Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (24): 5143-5155.doi: 10.3864/j.issn.0578-1752.2025.24.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Selection of Maize Planting Density and Dense-Planting Tolerant and Lodging-Resistant Varieties in the Southern Foothills of the Greater Khingan Mountains under Multi-Factor Management

TIAN Lei1(), SHAO Xin2, ZHOU YiMin1, MIAO XiuZhen1, JI Nan3, WANG Hao4, SHI MingShuai2, ZHANG YueZhong1,*()   

  1. 1 Jalaid Banner Agriculture, Animal Husbandry and Science and Technology Development Center, Jalaid Banner 137600, Inner Mongolia
    2 College of Agronomy, Inner Mongolia Agricultural University, Hohhot 010019
    3 Tongliao Agriculture and Animal Husbandry Development Center, Tongliao 028400, Inner Mongolia
    4 Korqin Right Wing Front Banner Agriculture Science and Technology Development Center, Korqin Right Wing Front Banner 137400, Inner Mongolia
  • Received:2025-04-10 Accepted:2025-10-21 Online:2025-12-22 Published:2025-12-22
  • Contact: ZHANG YueZhong

Abstract:

【Objective】This study aimed to explore the suitable planting density of maize in the southern foothills of the Greater Khingan Mountains under multi-factor management and tap its yield potential, for providing a theoretical basis to reasonably select varieties under high-density planting conditions.【Method】Relying on the variety screening and density gradient experiments carried out in the Agricultural Science and Technology Demonstration Park of Zhalaite Banner from 2022 to 2024, a total of 4 planting densities, namely 7.2×104, 8.3×104, 9.2×104 and 10.4×104 plants/hm2, were selected and divided into 3 density gradients: low density (7.2×104 plants/hm2), medium density (8.3×104 and 9.2×104 plants/hm2), and high density (10.4×104 plants/hm2). A total of 138 maize varieties and 252 samples were used. Data analysis was conducted on the plants height, ear position, lodging index, ear formation rate, yield, and yield-contributing factors of each sample.【Result】There was an extremely significant correlation between yield-contributing factors and planting density (P<0.01). There was a linear regression relationship between the number of harvested ears and the planting density, and its regression equation was y=0.765x+0.8577, with R2 being 0.4986. Therefore, it could be predicted that between 7.2×104 and 10.4×104 plants/hm2, for every 2×104 plants/hm2 increase in planting density, the number of harvested ears increases by 2.39×104 ears/hm2. There was an extremely significant correlation between yield and planting density (P<0.01). The yield showed an increasing trend with the increase in planting density. Compared with the average yield at low density, the yields of maize at high and medium densities increased significantly by 16.85% and 8.68%, respectively (P<0.05). There was a significant negative correlation between the ear formation rate and the planting density (P<0.05). The ear formation rate ranged from 85.53% to 90.46%, with an average of 87.08%. The yield increase slowed down after the number of harvested ears reached 8.62×104 ears/hm2. Based on calculation of the average ear formation rate of 86.01% at high planting density, the maximum planting density in the southern foothills of the Greater Khingan Mountains should not exceed 10.02×104 plants/hm2. There was an extremely significant negative correlation between planting density and plants height (P<0.01), and there was no correlation between planting density and ear position height or the ear position height coefficient. When the plants height was ≥314 cm, maize began to lodge. Within the range of 314-404 cm, for every 15 cm increase in plants height, the lodging degree increased by 3.88%. At low planting density, there was a significant positive correlation between the number of grains per ear, 100-grain weight, and yield (P<0.05). At medium density, there was an extremely significant positive correlation between the number of harvested ears, 100-grain weight, and yield (P<0.01). At high density, there was no significant correlation between yield and each factor. The impact of planting density on yield was greater than that of lodging degree. The lodging of maize caused by changes in planting density mainly affected the yield by influencing the number of harvested ears per mu, while the lodging of maize caused by the increase in plants height mainly affected the yield by influencing the number of grains per ear.【Conclusion】In the southern foothills of the Greater Khingan Mountains, when the planting density was low, varieties with a high number of grains per ear and high 100-grain weight should be selected to ensure maize yield. When the density was increased to 8.3×104-9.2×104 plants/hm2, the ear formation rate should be improved as much as possible to ensure the number of harvested ears. When the planting density was further increased, on the basis of selecting density-tolerant varieties and ensuring the number of harvested ears, precise management should be carried out to ensure the balanced development of each yield-contributing factor, so as to obtain an ideal yield. However, the maximum planting density should not exceed 10.02×104 plants/hm2. Meanwhile, when the plants height of the planting variety was ≥314 cm, measures should be taken to prevent lodging.

