Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (23): 4886-4904.doi: 10.3864/j.issn.0578-1752.2025.23.007

• RESEARCH AND DEVELOPMENT OF TECHNOLOGY FOR ENHANCED PRODUCTIVITY • Previous Articles     Next Articles

The Influences of Different Plant Height Combinations of Maize Varieties on Light Distribution in the Canopy and the Photosynthetic Characteristics of Maize Under Maize-Soybean Strip Intercropping Pattern

ZHANG MengYu(), HE ZaiJu, WANG XingXing, REN Hao, REN BaiZhao, LIU Peng, ZHANG JiWang, ZHAO Bin*()   

  1. College of Agriculture, Shandong Agricultural University/Huang-Huai-Hai Regional Maize Technology Innovation Center, Taian 271018, Shandong
  • Received:2025-07-25 Accepted:2025-09-16 Online:2025-12-01 Published:2025-12-09
  • Contact: ZHAO Bin

Abstract:

【Objective】 This study aimed to explore the regulatory effects of different plant height combinations of maize varieties on the light distribution and light resource utilization of the population canopy under the soybean and maize strip intercropping pattern. 【Method】 From 2023 to 2024, four maize varieties with different plant heights were used as experimental materials, including the short-stemmed varieties of MY73 and Denghai 605 (DH605), and the tall varieties of Jingke 968 (JK968) and Xianyu 1466 (XY1466), as well as the soybean variety Qihuang 34. The row configuration of maize and soybean was both 4:4. Different intercropping patterns were set, including intercropping of the same maize variety in all four rows as the control (S-MY, S-DH, S-JK, and S-XY), with 6.75×104 plants/hm2 for each of the four rows and intercropping of tall and short varieties (middle row tall variety JK968, edge row short variety MY73: MY-JK-1, MY-JK-2; middle row tall variety XY1466, edge row short variety DH605: DH-XY-1, DH-XY-2), and two types of planting densities were set, with 6.75×104 plants/hm2 for each of the four rows (MY-JK-1, DH-XY-1), 6.75×104 plants/hm2 for the middle rows, and 8.25×104 plants/hm2 for the edge rows (MY-JK-2, DH-XY-2). The plant spacing of soybean in each treatment was the same. The focus was on analyzing the effects of different intercropping patterns on the canopy structure of the population, light distribution, photosynthetic characteristics of maize and crop yield. 【Result】 The combined planting of maize varieties with different plant height optimized the canopy structure, significantly improved the light transmittance of the spike layer in the maize population, increased the leaf area index and photosynthetic characteristics, and ultimately promoted the increase in total system yield. During the silk production stage, the light transmittance of the spike layer in MY-JK-1 and MY-JK-2 increased by 18.55%-88.22% compared with S-MY and S-JK, and that in DH-XY-1 and DH-XY-2 increased by 39.26%-55.77% compared with S-DH and S-XY. The net photosynthetic rate (Pn) of the four varieties (except MY73) in the tall and short plant combination pattern was all increased. Among them, the Pn of DH605 in the DH-XY-2 pattern is 6.88% higher than that of S-DH, and the Pn of XY1466 in the DH-XY-2 pattern is 10.31% higher than that of S-XY. At the same time, the maximum photochemical efficiency (Fv/Fm) and potential activity (Fv/Fo) of the spike leaf also increased. The yield of maize under the MY-JK-2 pattern increased by an average of 19.44%, 9.58% and 1.66% over two years compared with the S-MY, S-JK and MY-JK-1 patterns, respectively. The average increase of DH-XY-2 over two years was 30.20%, 14.94% and 9.21% compared with the S-DH, S-XY and DH-XY-1 patterns, respectively. The maize yield (12 536.58 kg·hm-2) and total system yield (14 001.29 kg·hm-2) under the DH-XY-2 pattern were the highest in both years. 【Conclusion】 Compared with the intercropping pattern of single maize varieties, the combined planting of maize varieties with different plant heights could optimize the canopy structure of the population, improve the light distribution of the population canopy, and increase the light transmittance of the maize ear position layer and the photosynthetically active radiation at the top of soybean. At the same time, it improved the leaf area index and photosynthetic characteristics of maize, promoted the accumulation of photosynthetic products, and ultimately increased the total system yield. With the increase of edge row density, the maize yield was further enhanced. Under the conditions of this experiment, in the eastern part of the Huang-Huai-Hai region, it was recommended to use the combined planting of short-stemmed DH605 and tall XY1466, with a middle row density of 6.75×104 plants/hm2 and an edge row density of 8.25×104 plants/hm2.

