Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (23): 4872-4885.doi: 10.3864/j.issn.0578-1752.2025.23.006

• RESEARCH AND DEVELOPMENT OF TECHNOLOGY FOR ENHANCED PRODUCTIVITY • Previous Articles     Next Articles

Effects of Row Spacing Configuration on the Canopy Characteristics and Grain Yield of the Intercropping Maize

SHI DeYang1(), GAO ChunHua2, LI YanHong3, ZHAO HaiJun2,*(), XIA DeJun1   

  1. 1 Institute of Grain and Oil Crops, Shandong Yantai Agricultural Research Institute, Yantai 265500, Shandong
    2 Institute of Economic Crops, Shandong Academy of Agricultural Sciences, Jinan 250100
    3 Yantai Agricultural Technology Promotion Center, Yantai 264000, Shandong
  • Received:2025-04-29 Accepted:2025-08-28 Online:2025-12-01 Published:2025-12-09
  • Contact: ZHAO HaiJun

Abstract:

【Objective】 The 4:6 maize-soybean intercropping model, widely promoted in the Huang-Huai-Hai region, has issues such as poor ventilation and light penetration, and poor grain setting in the middle rows of intercropping maize. Therefore, this study explored optimizing row spacing configurations to improve the canopy structure of intercropping maize populations and enhance the yield of intercropping systems, for providing a theoretical basis for the promotion and application of maize-soybean strip intercropping in the Huang-Huai-Hai region. 【Method】 From 2023 to 2024, soybean variety HeDou 22 and maize variety Liyuan 296 were used as test materials. Under the maize-soybean 4:6 planting pattern, five row spacing configurations were set: equal row spacing of 60 cm (ER) and narrow-wide row spacing of 40 cm+70 cm+40 cm (WNR1), 40 cm+80 cm+40 cm (WNR2), 40 cm+90 cm+40 cm (WNR3), and 40 cm+100 cm+40 cm (WNR4) to study the impacts of row spacing configurations on the yield, accumulation of dry matter, plant traits, and canopy characteristics of intercropping maize. 【Result】 Under the maize-soybean 4:6 intercropping pattern, the wide-narrow row planting of intercropping maize significantly increased its yield. The WNR3 treatment showed an average yield increase of 6.68% compared with ER over two years, with a 10.49% increase in post-anthesis dry matter accumulation. The yield improvement primarily stemmed from increased kernel number per ear (8.24%-9.95%) and 1 000-grain weight (2.66%-3.04%) in the middle rows. Compared with ER treatment, the wide-narrow row planting alleviated the "shade avoidance response" in the middle rows. Under the WNR3 treatment, the height difference between middle-row and border-row maize plants narrowed by 2.3%, stem diameter increased by 5.7%, leaf senescence was delayed, and the SPAD value of ear-leaf at the silking stage improved by 1.95%-14.95%. As the row spacing of middle rows increased, canopy light transmittance and single-plant leaf area exhibited an upward trend. The WNR3 treatment improved bottom-layer light transmittance by 29.11% and ear-layer light transmittance by 25.44% in the middle rows. However, no significant difference was observed between WNR3 and WNR4 treatments. Although the WNR4 treatment further enhanced canopy ventilation and light conditions, the light interception rate of the intercropping maize population significantly decreased, leading to reduced post-anthesis photosynthetic product accumulation and grain yield. 【Conclusion】 Under the intercropping mode of maize and soybean 4:6, the configuration of 40 cm+90 cm+40 cm wide and narrow rows could significantly improve the crown structure of maize, enhance photosynthetic performance, increase post-flower dry matter accumulation and grain yield, which was an effective way to optimize the yield of intercropping system in Huanghuaihai region.