Key words: Greater Khingan Mountains, spring maize, multi-factor management, planting density, lodging, yield

Fig.1

Precipitation and daily average temperature in the experimental site in 2022—2024"

Table 1

Test arrangement in 2022 and 2024"

年份 Year 品种数量 Number of varieties 种植密度 Planting density (×104 plants/hm2) 样本数量 Number of samples
2022 30 7.2 30
2023 32 9.2 32
2024 96 8.3、9.2、10.4 190

Fig. 2

Effect of planting density on yield components Different lowercase letters indicate significant differences among planting densities (P<0.05); * indicates significant correlation (P<0.05), and ** indicates highly significant correlation (P<0.01)。The same as below"

Fig. 3

Effect of planting density on maize yield"

Fig. 4

Effect of planting density on maize ear formation rate of maize"

Fig. 5

Analysis of linear addition platform between harvested ear count and maize yield"

Fig. 6

Effects of planting density on plant height and ear height of maize"

Fig. 7

Effect of maize plant height on lodging degree The dotted line in the figure is the trend line of the linear regression equation between 314 and 404 cm in maize height"

Table 2

Correlation among yield components, cultivar characteristics and maize yield"

种植密度
Planting density
(×104 plants/hm2)
收获穗数
Effective panicles number
穗粒数
Kernels per spike
百粒重
100-seed weight
株高
Plant height
穗位高
Ear height
穗位高系数
Ear height coefficient
7.2 0.200 0.373* 0.622** -0.060 0.350 0.120
8.3 0.555** 0.040 0.468** -0.090 -0.150 -0.150
9.2 0.497** 0.090 0.358** -0.030 0.150 0.040
10.4 0.210 0.300 0.370 0.470 0.460 0.550
7.2-10.4 0.472** -0.020 0.409** 0.004 -0.057 -0.011

Table 3

Impact coefficients of planting density, lodging degree and cultivar characteristics on maize yield"