Key words: maize and soybean strip intercropping pattern, combinations of maize varieties, canopy structure of the population, light resource utilization, total system yield

Table 1

Experimental design of field configuration"

品种Variety 玉米带密度Density (plants/hm2) 处理Treatment 玉米播种带 Maize seeding strip 大豆播种带 Soybean seeding strip
带宽
Strip width
(m)
带内行数
Rows in strip distance
株距
Plant to plant distance (cm)
带宽
Strip width
(m)
带内行数
Rows in strip distance
株距
Plant to plant distance (cm)
MY73 67500 S-MY 2.3 4 14.6 1.75 4 10
67500 MY-JK-1 2.3 2 14.6 1.75 4 10
82500 MY-JK-2 2.3 2 12.0 1.75 4 10
JK968 67500 S-JK 2.3 4 14.6 1.75 4 10
67500 MY-JK-1 2.3 2 14.6 1.75 4 10
67500 MY-JK-2 2.3 2 14.6 1.75 4 10
DH605 67500 S-DH 2.3 4 14.6 1.75 4 10
67500 DH-XY-1 2.3 2 14.6 1.75 4 10
82500 DH-XY-2 2.3 2 12.0 1.75 4 10
XY1466 67500 S-XY 2.3 4 14.6 1.75 4 10
67500 DH-XY-1 2.3 2 14.6 1.75 4 10
67500 DH-XY-2 2.3 2 14.6 1.75 4 10

Fig. 1

Field planting model diagram"

Fig. 2

Effects of different intercropping patterns on plant height and ear height of maize"

Fig. 3

Effects of different intercropping patterns on leaf area index of maize"

Fig. 4

Effects of different intercropping patterns on dry weight accumulation in maize"

Table 2

Effects of different intercropping patterns on dry weight accumulation in soybean"

处理
Treatment
2023 2024
R1-S R3-S R5-S R7-S R1-S R3-S R5-S R7-S
S-MY 19.38a 30.41c 38.55c 60.50a 17.86cd 34.25bc 50.76a 56.28a
S-JK 20.55a 37.88ab 40.50bc 48.87c 21.08a 37.49a 46.31ab 51.62b
S-DH 17.41a 31.89bc 43.80ab 54.00b 20.01abc 36.73ab 46.81ab 57.98a
S-XY 18.49a 31.95bc 39.00c 54.15b 18.52bcd 35.14ab 37.22c 51.42b
MY-JK-1 20.28a 44.24a 47.65ab 59.29a 17.02d 31.49c 43.49b 58.84a
MY-JK-2 20.10a 35.56bc 53.15a 57.48a 19.81abc 34.73ab 40.15c 55.93b
DH-XY-1 20.02a 35.83bc 45.46ab 57.96a 20.39ab 36.92ab 41.35c 52.03b
DH-XY-2 18.37a 36.63ab 49.34ab 52.37bc 18.51bcd 34.37bc 43.12b 48.62c

Fig. 5

Effects of different intercropping patterns on light transmittance of ear layer of maize and top PAR of soybean"

Fig. 6

Effects of different intercropping patterns on SPAD value of maize"

Fig. 7

Effects of different intercropping patterns on gas exchange parameters of maize ear leaf"

Table 3

Effects of different intercropping patterns on chlorophyll fluorescence parameters of maize"

