盐胁迫下选择性剪接可调控丝氨酸/精氨酸丰富(SR)蛋白的表达和异构体的形成。前期研究鉴定了木薯SR蛋白家族中的两个亚家族SCL和 SR,这两个亚家族参与调控植物非生物胁迫的响应,然而SR蛋白家族中的其他亚家族是否也在转录后水平上调控植物盐胁迫应答有待探究。本研究通过11个物种RS亚家族的同源性比对找到37个基因,并系统性的分析了RS40 和 RS31基因在非生物胁迫条件下的表达情况。进一步蛋白结构域分析表明植物RS亚家族在非生物胁迫响应中其作用可能是保守的。在拟南芥中过表达MeRS40基因可通过维持活性氧的动态平衡和调控盐胁迫响应基因的表达进而提高植物的耐盐性。然而,在木薯中过表达MeRS40基因则通过负调节自身的pre-mRNA来抑制其内源性基因表达,从而降低转基因木薯的耐盐性。此外,MeRS40蛋白与木薯MeU1-70Ks(MeU1-70Ka 和 MeU1-70Kb)蛋白在体内和体外互作。因此,我们的研究为木薯SR蛋白参与调控盐胁迫应答提供了新的理论基础和探索方向。
microRNAs(miRNAs)是广泛存在于哺乳动物中的一种微小、非编码RNA,可以通过靶向吸附调节下游基因的表达,参与多种生物学过程。虽然关于 miRNAs 调控哺乳动物毛色的研究取得了一定的成果,但其调控网络尚不完善,仍需要不断深入研究。前期测序发现,miR-370-5p在白色绵羊皮肤中的表达水平显著高于黑色绵羊,推测其可能参与绵羊皮肤黑色素生成。本研究以绵羊黑色素细胞为研究对象,探究miR-370-5p在绵羊黑色素细胞中的作用。表型检测发现,高表达的miR-370-5p可以显著抑制(P=0.001)酪氨酸酶活性,从而显著降低(P<0.001)黑色素的产生;CCK 8实验检测发现,黑色素细胞转染miR-370-5p后的第4天至第5天,细胞的增殖速率显著降低(P<0.01)。靶基因预测发现,丝裂原活化蛋白激酶8(Mitogen-activated protein kinases, MAP3K8)的3'非翻译区(Untranslated Region, UTR)存在miR-370-5p的靶向结合位点,推测两者可能存在靶向调控关系。双荧光素酶报告载体实验结果显示,miR-370-5p可以靶向吸附MAP3K8-3’UTR。原位杂交实验显示,MAP3K8广泛表达于黑素细胞的细胞质。定量RT-PCR和Western blot结果显示,miR-370-5p显著抑制(P<0.01)MAP3K8的表达。以上结果表明,miR-370-5p可以靶向结合MAP3K8-3’UTR,抑制其表达。siRNA干扰结果显示,黑素细胞中干扰MAP3K8的表达可以显著抑制(P<0.01)细胞增殖,降低(P<0.001)黑色素生成,影响趋势与过表达miR-370-5p一致。靶基因拯救实验结果显示,黑色素细胞中共转染miR-370-5p和MAP3K8-cDNA(含有miR-370-5p靶向结合位点)载体,可以显著上调(P≤0.001)MAP3K8的表达,显著促进细胞增殖(P<0.001)和黑色素产生(P<0.01)。以上结果表明, miR-370-5p通过靶向抑制MAP3K8表达,抑制绵羊黑色素细胞增殖、降低黑色素产量。本研究通过miRNA过表达探明了miR-370-5p对黑色素细胞增殖、酪氨酸酶活性及黑色素产量的影响;通过靶基因干扰、拯救实验解析了miR-370-5p抑制黑色素细胞增殖、酪氨酸酶活性及黑色素生成的分子机制,有助于丰富miRNAs参与毛色形成的调控机制,为后续毛用动物毛色改良提供参考。
建立一种同时鉴别诊断猪瘟病毒(classical swine fever virus, CSFV)、非洲猪瘟病毒(African swine fever virus, ASF)和猪非典型瘟病毒(atypical porcine pestivirus, APPV)的快速、灵敏、有效的检测方法。依据GenBank中登录的CSFV (5¢ UTR)、ASFV (B646L) 和 APPV (5¢ UTR) 的高度保守基因序列分别设计和优化了多对特异性引物和Taq-man探针,以保守区基因序列分别制备三种阳性质粒,用矩阵法优化单重/多重荧光PCR的反应体系和条件,为避免荧光通道的交叉干扰多重荧光PCR扩增,结合所标记的荧光报告基团做颜色补偿试验,构建标准曲线的扩增图和对应的线性方程,并进行特异性、敏感性、重复性、符合性以及临床样本的检测等试验。三种病毒的标准曲线相关系数均达到0.995以上,具有良好的线性关系;与其它常见猪病无交叉扩增反应,具有很好的特异性;多重荧光PCR的最低检测量均为1 copy/mL,具有较高的敏感性;组内和组间的变异系数均小于1%,具有很好的重复性。该方法与CSF的国标(GB/T 27540-2011), ASF的国标 (GB/T 18648-2020),APPV的发明专利 (CN108611442A)检测样本盘的22个毒株样本符合率为100%。本研究建立的多重荧光PCR检测方法具有快速、高效、通量高、特异性好、灵敏度高等特点,可以对CSFV、ASFV和APPV病毒进行鉴别检测,为动物疫病的流行病学调查、疫情的检测提供一种新型的检测手段。本研究结合荧光PCR仪不同荧光通道设计CSFV、ASFV和APPV探针荧光信号强度较高且干扰较小的FAM、CY5和HEX报告基团,建立多重荧光PCR检测方法,用于同时鉴别诊断3种主要猪病毒的检测方法,在临床诊断中具有重要的应用价值。