Key words: maize-soybean strip intercropping, row spacing configuration optimization, canopy characteristics, plant traits, yield

Fig. 1

Daily air temperature and precipitation after sowing of test crops"

Fig. 2

Planting patterns arrangement of soybean‖maize intercropping"

Table 1

Planting pattern of every treatment"

处理 Treatment 占地比例 Crop land ratio (%) 小区面积 Plot area (m2) 种植密度 Crop density (plants/hm2)
ER 玉米 Maize 48.08 150 64102
大豆Soybean 51.92 162 144230
WNR1 玉米 Maize 44.90 132 68019
大豆Soybean 55.10 162 153061
WNR2 玉米 Maize 46.00 138 66667
大豆Soybean 54.00 162 150000
WNR3 玉米 Maize 47.06 144 65358
大豆Soybean 52.94 162 147058
WNR4 玉米 Maize 48.08 150 64102
大豆Soybean 51.92 162 144230

Table 2

Effects of row spacing configuration and on the yield and composition factors of intercropping maize"

年份
Year
处理
Treatment
产量
Grain yield (kg·hm-2)
中间行 Middle row 边行 Border row
穗数
Ear number (ears/hm2)
穗粒数
Grain number per ear
千粒重
1000-grain weight (g)
穗数
Ear number (ears/hm2)
穗粒数
Grain number per ear
千粒重
1000-grain weight (g)
2023 ER 8109.7d 23530.0d 380.0c 352.4d 33439.0b 409.0a 362.6a
WNR1 8449.0c 24688.3a 382.0c 354.4c 34488.3a 408.7a 362.3a
WNR2 8551.9b 24469.7ab 394.7b 360.5b 34174.3a 409.3a 362.5a
WNR3 8644.0a 24105.0bc 411.3a 363.1a 34059.7a 408.7a 362.4a
WNR4 8564.3ab 23825.7cd 410.7a 363.0a 33920.0ab 408.0a 362.2a
2024 ER 7652.5d 23629.3b 372.0c 346.0b 33696.3c 384.7a 355.8a
WNR1 7951.2c 24745.0a 373.3c 347.7b 34751.0a 383.3a 355.8a
WNR2 8063.1b 24613.7a 386.7b 353.6a 34308.7b 384.7a 356.0a
WNR3 8170.9a 24120.7b 408.7a 355.1a 34059.7bc 385.3a 355.9a
WNR4 8062.9b 23974.3b 409.0a 355.2a 33746.3c 385.7a 355.4a

Table 3

Effects of row spacing configuration on the dry matter accumulation and transport of intercropping maize"

年份
Year
处理
Treatment
吐丝期干物质积累量
Dry matter accumulation at
silking (kg·hm-2)
成熟期干物质积累量
Dry matter accumulation at maturity (kg·hm-2)
吐丝后干物质积累量
Dry matter accumulation after silking (kg·hm-2)
吐丝后干物质转运量
Transfer amount
of dry matter
(kg·hm-2)
吐丝后干物质转运对
籽粒的贡献率
Contribution to grain of dry matter transportation (%)
2023 ER 7498.6d 14893.0d 7394.4c 715.4a 8.81a
WNR1 7763.2a 15560.2c 7797.0b 652.0ab 7.71ab
WNR2 7902.2b 15804.0b 7901.9b 650.0ab 7.58ab
WNR3 8187.4a 16305.7a 8118.3a 525.7ab 6.07b
WNR4 7846.2bc 15927.6b 8081.4a 483.0b 5.63b
2024 ER 7461.4c 14423.1c 6961.6c 690.9a 8.97a
WNR1 7656.8ab 15124.9b 7468.1b 483.1b 6.06b
WNR2 7712.2a 15304.2ab 7592.0ab 471.2b 5.79b
WNR3 7743.1a 15488.6a 7745.4a 425.5b 5.17c
WNR4 7562.2bc 15150.8b 7588.7ab 474.2b 5.84b

Fig. 3

Effects of planting pattern and row spacing configuration on the summer maize LAI"

Fig. 4

Effects of row spacing configurations on the plant morphological characteristics of intercropping maize"

Fig. 5

Effects of planting patterns and row spacing configurations on the relative chlorophyll content (SPAD) of functional leaves in summer maize"