处理
Treatment
叶绿素荧光参数 Chlorophyll fluorescence parameters
Fv/Fm Fv/Fo
S-MY 0.801±0.006cdB 3.987±0.077cdeB
MY-JK-1 0.815±0.003abA 4.394±0.090abA
MY-JK-2 0.803±0.007cdB 4.089±0.144cdB
S-DH 0.809±0.002bcC 4.228±0.059bcC
DH-XY-1 0.817±0.002abB 4.456±0.083abB
DH-XY-2 0.820±0.002aA 4.558±0.054aA
S-JK 0.800±0.007cdB 3.990±0.131cdB
MY-JK-1 0.815±0.001abA 4.417±0.033abA
MY-JK-2 0.801±0.007cdB 4.021±0.175cdeB
S-XY 0.789±0.010eB 3.750±0.154eB
DH-XY-1 0.800±0.009cdA 3.997±0.058deA
DH-XY-2 0.799±0.005deA 3.963±0.064deA

Table 4

Effects of different intercropping patterns on the yield of various maize varieties"

年份 Year 处理 Treatment 穗粒数 Spike grain number 千粒重 1000-grain weight (g) 产量 Yield (kg·hm-2)
2023 S-MY 526.91dB 259.04eB 4465.56
MY-JK-1 552.24bcA 273.49eA 4866.91
MY-JK-2 524.84dB 261.06eB 5345.49
S-JK 527.01dC 300.54dB 4927.89
MY-JK-1 552.73bcA 322.97cA 5730.43
MY-JK-2 547.35bcB 303.84dB 5256.39
S-DH 533.10cdB 323.16cB 5317.40
DH-XY-1 552.87bcA 348.18aA 6036.60
DH-XY-2 566.88abA 326.22cB 7306.07
S-XY 562.35bC 332.56bB 6094.83
DH-XY-1 575.12aB 344.43aA 6456.57
DH-XY-2 585.24aA 342.24aA 6627.34
2024 S-MY 482.86abB 263.29dA 4269.34
MY-JK-1 502.65aA 265.13dA 4472.15
MY-JK-2 478.24bB 257.51eB 4983.55
S-JK 452.63dC 321.35cB 4597.21
MY-JK-1 484.02abA 335.11abA 5471.30
MY-JK-2 478.52bB 333.48bA 5276.25
S-DH 400.46eB 334.91abA 4305.18
DH-XY-1 444.98dA 333.62abA 5055.09
DH-XY-2 411.76eB 327.35cB 5587.53
S-XY 461.92cB 320.12cC 4819.74
DH-XY-1 485.48abA 336.82aA 5366.39
DH-XY-2 483.18abA 332.64bB 5552.23

Fig. 8

Effects of different intercropping patterns on maize yield"

Table 5

Effects of different intercropping patterns on soybean yield"

年份
Year
处理
Treatment
株粒数
Number of grains per plant
公顷株数
Number of plants per hectare (104·hm-2)
百粒重
100-grain weight (g)
产量
Yield (kg·hm-2)
2023 S-MY 95.00a 7.50a 27.92a 1990.62a
S-JK 81.37c 7.34bc 24.49c 1462.85d
S-DH 89.78ab 7.49b 26.49b 1780.61b
S-XY 77.32d 7.45b 26.81b 1545.18c
MY-JK-1 85.44b 7.74a 27.38a 1809.60a
MY-JK-2 87.00b 7.14c 26.92ab 1672.80c
DH-XY-1 85.56b 7.68a 27.22a 1754.74b
DH-XY-2 74.67d 7.57a 26.03b 1470.77d
2024 S-MY 85.00a 8.20b 26.74bc 1863.31a
S-JK 69.75c 8.16b 26.25c 1493.54c
S-DH 65.40d 7.90c 27.10b 1400.40d
S-XY 65.50d 8.17b 27.49a 1470.29c
MY-JK-1 72.00b 8.59a 27.28b 1687.68b
MY-JK-2 63.70d 8.00c 27.54a 1403.64d
DH-XY-1 68.00c 8.36a 27.17b 1544.56b
DH-XY-2 66.33cd 8.02c 27.41a 1458.64c

