Please wait a minute...
Journal of Integrative Agriculture  2012, Vol. 11 Issue (2): 269-280    DOI: 10.1016/S1671-2927(00)8544
SECTION 3: MOLECULAR CHARACTERIZATION OF Bemisia tabaci Advanced Online Publication | Current Issue | Archive | Adv Search |
A Roadmap for Whitefly Genomics Research: Lessons from Previous Insect Genome Projects
 Owain Rhys Edwards , Alexie Papanicolaou
1.CSIRO Ecosystem Sciences, Wembley, WA 6913, Australia
2.CSIRO Ecosystem Sciences, Canberra, ACT 2601, Australia
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  Due to evolving molecular and informatics technologies, modern genome sequencing projects have more different characteristics than what most biologists have become accustomed to during the capillary-based sequencing era. In this paper, we explore the characteristics that made past insect genome projects successful and place them in the context of next-generation sequencing. By taking into account the intricacies of whitefly biology and the community, we present a roadmap for whitefly-omics, which focuses on the formation of an international consortium, deployment of informatic platforms and realistic generation of reference sequence data.

Abstract  Due to evolving molecular and informatics technologies, modern genome sequencing projects have more different characteristics than what most biologists have become accustomed to during the capillary-based sequencing era. In this paper, we explore the characteristics that made past insect genome projects successful and place them in the context of next-generation sequencing. By taking into account the intricacies of whitefly biology and the community, we present a roadmap for whitefly-omics, which focuses on the formation of an international consortium, deployment of informatic platforms and realistic generation of reference sequence data.
Keywords:  whole genome sequencing      next generation sequencing      transcriptome      genome consortium      white paper  
Received: 21 April 2011   Accepted:
Fund: 

This work was supported by the CSIRO Office of the Chief Executive (OCE), Australia.

Corresponding Authors:  Correspondence Owain Rhys Edwards, Tel: +61-8-93336401, Fax: +61-8-93336646, E-mail: Owain.Edwards@csiro.au     E-mail:  Owain.Edwards@csiro.au

Cite this article: 

Owain Rhys Edwards , Alexie Papanicolaou. 2012. A Roadmap for Whitefly Genomics Research: Lessons from Previous Insect Genome Projects. Journal of Integrative Agriculture, 11(2): 269-280.

[1]Adams M D, Celniker S E, Holt R A, Evans C A, Gocayne J D, Amanatides P G, Scherer S E, Li P W, Hoskins R A, Galle R F, et al. 2000. The genome sequence of Drosophila melanogaster. Science, 287, 2185-2195.

[2]Arensburger P, Megy K, Waterhouse R M, Abrudan J, Amedeo P, Antelo B, Bartholomay L, Bidwell S, Caler E, Camara F, et al. 2010. Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics. Science, 330, 86-88.

[3]Ashburner M A, Drysdale R. 1994. FlyBase-The Drosophila genetic database. Development, 120, 2077-2079.

[4]Balding D J. 2006. A tutorial on statistical methods for population association studies. Nature Review Genetics, 7, 781-791.

[5]Bi J L, Toscano N C. 2007. Current status of the greenhouse whitefly, Trialeurodes vaporariorum, susceptibility to neonicotinoid and conventional insecticides on strawberries in Southern California. Pest Management Science, 63, 747-752.

[6]Bonasio R, Zhang G, Ye C, Mutti N S, Fang X, Qin N, Donahue G, Yang P, Li Q, Li C, et al. 2010. Genomic comparison of the ants Camponotus floridanus and Harpegnathos saltator. Science, 329, 1068-1071.

[7]Bos J I, Prince D, Pitino M, Maffei M E, Win J, Hogenhout S A. 2010. A functional genomics approach identifies candidate effectors from the aphid species Myzus persicae (green peach aphid). PLoS Genetics, 18, e1001216.

[8]Carolan J C, Caragea D, Reardon K T, Mutti N S, Dittmer N, Pappan K, Cui F, Castaneto M, Poulain J, Dossat C, et al. 2011. Predictor effector molecules in the salivary secretome of the pea aphid (Acyrthosiphon pisum): A dual transcriptomic/proteomic approach. Journal of Proteome Research, 10, 1505-1518.

[9]Chen S, Yang P, Jiang F, Wei Y, Ma Z, Kang L. 2010. De novo analysis of transcriptome dynamics in the migratory locust during the development of phase traits. PLoS ONE, 5, e15633. Czosnek H, Brown J K. 2010. The whitefly genome - White paper: A proposal to sequence multiple genomes of Bemisia tabaci. In: Stansly P A, Naranjo S E, eds., Bemisia, Bio-Nomics and Management of a Global Pest. Springer Science, Dordrecht, The Netherlands. pp. 503-532.