Fig. 6

Effects of row spacing configurations on the canopy light transmittance of ground floor and ear layer in intercropping maize (2024)"

Fig. 7

Effects of row spacing configurations on the hemispheric images at the ear layer of intercropping maize (2024)"

Fig. 8

Effects of row spacing configurations on the hemispheric images at the ground floor of intercropping maize (2024)"

Fig. 9

Effects of row spacing configurations on the light interception rate of the upper and lower layer of the ear and the whole plant of intercropping maize(2024)"

[1]
杨文钰, 杨峰. 发展玉豆带状复合种植, 保障国家粮食安全. 中国农业科学, 2019, 52(21): 3748-3750. doi:10.3864/j.issn.0578-1752.2019.21.003.
YANG W Y, YANG F. Developing maize-soybean strip intercropping for demand security of national food. Scientia Agricultura Sinica, 2019, 52(21): 3748-3750. doi:10.3864/j.issn.0578-1752.2019.21.003. (in Chinese)
[2]
张璟, 王若男, 吴天龙. 大豆玉米带状复合种植: 生产实效、影响因素与困难挑战—基于黄淮海地区农户样本的分析. 干旱区资源与环境, 2024, 38(7): 96-105.
ZHANG J, WANG R N, WU T L. Production efficiency, influencing factors, and policy demands in maize-soybean strip intercropping: Case study in Huang-Huai-Hai Region. Journal of Arid Land Resources and Environment, 2024, 38(7): 96-105. (in Chinese)
[3]
卢霖, 董志强, 董学瑞, 焦浏, 李光彦, 高娇. 乙矮合剂对不同密度夏玉米花粒期叶片氮素同化与早衰的影响. 作物学报, 2015, 41(12): 1870-1879.

doi: 10.3724/SP.J.1006.2015.01870
LU L, DONG Z Q, DONG X R, JIAO L, LI G Y, GAO J. Effects of ethylene-chlormequat-potassium on leaf nitrogen assimilation after anthesis and early senescence under different planting densities. Acta Agronomica Sinica, 2015, 41(12): 1870-1879. (in Chinese)

doi: 10.3724/SP.J.1006.2015.01870
[4]
张中东, 王璞, 何雪峰, 罗坤. 不同密度处理对紧凑型玉米农大486叶片生长发育的影响. 玉米科学, 2004, 12(S1): 91-93.
ZHANG Z D, WANG P, HE X F, LUO K. Effects of different density treatments on the growth and development of leaves of compact maize nongda 486. Journal of Maize Sciences, 2004, 12(S1): 91-93. (in Chinese)
[5]
马超, 黄晓书, 李鹏坤, 卫丽. 种植密度对夏玉米果穗叶生理功能衰退的影响. 玉米科学, 2010, 18(2): 50-53.
MA C, HUANG X S, LI P K, WEI L. Effects of planting density on physiological decline on ear leaf of summer maize. Journal of Maize Sciences, 2010, 18(2): 50-53. (in Chinese)
[6]
赵殿忱, 陈渊. 大豆宽窄行密植栽培技术试验研究. 农业系统科学与综合研究, 2000, 16(1): 45-49, 65.
ZHAO D C, CHEN Y. Cultivation techniques with high density in wide-narrow redge of soybean. System Sciemces and Comprehensive Studies in Agriculture, 2000, 16(1): 45-49, 65. (in Chinese)
[7]
吕丽华, 陶洪斌, 夏来坤, 张雅杰, 赵明, 赵久然, 王璞. 不同种植密度下的夏玉米冠层结构及光合特性. 作物学报, 2008, 34(3): 447-455.
L H, TAO H B, XIA L K, ZHANG Y J, ZHAO M, ZHAO J R, WANG P. Canopy structure and photosynthesis traits of summer maize under different planting densities. Acta Agronomica Sinica, 2008, 34(3): 447-455. (in Chinese)