Table 6

Effects of different intercropping patterns on economic profit"

年份
Year
处理
Treatment
系统产量
Total system yield (kg·hm-2)
玉米产值
Maize output value
(yuan/hm2)
大豆产值
Soybean output value
(yuan/hm2)
经济效益
Economic profit
(yuan/hm2)
2023 S-MY 10921.74d 22381.39e 9029.45a 17439.71d
S-JK 11318.63d 24698.58d 6635.49d 16874.07d
S-DH 12415.41c 26650.81c 8076.85b 20364.08c
S-XY 13734.84c 30547.29b 7008.94c 23192.65b
MY-JK-1 12396.94c 26531.87c 8208.35b 20524.66c
MY-JK-2 12274.68c 26568.31c 7587.82c 19769.89c
DH-XY-1 14247.91b 31307.88b 7959.50b 24903.81b
DH-XY-2 15404.18a 34917.13a 6671.41d 27010.68a
2024 S-MY 10401.99c 22542.12d 9875.54a 18446.53c
S-JK 10687.95c 24273.24c 7915.76c 17729.00c
S-DH 10010.76c 22731.35d 7422.12c 15789.90d
S-XY 11109.77b 25448.23c 7792.54c 18877.19c
MY-JK-1 11631.13b 26250.71b 8944.70b 20979.85b
MY-JK-2 11663.44b 27085.87b 7439.29c 20138.92b
DH-XY-1 11966.04b 27512.71b 8186.17b 21335.30a
DH-XY-2 12598.39a 29408.94a 7730.79c 22561.87a

Fig. 9

Correlation analysis of canopy light transmittance, photosynthetic characteristics and maize yield under different intercropping patterns"

[1]
YAP V Y, XAPHOKHAME P, DE NEERGAARD A, BECH BRUUN T. Barriers to agro-ecological intensification of smallholder upland farming systems in Lao PDR. Agronomy, 2019, 9(7): 375.

doi: 10.3390/agronomy9070375
[2]
董奎军, 张亦涛, 刘瀚文, 张继宗, 王伟军, 温延臣, 雷秋良, 文宏达. 玉米大豆间作减量施氮对当季作物农艺性状、经济效益和后茬小麦产量的影响. 中国农业科学, 2024, 57(22): 4495-4506. doi:10.3864/j.issn.0578-1752.2024.22.009.
DONG K J, ZHANG Y T, LIU H W, ZHANG J Z, WANG W J, WEN Y C, LEI Q L, WEN H D. Effects of nitrogen reduction application of summer MaizeSoybean intercropping on agronomic traits and economic benefits as well as its yield of subsequent wheat. Scientia Agricultura Sinica, 2024, 57(22): 4495-4506. doi:10.3864/j.issn.0578-1752.2024.22.009. (in Chinese)
[3]
杨文钰, 杨峰. 发展玉豆带状复合种植, 保障国家粮食安全. 中国农业科学, 2019, 52(21): 3748-3750. doi:10.3864/j.issn.0578-1752.2019.21.003.
YANG W Y, YANG F. Developing maize-soybean strip intercropping for demand security of national food. Scientia Agricultura Sinica, 2019, 52(21): 3748-3750. doi:10.3864/j.issn.0578-1752.2019.21.003. (in Chinese)
[4]
李双伟, 朱俊奇, EVERS J B, VAN DER WERF W, 郭焱, 李保国, 马韫韬. 基于植物功能-结构模型的玉米-大豆条带间作光截获行间差异研究. 智慧农业(中英文), 2022, 4(1): 97-109.
LI S W, ZHU J Q, EVERS J B, VAN DER WERF W, GUO Y, LI B G, MA Y T. Estimating the differences of light capture between rows based on functional-structural plant model in simultaneous maize- soybean strip intercropping. Smart Agriculture, 2022, 4(1): 97-109. (in Chinese)
[5]
代希茜, 詹和明, 崔兴洪, 赵银月, 单丹丹, 张亮, 王铁军. 玉米大豆间作种植密度耦合数学模型及其优化方案研究. 作物杂志, 2019(2): 128-135.
DAI X X, ZHAN H M, CUI X H, ZHAO Y Y, SHAN D D, ZHANG L, WANG T J. A mathematical model of density coupling and its optimization in maize-soybean intercropping. Crops, 2019(2): 128-135. (in Chinese)
[6]
朱元刚, 高凤菊, 曹鹏鹏, 王乐政. 种植密度对玉米-大豆间作群体产量和经济产值的影响. 应用生态学报, 2015, 26(6): 1751-1758.
ZHU Y G, GAO F J, CAO P P, WANG L Z. Effect of plant density on population yield and economic output value in maize-soybean intercropping. Chinese Journal of Applied Ecology, 2015, 26(6): 1751-1758. (in Chinese)
[7]
KAISER E, MORALES A, HARBINSON J, KROMDIJK J, HEUVELINK E, MARCELIS L F M. Dynamic photosynthesis in different environmental conditions. Journal of Experimental Botany, 2015, 66(9): 2415-2426.