之前研究表明活性氧(reactive oxygen species,ROS)在棉铃虫滞育蛹脑中通过调节独特的胰岛素信号通路转导机制来促进滞育。然而,滞育蛹脑中ROS的来源及调控滞育的机制尚不清楚。本研究的结果显示,滞育蛹脑中积累了高水平的线粒体ROS和总ROS,说明线粒体是滞育蛹脑中ROS的主要来源。另外,注射葡萄糖代谢抑制剂2-脱氧-D-葡萄糖可通过提高非滞育蛹脑中线粒体ROS的水平进而延迟蛹的发育。注射代谢物混合物到滞育蛹中可以降低线粒体ROS的水平进而逆转滞育的进程。进一步的研究显示,线粒体ROS可以激活HSP60的表达和活性,进而促进HSP60/Lon复合物的稳定性,从而降解线粒体转录因子A和降低线粒体活性或生成。因此,本研究阐明了ROS通过降低线粒体活性而促进滞育或寿命延长的有益作用。
本研究通过设置不同浓度的脱氢乙酸钠(SD)(0即对照、0.01、0.1和1.0 mmol L-1),研究SD延长‘巨峰’葡萄货架期的效果。结果表明0.01 mmol L-1的SD对于延长‘巨峰’葡萄的货架期效果最好。与对照相比,0.01 mmol L-1 SD处理的‘巨峰’葡萄果实失重率、褐变指数、过氧化氢(H2O2)和丙二醛含量(MDA)显著降低,且好果率、果实硬度、总可溶性固形物含量、抗坏血酸含量和超氧化物歧化酶(SOD)活性均显著升高。此外,甲基化敏感扩增多态性(MSAP)检测结果表明,0.01 mmol L-1 SD处理后,‘巨峰’葡萄的DNA甲基化水平显著高于对照。综上,0.01 mmol L-1 SD可用于延长‘巨峰’葡萄的货架期。本研究结果还揭示了葡萄贮藏过程中活性氧(ROS)代谢与DNA甲基化水平变化之间的密切联系。
小麦的高产主要通过增施氮肥和增加灌水实现,但过量的氮肥和灌水投入增加了倒伏的风险。本研究的主要目的是明确高产小麦抗倒伏能力对氮肥和灌水的响应以及探索提高小麦抗倒伏性的有效途径。试验于2015-2016和2016-2017生长季在山东农业大学农学实验站进行,供试品种为济麦22,设置3个施氮量和4个灌水处理,主要研究结果如下:随施氮量增加,倒伏指数和倒伏率增加,倒伏风险上升。增加氮肥用量,与倒伏指数呈正相关的株高、基部节间长度和重心高度显著增加,与倒伏指数呈负相关的基部第二节间(茎秆和叶鞘)充实度及其细胞壁组分含量显著降低。适度增加灌水可增加基部第二节间壁厚、茎秆抗折力和叶鞘的充实度,增加了茎秆强度。在本实验条件下,施氮量240 kg hm-2 并配合在拔节期和开花期各灌水600 m3 hm-2在获得最高产量的同时茎秆强度最大。结果表明,适宜的株高保证高产所需的足够的生物量,较厚的壁厚、较高的茎秆和叶鞘充实度以及细胞壁组分含量保证了较大的茎秆强度,以上特征可作为创建小麦高产抗倒群体的参考指标。
本研究的目的是利用我们在先前研究中构建的F1杂交群体的高密度遗传连锁图谱定位与春季再生相关的数量性状位点(quantitative trait loci, QTL)。该群体包含392个子代,且亲本在春季再生性状上表现出明显的差异。在两个地点连续统计了两年的表型数据,并利用IciMapping软件进行QTL定位分析。利用单个环境中表型的平均值和最佳线性无偏预测(Best Linear Unbiased Prediction,BLUP)作为QTL定位的表型,总共鉴定到36个与春季再生性状显著关联的加性QTL。其中,有十个QTL分别解释了超过10%的表型变异(phenotypic variation, PVE),在P1亲本(父本)中有四个,P2亲本(母本)中有六个。在这些加性QTL中共有六个重叠的QTL区间,在P1和P2中分别有两个和四个。在P1中,两个重叠的区间都位于连锁群7D上。在P2中,PVE >10%的四个QTL在连锁群6D上定位到相同区间。此外,在P2中鉴定出六对显著的上位性QTL,而在P1中没有定位到上位性QTL。在四个重叠的QTL(qCP2019-8,qLF2019-5,qLF2020-4和qBLUP-3)所处区间内筛选到一个候选基因,该基因被注释为MAIL1,拟南芥中的同源基因在植株的生长中起重要作用。本研究定位到的QTLs是利用标记辅助选择对紫花苜蓿春季再生性状进行遗传改良的宝贵资源,鉴定的相关基因为深入了解紫花苜蓿春季再生的遗传特性提供依据。