[10]De Barro P J, Liu S S, Boykin L M, Dinsdale A B. 2011. Bemisia tabaci: A statement of species status. Annual Review of Entomology, 56, 1-19.

[11]Dowell R D, Jokerst R M, Day A, Eddy S R, Stein L. 2001. The distributed annotation system. BMC Bioinformatics, 2, 7. Drosophila 12 Genomes Consortium. 2007. Evolution of genes and genomes on the Drosophila phylogeny. Nature, 450, 203-218.

[12]Gao L L, Anderson J P, Klingler J, Edwards O R, Singh K B. 2007. Involvement of the octadecanoid pathway in bluegreen aphid resistance in Medicago truncatula. Molecular Plant Microbe Interactions, 20, 82-93.

[13]Gao L L, Kamphuis L G, Kakar K, Edwards O R, Udvardi M, Singh K B. 2010. Identification of potential early regulators of aphid resistance in Medicago truncatula via transcription factor expression profiling. New Phytologist, 186, 980-994.

[14]Ghanim M, Kontsedalov S. 2007. Gene expression in pyriproxyfen-resistant Bemisia tabaci Q biotype. Pest Management Science, 63, 776-783.

[15]Giordanengo P, Brunissen L, Rusterucci C, Vincent C, van Bel A, Dinant S, Girousse, Faucher M, Bonnemain J L. 2010. Compatible plant-aphid interactions: How aphids manipulate plant responses. Comptes Rendus Biologies, 333, 516-523.

[16]Grabherr M G, Haas B J, Yassour M, Levin J Z, Thompson D A, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, et al. 2011. Full length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29, 644-652.

[17]Holt R A, Subramanian G M, Halpern A, Sutton G G, Charlab R, Nusskern D R, Wincker P, Clark A G, Ribeiro J M C, Wides R, et al. 2002. The genome sequence of the malaria mosquito Anopheles gambiae. Science, 298, 129-149.

[18]Karatolos N, Pauchet Y, Wilkinson P, Chauhan R, Denholm I, Gorman K, Nelson D R, Bass C, Ffrench-Constant R H, Williamson M S. 2011. Pyrosequencing the transcriptome of the greenhouse whitefly, Trialeurodes vaporariorum reveals multiple transcripts encoding insecticide targets and detoxifying enzymes. BMC Genomics, 12, 56.

[19]Kempema L A, Cui X, Holzer F M, Walling L L. 2007. Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in responses to aphids. Plant Physiology, 143, 849-865.

[20]Kirkness E F, Haas B J, Sun W, Braig H R, Perotti M A, Clark J M, Lee S H, Robertson H M, Kennedy R C, Elhaik E, et al. 2010. Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle. PNAS, 107, 12168-12173.

[21]Leshkowitz D, Gazit S, Reuveni E, Ghanim M, Czosnek H, McKenzie C, Shatters Jr R L, Brown J K. 2006. Whitefly (Bemisia tabaci) genome project: analysis of sequenced clones from egg, instar, and adult (viruliferous and nonviruliferous) cDNA libraries. BMC Genomics, 7, 79. Liu S S, Colvin J, De Barro P J. 2012. Species concepts as applied to the whitefly Bemisia tabaci systematics: how many species are there? Journal of Integrative Agriculture, 11, 176-186.

[22]Luan J B, Li J M, Varela N, Wang Y L, Li F F, Bao Y Y , Zhang C X, Liu S S, Wang X W. 2011. Global analysis of the transcriptional response of whitefly to Tomato Yellow Leaf Curl China Virus reveals the relationship of coevolved adaptations. Journal of Virology, 85, 3330- 3340.

[23]Mahadav A, Gerling D, Gottlieb Y, Czosnek H, Ghanim M. 2008. Parasitization by the wasp Eretmocerus mundus induces transcription of genes related to immune response and symbiotic bacteria proliferation in the whitefly Bemisia tabaci. BMC Genomics, 9, 342. Mita K, Kasahara M, Sasaki S, Nagayasu Y, Yamada T, Kanamori H, Namiki N, Kitagawa M, Yamashita H, Yasukochi Y, et al. 2004. The genome sequence of silkworm, Bombyx mori. DNA Research, 11, 27-35.

[24]Nauen R, Denholm I. 2005. Resistance of insect pests to neonicotinoid insecticides: current status and future prospects. Archives of Insect Biochemistry and Physiology, 58, 200-215.

[25]Nene V, Wortman J R, Lawson D, Haas B, Kodira C, Tu Z, Loftus B, Xi Z, Megy K, Grabherr M, et al. 2007. Genome sequence of Aedes aegyptii, a major arbovirus vector. Science, 316, 1718-1723.