影响路径
Influence path
直接影响系数
Direct influence coefficient
直接影响系数
Direct influence coefficient
直接影响系数
Direct influence coefficient
间接影响系数
Indirect influence coefficient
总影响系数
Total influence coefficient
种植密度→百粒重→产量 Planting density→100-seed weight→yield 0.181** 0.786** - 0.142 0.265
种植密度→穗粒数→产量 Planting density→kernels per spike→yield -0.499** 0.863 - -0.431
种植密度→收获穗数→产量
Planting density→effective panicles number→yield
0.571** 0.970** - 0.554
倒伏程度→百粒重→产量
Degree of lodging→100-seed weight→yield
-0.149* 0.786** - -0.117 -0.027
倒伏程度→穗粒数→产量
Degree of lodging→kernels per spike→yield
0.247** 0.863 - 0.213
倒伏程度→收获穗数→产量
Degree of lodging→effective panicles number→yield
-0.127** 0.970** - -0.123
株型→百粒重→产量 Plant type→100-seed weight→yield -0.221* 0.786** - -0.174 -0.174
株型→穗粒数→产量 Plant type→kernels per spike→yield 0.168 0.863 - 0.146
株型→收获穗数→产量
Plant type→effective panicles number→yield
-0.008 0.970** - -0.010
株高→百粒重→产量 Plant height→100-seed weight→yield 0.188 0.786** - 0.148 -0.130
株高→穗粒数→产量 Plant height→kernels per spike→yield 0.011 0.863 - 0.010
株高→收获穗数→产量
Plant height→effective panicles number→yield
-0.134** 0.970** - -0.130
种植密度→倒伏程度→百粒重→产量
Planting density→degree of lodging→100-seed weight→yield
-0.221** -0.149 0.786** 0.026 0.006
种植密度→倒伏程度→穗粒数→产量
Planting density→degree of lodging→kernels per spike→yield
-0.221** 0.247 0.863 -0.047
种植密度→倒伏程度→收获穗数→产量
Planting density→degree of lodging→effective panicles number→yield
-0.221** -0.127 0.970** 0.027
株型→倒伏程度→百粒重→产量
Plant type→degree of lodging→100-seed weight→yield
-0.094 -0.149 0.786** 0.011 0.000
株型→倒伏程度→穗粒数→产量
Plant type→degree of lodging→kernels per spike→yield
-0.094 0.247 0.863 -0.020
株型→倒伏程度→收获穗数→产量
Plant type→degree of lodging→effective panicles number→yield
-0.094 -0.127 0.970** 0.012
株高→倒伏程度→百粒重→产量
Plant height→degree of lodging→100-seed weight→yield
0.292** -0.149 0.786** -0.034 -0.008
株高→倒伏程度→穗粒数→产量
Plant height→degree of lodging→kernels per spike→yield
0.292** 0.247 0.863 0.062
株高→倒伏程度→收获穗数→产量
Plant height→degree of lodging→effective panicles number→yield
0.292** -0.127 0.970** -0.036

Fig. 8

Path analysis of the effects of planting density, lodging degree and cultivar characteristics on maize yield"

[1]
赵久然, 王荣焕. 中国玉米生产发展历程、存在问题及对策. 中国农业科技导报, 2013, 15(3): 1-6.
ZHAO J R, WANG R H. Development process, problem and countermeasure of maize production in China. Journal of Agricultural Science and Technology, 2013, 15(3): 1-6. (in Chinese)

doi: 10.3969/j.issn.1008-0864.2013.03.01
[2]
TOLLENAAR M, DWYER L M, STEWART D W. Ear and kernel formation in maize hybrids representing three decades of grain yield improvement in Ontario. Crop Science, 1992, 32(2): cropsci1992.0011183X003200020030x.
[3]
TANG J H, TENG W T, YAN J B, MA X Q, MENG Y J, DAI J R, LI J S. Genetic dissection of plant height by molecular markers using a population of recombinant inbred lines in maize. Euphytica, 2007, 155(1): 117-124.