doi: 10.1093/jxb/eru406 pmid: 25324402
[8]
LIU X, RAHMAN T, SONG C, SU B Y, YANG F, YONG T W, WU Y S, ZHANG C Y, YANG W Y. Changes in light environment, morphology, growth and yield of soybean in maize-soybean intercropping systems. Field Crops Research, 2017, 200: 38-46.

doi: 10.1016/j.fcr.2016.10.003
[9]
LIU T D, SONG F B. Maize photosynthesis and microclimate within the canopies at grain-filling stage in response to narrow-wide row planting patterns. Photosynthetica, 2012, 50(2): 215-222.

doi: 10.1007/s11099-012-0011-0
[10]
LIU X, RAHMAN T, SONG C, YANG F, SU B Y, CUI L, BU W Z, YANG W Y. Relationships among light distribution, radiation use efficiency and land equivalent ratio in maize-soybean strip intercropping. Field Crops Research, 2018, 224: 91-101.

doi: 10.1016/j.fcr.2018.05.010
[11]
WU Y S, HE D, WANG E L, LIU X, HUTH N I, ZHAO Z G, GONG W Z, YANG F, WANG X C, YONG T W, LIU J, LIU W G, DU J B, PU T, LIU C Y, YU L, VAN DER WERF W, YANG W Y. Modelling soybean and maize growth and grain yield in strip intercropping systems with different row configurations. Field Crops Research, 2021, 265: 108122.

doi: 10.1016/j.fcr.2021.108122
[12]
汪直华. 西北地区玉米大豆带状间作田间配置对作物光能截获和产量的影响[D]. 雅安: 四川农业大学, 2023.
WANG Z H. Effects of maize-soybean strip intercropping field configuration on crop light interception and yield in Northwest China[D]. Yaan: Sichuan: Sichuan Agricultural University, 2023. (in Chinese)
[13]
KOU H T, LIAO Z Q, ZHANG H, LAI Z L, LIU Y Y, KONG H, LI Z J, ZHANG F C, FAN J L. Grain yield, water-land productivity and economic profit responses to row configuration in maize-soybean strip intercropping systems under drip fertigation in arid northwest China. Agricultural Water Management, 2024, 297: 108817.

doi: 10.1016/j.agwat.2024.108817
[14]
赵德强, 李彤, 侯玉婷, 元晋川, 廖允成. 玉米大豆间作模式下干物质积累和产量的边际效应及其系统效益. 中国农业科学, 2020, 53(10): 1971-1985. doi:10.3864/j.issn.0578-1752.2020.10.005.
ZHAO D Q, LI T, HOU Y T, YUAN J C, LIAO Y C. Benefits and marginal effect of dry matter accumulation and yield in maize and soybean intercropping patterns. Scientia Agricultura Sinica, 2020, 53(10): 1971-1985. doi:10.3864/j.issn.0578-1752.2020.10.005. (in Chinese)
[15]
LI R D, XU C L, WU Z S, XU Y F, SUN S, SONG W W, WU C X. Optimizing canopy-spacing configuration increases soybean yield under high planting density. The Crop Journal, 2025, 13(1): 233-245.