doi: 10.3724/SP.J.1006.2008.00447
[8]
白晶, 张春雨, 丁相鹏, 张吉旺, 刘鹏, 任佰朝, 赵斌. 行距配置和覆反光膜对夏玉米产量及光能利用的影响. 中国农业科学, 2020, 53(19): 3942-3953. doi:10.3864/j.issn.0578-1752.2020.19.008.
BAI J, ZHANG C Y, DING X P, ZHANG J W, LIU P, REN B Z, ZHAO B. Effects of row spacing and mulching reflective film on the yield and light utilization of summer maize. Scientia Agricultura Sinica, 2020, 53(19): 3942-3953. doi:10.3864/j.issn.0578-1752.2020.19.008. (in Chinese)
[9]
MOHAMMADI G R, GHOBADI M E, SHEIKHEH-POOR S. Phosphate biofertilizer, row spacing and plant density effects on corn (Zea mays L.) yield and weed growth. American Journal of Plant Sciences, 2012, 3(4): 425-429.

doi: 10.4236/ajps.2012.34051
[10]
丁相鹏, 白晶, 张春雨, 张吉旺, 刘鹏, 任佰朝, 赵斌. 扩行缩株对夏玉米群体冠层结构及产量的影响. 中国农业科学, 2020, 53(19): 3915-3927. doi:10.3864/j.issn.0578-1752.2020.19.006.
DING X P, BAI J, ZHANG C Y, ZHANG J W, LIU P, REN B Z, ZHAO B. Effects of line-spacing expansion and row-spacing shrinkage on population structure and yield of summer maize. Scientia Agricultura Sinica, 2020, 53(19): 3915-3927. doi:10.3864/j.issn.0578-1752.2020.19.006. (in Chinese)
[11]
石德杨, 李艳红, 王飞飞, 夏德君, 矫岩林, 孙妮娜, 赵健. 高密度下扩行缩株对夏玉米干物质与养分积累、转运的调控效应. 中国农业科学, 2024, 57(23): 4658-4672. doi:10.3864/j.issn.0578-1752.2024.23.007.
SHI D Y, LI Y H, WANG F F, XIA D J, JIAO Y L, SUN N N, ZHAO J. Regulation effects of line-spacing expansion and row-spacing shrinkage on dry matter and nutrient accumulation and transport of summer maize under high plant density. Scientia Agricultura Sinica, 2024, 57(23): 4658-4672. doi:10.3864/j.issn.0578-1752.2024.23.007. (in Chinese)
[12]
蒲甜, 张群, 陈国鹏, 陈诚, 曾红, 彭霄, 杨文钰, 王小春. 行距对玉米—大豆套作体系中玉米产量及干物质积累与分配的影响. 浙江农业学报, 2016, 28(8): 1277-1286.
PU T, ZHANG Q, CHEN G P, CHEN C, ZENG H, PENG X, YANG W Y, WANG X C. Effects of row spacing on yield, dry matter accumulation and partitioning of maize in maizesoybean relay strip intercropping system. Acta Agriculturae Zhejiangensis, 2016, 28(8): 1277-1286. (in Chinese)
[13]
曹鹏鹏, 田艺心, 高凤菊, 华方静, 王乐政. 玉米-大豆间作不同带距和行距对两作物生长及产量的影响. 山东农业科学, 2018, 50(7): 78-81, 87.
CAO P P, TIAN Y X, GAO F J, HUA F J, WANG L Z. Effects of different band and row spacing on growth and yield of intercropping maize and soybean. Shandong Agricultural Sciences, 2018, 50(7): 78-81, 87. (in Chinese)
[14]
路笃旭, 张超, 刘蔚霞, 翟吉庆, 乔健, 翟乃家, 王光明. 带叶去雄对玉米大豆复合种植体系玉米冠层光分布及产量的影响. 农业科技通讯, 2024(8): 75-79.
LU D X, ZHANG C, LIU W X, ZHAI J Q, QIAO J, ZHAI N J, WANG G M. Effects of detasseling on light distribution in the corn canopy and yield in maize-soybean intercropping system. Bulletin of Agricultural Science and Technology, 2024(8): 75-79. (in Chinese)
[15]
刘俊峰, 李漪濛, 梁超, 周婵婵, 王术, 贾宝艳, 黄元财, 王岩, 王韵. 施氮方式与行距配置对水稻冠层结构及产量的影响. 华北农学报, 2022, 37(1): 77-85.