doi: 10.1007/s10681-006-9312-3
[4]
KANG M S, DIN A K, ZHANG Y D, MAGARI R. Combining ability for rind puncture resistance in maize. Crop Science, 1999, 39(2): cropsci1999.0011183X0039000200011x.
[5]
李国恒, 李绍伟, 吴欣, 赵国建, 李文仓, 刘素玲. 玉米倒伏的原因分析及防治措施. 中国农技推广, 2010, 26(3): 42-43.
LI G H, LI S W, WU X, ZHAO G J, LI W C, LIU S L. Analysis of the causes of maize lodging and prevention measures. China Agricultural Technology Extension, 2010, 26(3): 42-43. (in Chinese)
[6]
韩欣澳, 郑迎霞, 陈杜, 魏鹏程, 程乙, 刘代铃, 宋碧. 种植密度对贵州春玉米冠层特性和产量的影响. 玉米科学, 2024, 32(9): 78-86.
HAN X A, ZHENG Y X, CHEN D, WEI P C, CHENG Y, LIU D L, SONG B. Effects of planting density on canopy characteristics and yield of spring maize in Guizhou. Journal of Maize Sciences, 2024, 32(9): 78-86. (in Chinese)
[7]
石德杨, 李艳红, 王飞飞, 夏德君, 矫岩林, 孙妮娜, 赵健. 高密度下扩行缩株对夏玉米干物质与养分积累、转运的调控效应. 中国农业科学, 2024, 57(23): 4658-4672. doi:10.3864/j.issn.0578-1752.2024.23.007.
SHI D Y, LI Y H, WANG F F, XIA D J, JIAO Y L, SUN N N, ZHAO J. Regulation effects of line-spacing expansion and row-spacing shrinkage on dry matter and nutrient accumulation and transport of summer maize under high plant density. Scientia Agricultura Sinica, 2024, 57(23): 4658-4672. doi:10.3864/j.issn.0578-1752.2024.23.007. (in Chinese)
[8]
李晓红, 王克如, 张国强, 明博, 薛军, 方梁, 张婷婷, 叶建全, 李少昆. 增密和株行距优化提高西辽河平原沙地滴灌玉米的产量与水氮利用效率. 中国农业科学, 2025, 58(14): 2766-2781. doi:10.3864/j.issn.0578-1752.2025.14.005.
LI X H, WANG K R, ZHANG G Q, MING B, XUE J, FANG L, ZHANG T T, YE J Q, LI S K. Increasing planting density and optimizing plant row spacing to improve yield water and nitrogen use efficiency of drip-irrigated maize in sandy areas of the xiliaohe plain. Scientia Agricultura Sinica, 2025, 58(14): 2766-2781. doi:10.3864/j.issn.0578-1752.2025.14.005. (in Chinese)
[9]
杨泽宇, 吕慎强, 李嘉, 李惠通, 王筱斐, 王林权. 氮肥和品种及种植密度对春玉米机械化收获性状及产量的影响. 农业工程学报, 2023, 39(18): 41-50.
YANG Z Y, LYU S Q, LI J, LI H T, WANG X F, WANG L Q. Effects of nitrogen, variety and planting density on the mechanized harvest characters and yield of spring maize. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(18): 41-50. (in Chinese)
[10]
张冬梅, 杨柯, 姜春霞, 张伟, 黄明镜, 刘化涛, 闫六英, 刘恩科, 翟广谦, 王娟玲. 密度对春玉米生理成熟后倒伏变化的影响. 中国生态农业学报(中英文), 2021, 29(5): 855-869.
ZHANG D M, YANG K, JIANG C X, ZHANG W, HUANG M J, LIU H T, YAN L Y, LIU E K, ZHAI G Q, WANG J L. Effect of planting density on lodging change of spring maize after physiological maturity. Chinese Journal of Eco-Agriculture, 2021, 29(5): 855-869. (in Chinese)
[11]
田龙兵, 沈兆崟, 赵孝天, 张放, 侯文峰, 高强, 王寅. 种植密度与施氮量互作对不同玉米品种产量和水分利用效率的影响. 中国农业科学, 2024, 57(21): 4221-4237. doi:10.3864/j.issn.0578-1752.2024.21.005.
TIAN L B, SHEN Z Y, ZHAO X T, ZHANG F, HOU W F, GAO Q, WANG Y. Interactive effects of planting density and nitrogen application rate on plant grain yield and water use efficiency of two maize cultivars. Scientia Agricultura Sinica, 2024, 57(21): 4221-4237. doi:10.3864/j.issn.0578-1752.2024.21.005. (in Chinese)
[12]
谷利敏, 乔江方, 张美微, 朱卫红, 黄璐, 代书桃, 董树亭, 刘京宝. 种植密度对不同耐密夏玉米品种茎秆性状与抗倒伏能力的影响. 玉米科学, 2017, 25(5): 91-97.
GU L M, QIAO J F, ZHANG M W, ZHU W H, HUANG L, DAI S T, DONG S T, LIU J B. Effect of planting density on stalk characteristics and lodging-resistant capacity of different density-resistant summer maize varieties. Journal of Maize Sciences, 2017, 25(5): 91-97. (in Chinese)
[13]
任佰朝, 李利利, 董树亭, 刘鹏, 赵斌, 杨今胜, 王丁波, 张吉旺. 种植密度对不同株高夏玉米品种茎秆性状与抗倒伏能力的影响. 作物学报, 2016, 42(12): 1864-1872.

