be virulent to soybean and make soybean seedlings wilted[J]. >Journal of Integrative Agriculture, 2018, 17(09): 2042-2053.
[15] LIU Tai-guo, GE Run-jing, MA Yu-tong, LIU Bo, GAO Li, CHEN Wan-quan. Population genetic structure of Chinese Puccinia triticina races based on multi-locus sequences[J]. >Journal of Integrative Agriculture, 2018, 17(08): 1779-1789.
No Suggested Reading articles found!