[26]Panagiotou O A, Evangelou E, Ioannidis J P A. 2010. Genome-wide significant associations for variants with minor allele frequency of 5% or less - an overview: A HuGE review. American Journal of Epidemiology, 172, 869-889.

[27]Smith C D, Zimin A, Holt C, Abouheif E, Benton R, Cash E, Croset V, Currie C R, Elhaik E, Elsik C G, et al. 2011. Draft genome of the globally widespread and invasive argentine ant (Linepithema humile). Proceedings of the National Academy of Sciences of the USA, 108, 5673- 5678.

[28]Smith C R, Smith C D, Robertson H M, Helmkampf M, Zimin A, Yandell M, Holt C, Hu H, Abouheif E, Benton R, eds. 2011. Draft genome of the red harvester ant Pogonomyrmex barbatus. Proceedings of the National Academy of Sciences of the USA, 108, 5667-5672.

[29]The Honeybee Genome Sequencing Consortium. 2006. Insights into social insects from the genome of the honeybee Apis mellifera. Nature, 443, 931-949.

[30]The International Aphid Genomics Consortium. 2010. Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biology, 8, 1-24.

[31]The International Silkworm Genome Consortium. 2008. The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochemistry and Molecular Biology, 38, 1036-1045.

[32]Thompson G A, Goggin F L. 2006. Transcriptomics and functional genomics of plant defence induction by phloem-feeding insects. Journal of Experimental Botany, 57, 755-756.

[33]Tribolium Genome Sequencing Consortium. 2008. The genome of the model beetle and pest Tribolium castaneum. Nature, 452, 949-955.

[34]de Vos M, Jander G. 2009. Myzus persicae (green peach aphid) salivary components induce defence responses in Arabidopsis thaliana. Plant Cell Environment, 32, 1548-1560.

[35]Walling L L. 2008. Avoiding effective defenses: Strategies employed by phloem-feeding insects. Plant Physiology, 146, 859-866.

[36]Wang X W, Luan J B, Li J M, Bao Y Y, Zhang C X, Liu S S. 2010. De novo characterization of a whitefly transcriptome and analysis of its gene expression during development. BMC Genomics, 11, 400.

[37]Werren J H, Richard S, Desjardins C A, Niehuis O, Gadau J, Colbourne J K, The Nasonia Genome Working Group. 2008. Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science, 327, 343-349.

[38]Wetterstrand K A. 2011. DNA Sequencing Costs: Data from the NHGRI Large-Scale Genome Sequencing Program. [2011-4-11].

[39]http://www.genome.gov/sequencingcosts Will T, Tjallingii W F, Thonnessen A, van Bel A J E. 2007. Molecular sabotage of plant defense by aphid saliva. Proceedings of the National Academy of Sciences of the USA, 104, 10536-10541.

[40]Wurm Y, Wang J, Riba-Grognuz O, Corona M, Nygaard S, Hunt B G, Ingram K K, Falquet L, Nipitwattanaphon M, Gotzek D, et al. 2011. The genome of the fire ant Solenopsis invicta. Proceedings of the National Academy of Sciences of the USA, 108, 5679-5684.

[41]Xia Q, Zhou Z, Lu C, Cheng D, Dai F, Li B, Zhao P, Zha X, Cheng T, Chai C, et al. 2004. A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science, 306, 1937-1940.
[1] SHAN Yan-ju, JI Gai-ge, ZHANG Ming, LIU Yi-fan, TU Yun-jie, JU Xiao-jun, SHU Jing-ting, ZOU Jian-min. Use of transcriptome sequencing to explore the effect of CSRP3 on chicken myoblasts[J]. >Journal of Integrative Agriculture, 2023, 22(4): 1159-1171.
[2] LONG Ke-ren, LI Xiao-kai, ZHANG Ruo-wei, GU Yi-ren, DU Min-jie, XING Xiang-yang, DU Jia-xiang, MAI Miao-miao, WANG Jing, JIN Long, TANG Qian-zi, HU Si-lu, MA Ji-deng, WANG Xun, PAN Deng-ke, LI Ming-zhou. Transcriptomic analysis elucidates the enhanced skeletal muscle mass, reduced fat accumulation, and metabolically benign liver in human follistatin-344 transgenic pigs[J]. >Journal of Integrative Agriculture, 2022, 21(9): 2675-2690.
[3] LÜ Jing, Satyabrata NANDA, CHEN Shi-min, MEI Yang, HE Kang, QIU Bao-li, ZHANG You-jun, LI Fei, PAN Hui-peng.

A survey on the off-target effects of insecticidal double-stranded RNA targeting the Hvβ´COPI gene in the crop pest Henosepilachna vigintioctopunctata through RNA-seq [J]. >Journal of Integrative Agriculture, 2022, 21(9): 2665-2674.