doi: 10.3724/SP.J.1006.2016.01864
REN B Z, LI L L, DONG S T, LIU P, ZHAO B, YANG J S, WANG D B, ZHANG J W. Effects of plant density on stem traits and lodging resistance of summer maize hybrids with different plant heights. Acta Agronomica Sinica, 2016, 42(12): 1864-1872. (in Chinese)

doi: 10.3724/SP.J.1006.2016.01864
[14]
李翔宇, 刘健茁, 胡丹丹, 刘耕瑜, 陈良宇, 李冰, 杜万里, 宋波. 玉米种质资源对瘤黑粉病的抗性评价及生理差异分析. 中国农业科学, 2025, 58(13): 2504-2521. doi:10.3864/j.issn.0578-1752.2025.13.002.
LI X Y, LIU J Z, HU D D, LIU G Y, CHEN L Y, LI B, DU W L, SONG B. Characterization of maize germplasm resistance to common smut and analysis of physiological differences. Scientia Agricultura Sinica, 2025, 58(13): 2504-2521. doi:10.3864/j.issn.0578-1752.2025.13.002. (in Chinese)
[15]
张洪生, 赵明, 吴沛波, 翟延举, 姜雯. 种植密度对玉米茎秆和穗部性状的影响. 玉米科学, 2009, 17(5): 130-133.
ZHANG H S, ZHAO M, WU P B, ZHAI Y J, JIANG W. Effects of the plant density on the characteristics of maize stem and ear. Journal of Maize Sciences, 2009, 17(5): 130-133. (in Chinese)
[16]
ZHANG M, CHEN T, HOJATOLLAH L, FENG X M, CAO T H, QIAN C R, DENG A X, SONG Z W, ZHANG W J. How plant density affects maize spike differentiation, kernel set, and grain yield formation in Northeast China? Journal of Integrative Agriculture, 2018, 17(8): 1745-1757.

doi: 10.1016/S2095-3119(17)61877-X
[17]
欧阳西荣, 涂先德, 吴玉林, 刘山. 玉米品种穗部性状与高产稳产性的关系. 湖南农业大学学报(自然科学版), 2007 (5): 525-529.
OUYANG X R, TU X D, WU Y L, LIU S. Relationship between ear characters and high-yield stability of maize varieties. Journal of Hunan Agricultural University (Natural Sciences), 2007 (5): 525-529. (in Chinese)
[18]
陈尚洪, 陈红琳, 沈学善, 王昌桃, 张玉兰, 刘定辉. 密度和施氮量对丘陵区机播夏玉米产量及倒伏影响研究. 西南农业学报, 2012, 25(3): 805-808.
CHEN S H, CHEN H L, SHEN X S, WANG C T, ZHANG Y L, LIU D H. Effects of planting density and nitrogen application on yield and lodging of mechanized sowing summer maize. Southwest China Journal of Agricultural Sciences, 2012, 25(3): 805-808. (in Chinese)
[19]
李长红, 许海涛, 孙联合. 夏玉米形态指标、氮肥利用及抗倒特性对密度与氮肥耦合效应的响应. 江苏农业科学, 2022, 50(11): 63-70.
LI C H, XU H T, SUN L H. Response of summer maize morphological indicators, nitrogen fertilizer utilization and anti-inverting characteristics on the coupling effect of density and nitrogen fertilizer. Jiangsu Agricultural Sciences, 2022, 50(11): 63-70. (in Chinese)
[20]
赵耀, 程前, 徐田军, 刘正, 王荣焕, 赵久然, 陆大雷, 李从锋. 高密度条件下株型改良对春玉米根-冠特征及籽粒产量的影响. 中国农业科学, 2025, 58(7): 1296-1310. doi: 10.3864/j.issn.0578-1752.2025.07.003.
ZHAO Y, CHENG Q, XU T J, LIU Z, WANG R H, ZHAO J R, LU D L, LI C F. Effects of plant type improvement on root-canopy characteristics and grain yield of spring maize under high density condition. Scientia Agricultura Sinica, 2025, 58(7): 1296-1310. doi: 10.3864/j.issn.0578-1752.2025.07.003. (in Chinese)
[21]
刘月, 明博, 李姚姚, 王克如, 侯鹏, 薛军, 李少昆, 谢瑞芝. 基于根冠协调发展的东北春玉米高产种植密度分析. 作物学报, 2023, 49(3): 795-807.