doi: 10.7668/hbnxb.20192614
LIU J F, LI Y M, LIANG C, ZHOU C C, WANG S, JIA B Y, HUANG Y C, WANG Y, WANG Y. Effect of nitrogen application pattern and row spacing on canopy structure and yield of rice. Acta Agriculturae Boreali-Sinica, 2022, 37(1): 77-85. (in Chinese)

doi: 10.7668/hbnxb.20192614
[16]
司纪升, 孟钰, 张亚如, 王旭清, 李升东, 孟维伟, 王娜, 王洪滨, 刘开昌. 行距配置对夏玉米群体结构的影响. 山东农业科学, 2020, 52(10): 67-70.
SI J S, MENG Y, ZHANG Y R, WANG X Q, LI S D, MENG W W, WANG N, WANG H B, LIU K C. Effects of row spacing on population structure of summer maize. Shandong Agricultural Sciences, 2020, 52(10): 67-70. (in Chinese)
[17]
李贺丽, 罗毅, 薛晓萍, 赵玉金, 赵红, 李峰. 冬小麦冠层对入射光合有效辐射吸收比例的估算方法评价. 农业工程学报, 2011, 27(4): 201-206.
LI H L, LUO Y, XUE X P, ZHAO Y J, ZHAO H, LI F. Assessment of approaches for estimating fraction of photosynthetically active radiation absorbed by winter wheat canopy. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(4): 201-206. (in Chinese)
[18]
SORATTO R P, SOUZA-SCHLICK G D, FERNANDES A M, ZANOTTO M D, CRUSCIOL C A C. Narrow row spacing and high plant population to short height Castor genotypes in two cropping seasons. Industrial Crops and Products, 2012, 35(1): 244-249.

doi: 10.1016/j.indcrop.2011.07.006
[19]
MADDONNI G Á, MARTÍNEZ-BERCOVICH J. Row spacing, landscape position, and maize grain yield. International Journal of Agronomy, 2014, 2014(1): 195012.
[20]
苌建峰, 张海红, 李鸿萍, 董朋飞, 李潮海. 不同行距配置方式对夏玉米冠层结构和群体抗性的影响. 作物学报, 2016, 42(1) : 104-112.
CHANG J F, ZHANG H H, LI H P, DONG P F, Ll C H. Effects of different row spaces on canopy structure and resistance of summer maize. Acta Agronomica Sinica, 2016, 42(1) :104-112. (in Chinese)

doi: 10.3724/SP.J.1006.2016.00104
[21]
杨吉顺, 高辉远, 刘鹏, 李耕, 董树亭, 张吉旺, 王敬锋. 种植密度和行距配置对超高产夏玉米群体光合特性的影响. 作物学报, 2010, 36(7): 1226-1233.
YANG J S, GAO H Y, LIU P, LI G, DONG S T, ZHANG J W, WANG J F. Effects of planting density and row spacing on canopy apparent photosynthesis of high-yield summer corn. Acta Agronomica Sinica, 2010, 36(7): 1226-1233. (in Chinese)

doi: 10.3724/SP.J.1006.2010.01226
[22]
朴琳, 李波, 陈喜昌, 丁在松, 张宇, 赵明, 李从锋. 优化栽培措施对春玉米密植群体冠层结构及产量形成的调控效应. 中国农业科学, 2020, 53(15): 3048-3058. doi:10.3864/j.issn.0578-1752.2020.15.006.
PIAO L, LI B, CHEN X C, DING Z S, ZHANG Y, ZHAO M, LI C F. Regulation effects of improved cultivation measures on canopy structure and yield formation of dense spring maize population. Scientia Agricultura Sinica, 2020, 53(15): 3048-3058. doi:10.3864/j.issn.0578-1752.2020.15.006. (in Chinese)
[23]
DORDAS C A, SIOULAS C. Dry matter and nitrogen accumulation, partitioning, and retranslocation in safflower (Carthamus tinctorius L.) as affected by nitrogen fertilization. Field Crops Research, 2009, 110(1): 35-43.