doi: 10.1016/j.cj.2024.12.005
[16]
武晶, 陈梦, 汪直华, 杨继芝, 李燕丽, 吴雨珊, 杨文钰. 带状间作不同带间距对玉米光能利用的影响. 中国农业科学, 2023, 56(23): 4648-4659. doi:10.3864/j.issn.0578-1752.2023.23.007.
WU J, CHEN M, WANG Z H, YANG J Z, LI Y L, WU Y S, YANG W Y. Effect of different strip distances on light energy utilization in strip intercropping maize. Scientia Agricultura Sinica, 2023, 56(23): 4648-4659.doi:10.3864/j.issn.0578-1752.2023.23.007. (in Chinese)
[17]
陶静静, 王海标, 朱宗瑛, 谭金芳, 王宜伦. 不同基因型夏玉米间作对产量及氮素吸收利用的影响. 华北农学报, 2016, 31(6): 185-191.

doi: 10.7668/hbnxb.2016.06.029
TAO J J, WANG H B, ZHU Z Y, TAN J F, WANG Y L. Effect of different genotype summer maize intercropping on yield and nitrogen absorption and utilization. Acta Agriculturae Boreali-Sinica, 2016, 31(6): 185-191. (in Chinese)

doi: 10.7668/hbnxb.2016.06.029
[18]
焦贵华. 不同基因型夏玉米间作对产量及冠层光合特性的影响[D]. 保定: 河北农业大学, 2022.
JIAO G H. Effect of intercropping different genotypes of summer maize on yield and canopy photosynthetic characteristics[D]. Baoding: Hebei Agricultural University, 2022. (in Chinese)
[19]
卫得杰. 密植条件下高矮玉米品种间作对产量形成的影响[D]. 保定: 河北农业大学, 2023.
WEI D J. The influence of intercropping of tall and short maize varieties under dense planting conditions on yield formation[D]. Baoding: Hebei Agricultural University, 2023. (in Chinese)
[20]
LIU T N, CHEN J Z, WANG Z Y, WU X R, WU X C, DING R X, HAN Q F, CAI T, JIA Z K. Ridge and furrow planting pattern optimizes canopy structure of summer maize and obtains higher grain yield. Field Crops Research, 2018, 219: 242-249.

doi: 10.1016/j.fcr.2018.02.012
[21]
NIE C W, SHI L, LI Z H, XU X B, YIN D M, LI S K, JIN X L. A comparison of methods to estimate leaf area index using either crop-specific or generic proximal hyperspectral datasets. European Journal of Agronomy, 2023, 142: 126664.

doi: 10.1016/j.eja.2022.126664
[22]
YIN W, CHAI Q, GUO Y, FENG F X, ZHAO C, YU A Z, HU F L. Analysis of leaf area index dynamic and grain yield components of intercropped wheat and maize under straw mulch combined with reduced tillage in arid environments. Journal of Agricultural Science, 2016, 8(4): 26.
[23]
ZHENG C H, WANG R S, ZHOU X, LI C N, DOU X Y. Photosynthetic and growth characteristics of apple and soybean in an intercropping system under different mulch and irrigation regimes in the Loess Plateau of China. Agricultural Water Management, 2022, 266: 107595.