doi: 10.3724/SP.J.1006.2023.23026
LIU Y, MING B, LI Y Y, WANG K R, HOU P, XUE J, LI S K, XIE R Z. Analysis on high yield planting density of spring maize in Northeast China from root and shoot coordinated development. Acta Agronomica Sinica, 2023, 49(3): 795-807. (in Chinese)

doi: 10.3724/SP.J.1006.2023.23026
[22]
程云, 王枟刘, 杨静, 张子学, 刘正, 李文阳. 种植密度对夏玉米基部节间性状与倒伏的影响. 玉米科学, 2015, 23(5): 112-116.
CHENG Y, WANG Y L, YANG J, ZHANG Z X, LIU Z, LI W Y. Effects of planting density on characteristics of basal internodes and lodging in summer maize. Journal of Maize Sciences, 2015, 23(5): 112-116. (in Chinese)
[23]
刘晓林, 马晓君, 豆攀, 黄科程, 王兴龙, 张頔, 孔凡磊, 袁继超. 种植密度对川中丘陵夏玉米茎秆性状及产量的影响. 中国生态农业学报, 2017, 25(3): 356-364.
LIU X L, MA X J, DOU P, HUANG K C, WANG X L, ZHANG D, KONG F L, YUAN J C. Effect of planting density on stem characteristics and yield of summer maize in the Hilly Central Sichuan Basin, China. Chinese Journal of Eco-Agriculture, 2017, 25(3): 356-364. (in Chinese)
[24]
张世煌. 中美两国玉米育种思路和技术水平的比较. 北京农业, 2007(14): 13-16.
ZHANG S H. Comparison of maize breeding ideas and technical levels in China and the United States. Beijing Agriculture, 2007(14): 13-16. (in Chinese)
[25]
刘战东, 肖俊夫, 南纪琴, 冯跃华. 倒伏对夏玉米叶面积、产量及其构成因素的影响. 中国农学通报, 2010, 26(18): 107-110.
LIU Z D, XIAO J F, NAN J Q, FENG Y H. Effect of different levels lodging on leaf area index, yield and its components of summer maize. Chinese Agricultural Science Bulletin, 2010, 26(18): 107-110. (in Chinese)

doi: 10.11924/j.issn.1000-6850.2010-0515
[26]
张桂萍, Mukti Marasini, 李薇薇, 张凤路. 不同玉米品种的茎秆性状对茎秆弹性和耐密性的响应. 华北农学报, 2024, 39(2): 79-89.

doi: 10.7668/hbnxb.20194489
ZHANG G P, MARASINI M, LI W W, ZHANG F L. Response of stalk traits to stalk elasticity and density tolerance of different maize cultivars. Acta Agriculturae Boreali-Sinica, 2024, 39(2): 79-89. (in Chinese)

doi: 10.7668/hbnxb.20194489
[27]
吴琼, 杨克军, 张翼飞, 王玉凤, 张文超, 陈天宇, 张鹏飞, 庞晨, 尹雪巍, 王怀鹏, 等. 不同基因型玉米耐密植抗倒性分析及其鉴定指标的筛选. 玉米科学, 2017, 25(6): 79-86.
WU Q, YANG K J, ZHANG Y F, WANG Y F, ZHANG W C, CHEN T Y, ZHANG P F, PANG C, YIN X W, WANG H P, et al. Analysis of lodging resistance and determination of resistance evaluation indicators in different maize genotypes under higher population density selection pressures. Journal of Maize Sciences, 2017, 25(6): 79-86. (in Chinese)
[28]
BECK D L, DARRAH L L, ZUBER M S. Effect of sink level on root and stalk quality in maize. Crop Science, 1988, 28(1): 11-18.