[4] WANG Bo, HUANG Tian-yu, YAO Yuan, Frederic FRANCIS, YAN Chun-cai, WANG Gui-rong, WANG Bing. A conserved odorant receptor identified from antennal transcriptome of Megoura crassicauda that specifically responds to cis-jasmone[J]. >Journal of Integrative Agriculture, 2022, 21(7): 2042-2054.
[5] FAN Xiao-xue, BIAN Zhong-hua, SONG Bo, XU Hai. Transcriptome analysis reveals the differential regulatory effects of red and blue light on nitrate metabolism in pakchoi (Brassica campestris L.)[J]. >Journal of Integrative Agriculture, 2022, 21(4): 1015-1027.
[6] ZHOU Cheng-zhe, ZHU Chen, LI Xiao-zhen, CHEN Lan, XIE Si-yi, CHEN Guang-wu, ZHANG Huan, LAI Zhong-xiong, LIN Yu-ling, GUO Yu-qiong. Transcriptome and phytochemical analyses reveal roles of characteristic metabolites in the taste formation of white tea during withering process[J]. >Journal of Integrative Agriculture, 2022, 21(3): 862-877.
[7] ZHU Ying-chun, YUAN Gao-peng, JIA Sheng-feng, AN Guo-lin, LI Wei-hua, SUN De-xi, LIU Jun-pu. Transcriptomic profiling of watermelon (Citrullus lanatus) provides insights into male flowers development[J]. >Journal of Integrative Agriculture, 2022, 21(2): 407-421.
[8] WU Zhe, YANG Xuan, ZHAO Yu-xuan, JIA Li. Identifying candidate genes involved in trichome formation on carrot stems by transcriptome profiling and resequencing [J]. >Journal of Integrative Agriculture, 2022, 21(12): 3589-3599.
[9] CHU Shuang-feng, ZHAO Tian-qi, Abdelaziz Adam Idriss ARBAB, YANG Yi, CHEN Zhi, YANG Zhang-ping. MiR-140 downregulates fatty acid synthesis by targeting transforming growth factor alpha (TGFA) in bovine mammary epithelial cells[J]. >Journal of Integrative Agriculture, 2022, 21(10): 3004-3016.
[10] MA Wen-tao, LU Min, AN Hua-ming, YI Yin. Comparative transcriptomic analysis of Rosa sterilis inflorescence branches with different trichome types reveals an R3-MYB transcription factor that negatively regulates trichome formation[J]. >Journal of Integrative Agriculture, 2022, 21(10): 2926-2942.
[11] MA Wei-hua, WU Tong, ZHANG Zan, LI Hang, SITU Gong-ming, YIN Chuan-lin, YE Xin-hai, CHEN Meng-yao, ZHAO Xian-xin, HE Kang, LI Fei . Using transcriptome Shannon entropy to evaluate the off-target effects and safety of insecticidal siRNAs[J]. >Journal of Integrative Agriculture, 2022, 21(1): 170-177.
[12] SHI Hai-yan, CAO Li-wen, XU Yue, YANG Xiong, LIU Shui-lin, LIANG Zhong-shuo, LI Guo-ce, YANG Yu-peng, ZHANG Yu-xing, CHEN Liang. Transcriptional profiles underlying the effects of salicylic acid on fruit ripening and senescence in pear (Pyrus pyrifolia Nakai)[J]. >Journal of Integrative Agriculture, 2021, 20(9): 2424-2437.
[13] WANG Chao-nan, LUAN Fei-shi, LIU Hong-yu, Angela R. DAVIS, ZHANG Qi-an, DAI Zu-yun, LIU Shi. Mapping and predicting a candidate gene for flesh color in watermelon[J]. >Journal of Integrative Agriculture, 2021, 20(8): 2100-2111.
[14] WU Tong, FENG Shu-yan, YANG Qi-hang, Preetida J BHETARIYA, GONG Ke, CUI Chun-lin, SONG Jie, PING Xiao-rui, PEI Qiao-ying, YU Tong, SONG Xiao-ming. Integration of the metabolome and transcriptome reveals the metabolites and genes related to nutritional and medicinal value in Coriandrum sativum[J]. >Journal of Integrative Agriculture, 2021, 20(7): 1807-1818.
[15] ZHAO Juan, LIU Ting, LIU Wei-cheng, ZHANG Dian-peng, DONG Dan, WU Hui-ling, ZHANG Tao-tao, LIU De-wen. Transcriptomic insights into growth promotion effect of Trichoderma afroharzianum TM2-4 microbial agent on tomato plants[J]. >Journal of Integrative Agriculture, 2021, 20(5): 1266-1276.
No Suggested Reading articles found!