doi: 10.1016/j.agwat.2022.107595
[24]
丁相鹏, 白晶, 张春雨, 张吉旺, 刘鹏, 任佰朝, 赵斌. 扩行缩株对夏玉米群体冠层结构及产量的影响. 中国农业科学, 2020, 53(19): 3915-3927. doi:10.3864/j.issn.0578-1752.2020.19.006.
DING X P, BAI J, ZHANG C Y, ZHANG J W, LIU P, REN B Z, ZHAO B. Effects of line-spacing expansion and row-spacing shrinkage on population structure and yield of summer maize. Scientia Agricultura Sinica, 2020, 53(19): 3915-3927.doi:10.3864/j.issn.0578-1752.2020.19.006. (in Chinese)
[25]
柏延文, 杨永红, 朱亚利, 李红杰, 薛吉全, 张仁和. 种植密度对不同株型玉米冠层光能截获和产量的影响. 作物学报, 2019, 45(12): 1868-1879.

doi: 10.3724/SP.J.1006.2019.93011
BAI Y W, YANG Y H, ZHU Y L, LI H J, XUE J Q, ZHANG R H. Effect of planting density on light interception within canopy and grain yield of different plant types of maize. Acta Agronomica Sinica, 2019, 45(12): 1868-1879. (in Chinese)
[26]
REN Y Y, LIU J J, WANG Z L, ZHANG S Q. Planting density and sowing proportions of maize-soybean intercrops affected competitive interactions and water-use efficiencies on the Loess Plateau, China. European Journal of Agronomy, 2016, 72: 70-79.

doi: 10.1016/j.eja.2015.10.001
[27]
REN X M, SUN D B, WANG Q S. Modeling the effects of plant density on maize productivity and water balance in the Loess Plateau of China. Agricultural Water Management, 2016, 171: 40-48.

doi: 10.1016/j.agwat.2016.03.014
[28]
徐宗贵, 孙磊, 王浩, 王淑兰, 王小利, 李军. 种植密度对旱地不同株型春玉米品种光合特性与产量的影响. 中国农业科学, 2017, 50(13): 2463-2475. doi:10.3864/j.issn.0578-1752.2017.13.006.
XU Z G, SUN L, WANG H, WANG S L, WANG X L, LI J. Effects of different planting densities on photosynthetic characteristics and yield of different variety types of spring maize on dryland. Scientia Agricultura Sinica, 2017, 50(13): 2463-2475. doi:10.3864/j.issn.0578-1752.2017.13.006. (in Chinese)
[29]
REN Y Y, ZHANG L, YAN M F, ZHANG Y J, CHEN Y L, PALTA J A, ZHANG S Q. Effect of sowing proportion on above- and below-ground competition in maize-soybean intercrops. Scientific Reports, 2021, 11: 15760.

doi: 10.1038/s41598-021-95242-w pmid: 34344978
[30]
金容, 李钟, 杨云, 周芳, 杜伦静, 李小龙, 孔凡磊, 袁继超. 密度和株行距配置对川中丘区夏玉米群体光分布及雌雄穗分化的影响. 作物学报, 2020, 46(4): 614-630.

doi: 10.3724/SP.J.1006.2020.93034
JIN R, LI Z, YANG Y, ZHOU F, DU L J, LI X L, KONG F L, YUAN J C. Effects of density and row spacing on population light distribution and male and female spike differentiation of summer maize in hilly area of central Sichuan. Acta Agronomica Sinica, 2020, 46(4): 614-630. (in Chinese)

doi: 10.3724/SP.J.1006.2020.93034
[31]
ZHU X G, HASANUZZAMAN M, JAJOO A, LAWSON T, LIN R C, LIU C M, LIU L N, LIU Z F, LU C M, MOUSTAKAS M, ROACH T, SONG Q F, YIN X Y, ZHANG W F. Improving photosynthesis through multidisciplinary efforts: The next frontier of photosynthesis research. Frontiers in Plant Science, 2022, 13: 967203.

doi: 10.3389/fpls.2022.967203
[32]
YAO H S, ZHANG Y L, YI X P, ZUO W Q, LEI Z Y, SUI L L, ZHANG W F. Characters in light-response curves of canopy photosynthetic use efficiency of light and N in responses to plant density in field-grown cotton. Field Crops Research, 2017, 203: 192-200.