doi: 10.2135/cropsci1988.0011183X002800010003x
[29]
程富丽, 杜雄, 刘梦星, 靳小利, 崔彦宏. 玉米倒伏及其对产量的影响. 玉米科学, 2011, 19(1): 105-108.
CHENG F L, DU X, LIU M X, JIN X L, CUI Y H. Lodging of summer maize and the effects on grain yield. Journal of Maize Sciences, 2011, 19(1): 105-108. (in Chinese)
[30]
郭书磊, 陈娜娜, 齐建双, 岳润清, 韩小花, 燕树锋, 卢彩霞, 傅晓雷, 郭新海, 铁双贵. 不同密度下玉米倒伏相关性状与产量的研究. 玉米科学, 2018, 26(5): 71-77.
GUO S L, CHEN N N, QI J S, YUE R Q, HAN X H, YAN S F, LU C X, FU X L, GUO X H, TIE S G. Study on the relationship between yield and lodging traits of maize under different planting densities. Journal of Maize Sciences, 2018, 26(5): 71-77. (in Chinese)
[31]
贾志森, 白永新. 玉米自交系抗倒伏鉴定研究. 作物品种资源, 1992 (3): 30-32.
JIA Z S, BAI Y X. Study on the identification of anti-lost in maize inbred line. Crop variety resources, 1992 (3): 30-32. (in Chinese)
[32]
SANGOI L, GRACIETTI M A, RAMPAZZO C, BIANCHETTI P. Response of Brazilian maize hybrids from different eras to changes in plant density. Field Crops Research, 2002, 79(1): 39-51.

doi: 10.1016/S0378-4290(02)00124-7
[33]
顾明琪, 刘晓丽, 吕悬龙, 黄收兵, 王璞, 廖树华. 穗位高系数对玉米产量及产量构成的影响. 中国农业大学学报, 2023, 28(3): 1-10.
GU M Q, LIU X L, LV X L, HUANG S B, WANG P, LIAO S H. Effects of ear-to-plant height ratio on yield and yield composition of maize. Journal of China Agricultural University, 2023, 28(3): 1-10. (in Chinese)
[34]
杨利华, 张丽华, 杨世丽, 马瑞昆, 张全国. 不同株高玉米品种部分群体质量指标对种植密度的反应. 华北农学报, 2007, 22(6): 139-146.