doi: 10.1016/j.fcr.2008.06.011
[24]
秦德志, 崔文芳, 陈静, 刘剑, 秦丽, 王利平, 赵永来, 王利鹤. 玉米大豆间作干物质积累和氮磷吸收利用的边际效应. 西南农业学报, 2024, 37(3): 552-560.
QIN D Z, CUI W F, CHEN J, LIU J, QIN L, WANG L P, ZHAO Y L, WANG L H. Marginal effect of dry matter accumulation and nitrogen and phosphorus uptake and utilization in maize and soybean intercropping. Southwest China Journal of Agricultural Sciences, 2024, 37(3): 552-560. (in Chinese)
[25]
武晶, 陈梦, 汪直华, 杨继芝, 李燕丽, 吴雨珊, 杨文钰. 带状间作不同带间距对玉米光能利用的影响. 中国农业科学, 2023, 56(23): 4648-4659. doi:10.3864/j.issn.0578-1752.2023.23.007.
WU J, CHEN M, WANG Z H, YANG J Z, LI Y L, WU Y S, YANG W Y. Effect of different strip distances on light energy utilization in strip intercropping maize. Scientia Agricultura Sinica, 2023, 56(23): 4648-4659. doi:10.3864/j.issn.0578-1752.2023.23.007. (in Chinese)
[26]
杨克军, 李明, 李振华. 栽培方式与群体结构对寒地玉米物质积累及产量形成的影响. 中国农学通报, 2005, 21(11): 157-160.
YANG K J, LI M, LI Z H. Effect of cultivation way and community construction on material accumulation and yield formation of frigid corn. Chinese Agricultural Science Bulletin, 2005, 21(11): 157-160. (in Chinese)
[27]
黄智鸿, 王思远, 包岩, 梁煊赫, 孙刚, 申林, 曹洋, 吴春胜. 超高产玉米品种干物质积累与分配特点的研究. 玉米科学, 2007, 15(3): 95-98.
HUANG Z H, WANG S Y, BAO Y, LIANG X H, SUN G, SHEN L, CAO Y, WU C S. Studies on dry matter accumulation and distributive characteristic in super high-yield maize. Journal of Maize Sciences, 2007, 15(3): 95-98. (in Chinese)
[28]
梁熠, 齐华, 王敬亚. 行距配置对春玉米群体冠层环境与光合特性的影响. 西北农业学报, 2014, 23(8): 66-72.
LIANG Y, QI H, WANG J Y. Effects of different row spacing on ecological environment and photosynthetic characteristics of spring maize populations. Acta Agriculturae Boreali-Occidentalis Sinica, 2014, 23(8): 66-72. (in Chinese)
[29]
MADDONNI G A, OTEGUI M E, CIRILO A G. Plant population density, row spacing and hybrid effects on maize canopy architecture and light attenuation. Field Crops Research, 2001, 71(3): 183-193.

doi: 10.1016/S0378-4290(01)00158-7
[30]
金容, 李钟, 杨云, 周芳, 杜伦静, 李小龙, 孔凡磊, 袁继超. 密度和株行距配置对川中丘区夏玉米群体光分布及雌雄穗分化的影响. 作物学报, 2020, 46(4): 614-630.

