Scientia Agricultura Sinica ›› 2009, Vol. 42 ›› Issue (2): 454-459 .doi: 10.3864/j.issn.0578-1752.2009.02.009

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Evaluation of Lignan Contents of Newly Bred Flax Varieties (Lines) in China

  

  1. 甘肃农业大学生命科学技术学院
  • Received:2008-03-23 Revised:2008-06-23 Online:2009-02-10 Published:2009-02-10
  • Contact: DANG Zhan-hai

Abstract:

【Objective】 This study is to determine the relative contributions of genotypes and the interactions between genotype and location on variation of lignan contents in flaxseeds. 【Method】 Using HPLC, lignan contents of eleven flax varieties planted at four representative locations in 2005 and 2006 were determined. 【Result】 The results showed that lignan contents ranged from 6.487 to13.127 mg?g-1 of 11 varieties planted in 88 locations. The highest content was found in line 97047, and the lowest in line Yi 04. In the four locations tested, Bashang in Hebei Province gave the highest total lignan contents, and the lowest contents were from those grown in Yili of Xinjiang. Genotype, location and interactions between genotype and location have significant influence on variation in lignan contents in all varieties. The stability of lignan content in different varieties also differed significantly. Lines 97047 and Yi 04 showed high stability. 【Conclusion】 Genotype is the most important factor that affects the lignan content in flaxseed, therefore it would allow for an improvement of lignan contents by breeding. Different varieties have different feasible planting areas. Line 97047 contains the highest lignan content among all varieties tested. It is also adapted to a wide range of flax planting areas.

Key words: flax (Linum usitatissimum L.), lignan content, genotype, location, stability

[1] WANG WenJuan,SU Jing,CHEN Shen,YANG JianYuan,CHEN KaiLing,FENG AiQing,WANG CongYing,FENG JinQi,CHEN Bing,ZHU XiaoYuan. Pathogenicity and Avirulence Genes Variation of Magnaporthe oryzae from a Rice Variety Meixiangzhan 2 in Guangdong Province [J]. Scientia Agricultura Sinica, 2022, 55(7): 1346-1358.
[2] ZHOU Jun,LIN Qing,SHAO BaoQuan,REN DuanYang,LI JiaQi,ZHANG Zhe,ZHANG Hao. Evaluating the Application Effect of Single-Step Genomic Selection in Pig Populations [J]. Scientia Agricultura Sinica, 2022, 55(15): 3042-3049.
[3] FENG Xiao,ZHANG Fan,CHEN Ying,CHENG JiaXin,CEN KaiYue,TANG XiaoZhi. Effects of Adding Quinoa Protein Pickering Emulsion on Freeze- Thaw Stability of Fish Surimi Gel [J]. Scientia Agricultura Sinica, 2022, 55(10): 2038-2046.
[4] ZHANG MingJing,HAN Xiao,HU Xue,ZANG Qian,XU Ke,JIANG Min,ZHUANG HengYang,HUANG LiFen. Effects of Elevated Temperature on Rice Yield and Assimilate Translocation Under Different Planting Patterns [J]. Scientia Agricultura Sinica, 2021, 54(7): 1537-1552.
[5] Qian CAI,ZhanXiang SUN,JiaMing ZHENG,WenBin WANG,Wei BAI,LiangShan FENG,Ning YANG,WuYan XIANG,Zhe ZHANG,Chen FENG. Dry Matter Accumulation, Allocation, Yield and Productivity of Maize- Soybean Intercropping Systems in the Semi-Arid Region of Western Liaoning Province [J]. Scientia Agricultura Sinica, 2021, 54(5): 909-920.
[6] NIU HongZhuang,LIU Yang,LI XiaoPing,HAN YuXuan,WANG KeKe,YANG Yan,YANG QianHui,MIN DongHong. Effects of Physicochemical Properties of Wheat (Triticum aestivum L.) Starch with Different HMW-GSs Combinations on Dough Stability [J]. Scientia Agricultura Sinica, 2021, 54(23): 4943-4953.
[7] TAO YouFeng,PU ShiLin,ZHOU Wei,DENG Fei,ZHONG XiaoYuan,QIN Qin,REN WanJun. Canopy Population Quality Characteristics of Mechanical Transplanting Hybrid Indica Rice with “Reducing Hills and Stabilizing Basic-Seedlings” in Low-Light Region of Southwest China [J]. Scientia Agricultura Sinica, 2021, 54(23): 4969-4983.
[8] LI ZhaoRui,HAN XinRui,FAN Xin,HUANG JunRong,CAO YunGang,XIONG YouLing. Regulation Effects of Ultrasound on the Structure and Emulsification Properties of Pea Protein Isolate [J]. Scientia Agricultura Sinica, 2021, 54(22): 4894-4905.
[9] DONG JianXin,SONG WenJing,CONG Ping,LI YuYi,PANG HuanCheng,ZHENG XueBo,WANG Yi,WANG Jing,KUANG Shuai,XU YanLi. Improving Farmland Soil Physical Properties by Rotary Tillage Combined with High Amount of Granulated Straw [J]. Scientia Agricultura Sinica, 2021, 54(13): 2789-2803.
[10] CHEN LiMing,ZHOU YanZhi,TAN YiQing,WU ZiMing,TAN XueMing,ZENG YongJun,SHI QingHua,PAN XiaoHua,ZENG YanHua. High and Stable Yield of Early Indica Rice Varieties with Double-Season Mechanical Direct Seeding [J]. Scientia Agricultura Sinica, 2020, 53(2): 261-272.
[11] TONG Jin,SUN Min,REN AiXia,LIN Wen,YU ShaoBo,WANG Qiang,FENG Yu,REN Jie,GAO ZhiQiang. Relationship Between Plant Dry Matter Accumulation, Translocation, Soil Water Consumption and Yield of High-Yielding Wheat Cultivars [J]. Scientia Agricultura Sinica, 2020, 53(17): 3467-3478.
[12] LI XiaoFei,LI PeiYuan,LI AnQi,YU WenYan,GUO Chuo,YANG Xi,GUO YuRong. Effects of Xanthan Addition on the Gel Properties and Gel Mechanism of Alkaline-Induced Konjac Glucomannan Gels [J]. Scientia Agricultura Sinica, 2020, 53(14): 2941-2955.
[13] XinYuan MU,Xia ZHAO,LiMin GU,BaoYi JI,Yong DING,FengQi ZHANG,Jun ZHANG,JianShuang QI,ZhiYan MA,LaiKun XIA,BaoJun TANG. Effects of Straw Returning Amount on Grain Yield, Dry Matter Accumulation and Transfer in Summer Maize with Different Genotypes [J]. Scientia Agricultura Sinica, 2020, 53(1): 29-41.
[14] SUN Hong,JIANG YiWen,YU Xin,XIANG GuangQing,YAO YuXin. Effects of Local Root Zone Salinity on Grapevine Injury, Na + Accumulation and Allocation of Carbon and Nitrogen [J]. Scientia Agricultura Sinica, 2019, 52(7): 1173-1182.
[15] LI YongHu,CAO MengLin,DU HuiLing,GUO PingYi,ZHANG HaiYing,GUO MeiJun,YUAN XiangYang. Effect of Fertilization Location and Amount on Dry Matter Accumulation, Translocation and Yield of Hybrid Millet [J]. Scientia Agricultura Sinica, 2019, 52(22): 4177-4190.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!