doi: 10.7668/hbnxb.2007.06.029
YANG L H, ZHANG L H, YANG S L, MA R K, ZHANG Q G. Responses of some population quality indices of maize hybrids differing in plant height to planting density. Acta Agriculturae Boreali-Sinica, 2007, 22(6): 139-146. (in Chinese)
[1] PU LiXia, ZHANG JiaRui, YE JianPing, HUANG XiuLan, FAN GaoQiong, YANG HongKun. The Combined Effects of 16, 17-Dihydro Gibberellin A5 and Straw Mulching on Tillering and Grain Yield of Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(9): 1735-1748.
[2] GUO ChenLi, LIU Yang, CHEN Yan, HU Wei, WANG YouHua, ZHOU ZhiGuo, ZHAO WenQing. Effects of Phosphorus Fertilizer Postpone Under Nitrogen Reduction Condition on Yield, Phosphorus Fertilizer Utilization Efficiency of Drip-Irrigated Cotton [J]. Scientia Agricultura Sinica, 2025, 58(9): 1749-1766.
[3] LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao. Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China [J]. Scientia Agricultura Sinica, 2025, 58(8): 1508-1520.
[4] WEI WenHua, LI Pan, SHAO GuanGui, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei, CHAI Qiang, YIN Wen, ZHAO LianHao. Response of Silage Maize Yield and Quality to Reduced Irrigation and Combined Organic-Inorganic Fertilizer in Northwest Irrigation Areas [J]. Scientia Agricultura Sinica, 2025, 58(8): 1521-1534.
[5] XUE YuQi, ZHAO JiYu, SUN WangSheng, REN BaiZhao, ZHAO Bin, LIU Peng, ZHANG JiWang. Effects of Different Nitrogen Forms on Yield and Quality of Summer Maize [J]. Scientia Agricultura Sinica, 2025, 58(8): 1535-1549.
[6] LI ShaoXing, SONG WenFeng, WEI ZeYu, ZHOU YuLing, SONG LiXia, REN Ke, MA Qun, WANG LongChang. Effects of Straw and Milk Vetch Mulching on Soil Fertility and Sweet Potato Yield [J]. Scientia Agricultura Sinica, 2025, 58(8): 1591-1603.
[7] YIN Bo, YU AiZhong, WANG PengFei, YANG XueHui, WANG YuLong, SHANG YongPan, ZHANG DongLing, LIU YaLong, LI Yue, WANG Feng. Effects of Green Manure Returning Combined with Nitrogen Fertilizer Reduction on Hydrothermal Characteristics of Wheat Field and Grain Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2025, 58(7): 1366-1380.
[8] CHEN GuiPing, LI Pan, SHAO GuanGui, WU XiaYu, YIN Wen, ZHAO LianHao, FAN ZhiLong, HU FaLong. The Regulatory Effect of Reduced Irrigation and Combined Organic- Inorganic Fertilizer Application on Stay-Green Characteristics in Silage Maize Leaves After Tasseling Stage [J]. Scientia Agricultura Sinica, 2025, 58(7): 1381-1396.
[9] ZHAO Yao, CHENG Qian, XU TianJun, LIU Zheng, WANG RongHuan, ZHAO JiuRan, LU DaLei, LI CongFeng. Effects of Plant Type Improvement on Root-Canopy Characteristics and Grain Yield of Spring Maize Under High Density Condition [J]. Scientia Agricultura Sinica, 2025, 58(7): 1296-1310.
[10] TIAN LiWen, LOU ShanWei, ZHANG PengZhong, DU MingWei, LUO HongHai, LI Jie, PAHATI MaiMaiTi, MA TengFei, ZHANG LiZhen. Analysis of Problems and Pathways for Increasing Cotton Yield per Unit Area in Xinjiang Under Green and Efficient Production Mode [J]. Scientia Agricultura Sinica, 2025, 58(6): 1102-1115.
[11] ZHANG HongCheng, XING ZhiPeng, ZHANG RuiHong, SHAN Xiang, XI XiaoBo, CHENG Shuang, WENG WenAn, HU Qun, CUI PeiYuan, WEI HaiYan. Characteristics and Technical Approaches of Integrated Unmanned High-Yield Cultivation of Wheat [J]. Scientia Agricultura Sinica, 2025, 58(5): 864-876.
[12] ZHANG Han, ZHANG YuQi, LI JingLai, XU Hong, LI WeiHuan, LI Tao. Effects of LED Supplementary Lighting on Production and Leaf Physiological Properties of Substrate-Cultivated Strawberry in Chinese Solar Greenhouse [J]. Scientia Agricultura Sinica, 2025, 58(5): 975-990.
[13] CHEN Ge, GU Yu, WEN Jiong, FU YueFeng, HE Xi, LI Wei, ZHOU JunYu, LIU QiongFeng, WU HaiYong. Effects of Fallow Weeds Returning to the Field on Photosynthetic Matter Production and Yield of Rice [J]. Scientia Agricultura Sinica, 2025, 58(4): 647-659.
[14] SU Ming, LI FanGuo, HONG ZiQiang, ZHOU Tian, LIU QiangJuan, BAN WenHui, WU HongLiang, KANG JianHong. Antioxidant Characterization of Nitrogen Application for Mitigating Potato Senescence Post-Flowering Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2025, 58(4): 660-675.
[15] SHI Fan, LI WenGuang, YI ShuSheng, YANG Na, CHEN YuMeng, ZHENG Wei, ZHANG XueChen, LI ZiYan, ZHAI BingNian. The Variation Characteristics of Soil Organic Carbon Fractions Under the Combined Application of Organic and Inorganic Fertilizers [J]. Scientia Agricultura Sinica, 2025, 58(4): 719-732.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!