doi: 10.3724/SP.J.1006.2020.93034
JIN R, LI Z, YANG Y, ZHOU F, DU L J, LI X L, KONG F L, YUAN J C. Effects of density and row spacing on population light distribution and male and female spike differentiation of summer maize in hilly area of central Sichuan. Acta Agronomica Sinica, 2020, 46(4): 614-630. (in Chinese)

doi: 10.3724/SP.J.1006.2020.93034
[31]
冯海娟, 张善平, 陈海宁, 李玉岭, 胡兆平. 种植密度和行距配置对高产夏玉米冠层特性及产量的影响. 安徽农业科学, 2017, 45(25): 51-54.
FENG H J, ZHANG S P, CHEN H N, LI Y L, HU Z P. Effects of planting population and row spacing arrangements on canopy characteristics and grain yield of summer corn. Journal of Anhui Agricultural Sciences, 2017, 45(25): 51-54. (in Chinese)
[32]
冯国艺, 姚炎帝, 罗宏海, 张亚黎, 杜明伟, 张旺锋, 夏冬利, 董恒义. 新疆超高产棉花冠层光分布特征及其与群体光合生产的关系. 应用生态学报, 2012, 23(5): 1286-1294.
FENG G Y, YAO Y D, LUO H H, ZHANG Y L, DU M W, ZHANG W F, XIA D L, DONG H Y. Canopy light distribution and its correlation with photosynthetic production in super-high yielding cotton fields of Xinjiang, Northwest China. Chinese Journal of Applied Ecology, 2012, 23(5): 1286-1294. (in Chinese)
[33]
汤亮, 朱相成, 曹梦莹, 曹卫星, 朱艳. 水稻冠层光截获、光能利用与产量的关系. 应用生态学报, 2012, 23(5): 1269-1276.
TANG L, ZHU X C, CAO M Y, CAO W X, ZHU Y. Relationships of rice canopy PAR interception and light use efficiency to grain yield. Chinese Journal of Applied Ecology, 2012, 23(5): 1269-1276. (in Chinese)
[34]
赵海新, 杨丽敏, 陈书强, 姜树坤, 黄晓群, 单莉莉, 潘国君. 行距对两个不同类型水稻品种冠层结构与产量的影响. 中国水稻科学, 2011, 25(5): 488-494.
ZHAO H X, YANG L M, CHEN S Q, JIANG S K, HUANG X Q, SHAN L L, PAN G J. Effects of row-spacing on canopy structure and yield in different type rice. Chinese Journal of Rice Science, 2011, 25(5): 488-494. (in Chinese)
[1] PU LiXia, ZHANG JiaRui, YE JianPing, HUANG XiuLan, FAN GaoQiong, YANG HongKun. The Combined Effects of 16, 17-Dihydro Gibberellin A5 and Straw Mulching on Tillering and Grain Yield of Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(9): 1735-1748.
[2] GUO ChenLi, LIU Yang, CHEN Yan, HU Wei, WANG YouHua, ZHOU ZhiGuo, ZHAO WenQing. Effects of Phosphorus Fertilizer Postpone Under Nitrogen Reduction Condition on Yield, Phosphorus Fertilizer Utilization Efficiency of Drip-Irrigated Cotton [J]. Scientia Agricultura Sinica, 2025, 58(9): 1749-1766.
[3] LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao. Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China [J]. Scientia Agricultura Sinica, 2025, 58(8): 1508-1520.
[4] WEI WenHua, LI Pan, SHAO GuanGui, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei, CHAI Qiang, YIN Wen, ZHAO LianHao. Response of Silage Maize Yield and Quality to Reduced Irrigation and Combined Organic-Inorganic Fertilizer in Northwest Irrigation Areas [J]. Scientia Agricultura Sinica, 2025, 58(8): 1521-1534.
[5] XUE YuQi, ZHAO JiYu, SUN WangSheng, REN BaiZhao, ZHAO Bin, LIU Peng, ZHANG JiWang. Effects of Different Nitrogen Forms on Yield and Quality of Summer Maize [J]. Scientia Agricultura Sinica, 2025, 58(8): 1535-1549.
[6] LI ShaoXing, SONG WenFeng, WEI ZeYu, ZHOU YuLing, SONG LiXia, REN Ke, MA Qun, WANG LongChang. Effects of Straw and Milk Vetch Mulching on Soil Fertility and Sweet Potato Yield [J]. Scientia Agricultura Sinica, 2025, 58(8): 1591-1603.
[7] YIN Bo, YU AiZhong, WANG PengFei, YANG XueHui, WANG YuLong, SHANG YongPan, ZHANG DongLing, LIU YaLong, LI Yue, WANG Feng. Effects of Green Manure Returning Combined with Nitrogen Fertilizer Reduction on Hydrothermal Characteristics of Wheat Field and Grain Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2025, 58(7): 1366-1380.
[8] CHEN GuiPing, LI Pan, SHAO GuanGui, WU XiaYu, YIN Wen, ZHAO LianHao, FAN ZhiLong, HU FaLong. The Regulatory Effect of Reduced Irrigation and Combined Organic- Inorganic Fertilizer Application on Stay-Green Characteristics in Silage Maize Leaves After Tasseling Stage [J]. Scientia Agricultura Sinica, 2025, 58(7): 1381-1396.
[9] TIAN LiWen, LOU ShanWei, ZHANG PengZhong, DU MingWei, LUO HongHai, LI Jie, PAHATI MaiMaiTi, MA TengFei, ZHANG LiZhen. Analysis of Problems and Pathways for Increasing Cotton Yield per Unit Area in Xinjiang Under Green and Efficient Production Mode [J]. Scientia Agricultura Sinica, 2025, 58(6): 1102-1115.
[10] ZHANG HongCheng, XING ZhiPeng, ZHANG RuiHong, SHAN Xiang, XI XiaoBo, CHENG Shuang, WENG WenAn, HU Qun, CUI PeiYuan, WEI HaiYan. Characteristics and Technical Approaches of Integrated Unmanned High-Yield Cultivation of Wheat [J]. Scientia Agricultura Sinica, 2025, 58(5): 864-876.
[11] ZHANG Han, ZHANG YuQi, LI JingLai, XU Hong, LI WeiHuan, LI Tao. Effects of LED Supplementary Lighting on Production and Leaf Physiological Properties of Substrate-Cultivated Strawberry in Chinese Solar Greenhouse [J]. Scientia Agricultura Sinica, 2025, 58(5): 975-990.
[12] CHEN Ge, GU Yu, WEN Jiong, FU YueFeng, HE Xi, LI Wei, ZHOU JunYu, LIU QiongFeng, WU HaiYong. Effects of Fallow Weeds Returning to the Field on Photosynthetic Matter Production and Yield of Rice [J]. Scientia Agricultura Sinica, 2025, 58(4): 647-659.
[13] SU Ming, LI FanGuo, HONG ZiQiang, ZHOU Tian, LIU QiangJuan, BAN WenHui, WU HongLiang, KANG JianHong. Antioxidant Characterization of Nitrogen Application for Mitigating Potato Senescence Post-Flowering Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2025, 58(4): 660-675.
[14] SHI Fan, LI WenGuang, YI ShuSheng, YANG Na, CHEN YuMeng, ZHENG Wei, ZHANG XueChen, LI ZiYan, ZHAI BingNian. The Variation Characteristics of Soil Organic Carbon Fractions Under the Combined Application of Organic and Inorganic Fertilizers [J]. Scientia Agricultura Sinica, 2025, 58(4): 719-732.
[15] LUO YiNuo, LI YanFei, LI WenHu, ZHANG SiQi, MU WenYan, HUANG Ning, SUN RuiQing, DING YuLan, SHE WenTing, SONG WenBin, LI XiaoHan, SHI Mei, WANG ZhaoHui. Iron Concentrations in Grain and Its Different Parts of Newly Developed Wheat Varieties (Lines) in China and Influencing Factors [J]. Scientia Agricultura Sinica, 2025, 58(3): 416-430.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!