doi: 10.1016/j.fcr.2016.12.018
[33]
DONG B, WANG Z S, EVERS J B, JAN STOMPH T, VAN DER PUTTEN P E L, YIN X Y, WANG J L, SPRANGERS T, HANG X B, VAN DER WERF W. Competition for light and nitrogen with an earlier-sown species negatively affects leaf traits and leaf photosynthetic capacity of maize in relay intercropping. European Journal of Agronomy, 2024, 155: 127119.

doi: 10.1016/j.eja.2024.127119
[34]
SU Y, YU R P, XU H S, ZHANG W P, YANG H, SURIGAOGE S, CALLAWAY R M, LI L. Maize cultivar mixtures increase aboveground biomass and grain quality via trait dissimilarity and plasticity. European Journal of Agronomy, 2024, 156: 127160.

doi: 10.1016/j.eja.2024.127160
[35]
WU Y W, LI Q, JIN R, CHEN W, LIU X L, KONG F L, KE Y P, SHI H C, YUAN J C. Effect of low-nitrogen stress on photosynthesis and chlorophyll fluorescence characteristics of maize cultivars with different low-nitrogen tolerances. Journal of Integrative Agriculture, 2019, 18(6): 1246-1256.

doi: 10.1016/S2095-3119(18)62030-1
[36]
杨小琴, 王洋, 齐晓宁, 孙露莹, 张梦杰, 宋凤斌, 刘胜群, 李向楠, 朱先灿. 高光效种植模式下玉米间作平菇对玉米穗位叶光合特性的影响. 土壤与作物, 2020, 9(2): 166-177.
YANG X Q, WANG Y, QI X N, SUN L Y, ZHANG M J, SONG F B, LIU S Q, LI X N, ZHU X C. Effects of maize || mushroom intercropping on photosynthetic characteristics of maize ear leaf under high photosynthetic efficiency planting pattern. Soils and Crops, 2020, 9(2): 166-177. (in Chinese)
[37]
GONG X W, FERDINAND U, DANG K, LI J, CHEN G H, LUO Y, YANG P, FENG B L. Boosting proso millet yield by altering canopy light distribution in proso millet/mung bean intercropping systems. The Crop Journal, 2020, 8(2): 365-377.

doi: 10.1016/j.cj.2019.09.009
[38]
杨宏伟. 玉米间作豌豆干物质累积对密植响应的光合生理与分子机制[D]. 兰州: 甘肃农业大学, 2021.
YANG H W. Photosynthetic physiology and molecular mechanism of dry matter accumulation in maize pea intercropping system response to plant density[D]. Lanzhou: Gansu Agricultural University, 2021. (in Chinese)
[39]
YANG H, SU Y H, WANG L, WHALEN J K, PU T, WANG X C, YANG F, YONG T W, LIU J, YAN Y H, YANG W Y, WU Y S. Strip intercropped maize with more light interception during post-silking promotes photosynthesized carbon sequestration in the soil. Agriculture, Ecosystems & Environment, 2025, 378: 109301.

doi: 10.1016/j.agee.2024.109301
[40]
WANG C, ZHOU L B, ZHANG G B, GAO J, PENG F L, ZHANG C L, XU Y, ZHANG L Y, SHAO M B. Responses of photosynthetic characteristics and dry matter formation in waxy sorghum to row ratio configurations in waxy sorghum-soybean intercropping systems. Field Crops Research, 2021, 263: 108077.

doi: 10.1016/j.fcr.2021.108077
[41]
YANG S Q, ZHAO Y X, XU Y N, CUI J X, LI T, HU Y M, QIAN X, LI Z X, SUI P, CHEN Y Q. Yield performance response to field configuration of maize and soybean intercropping in China: A meta-analysis. Field Crops Research, 2024, 306: 109235.

doi: 10.1016/j.fcr.2023.109235
[42]
ALI RAZA M, GUL H, WANG J, YASIN H S, QIN R J, BIN KHALID M H, NAEEM M, FENG L Y, IQBAL N, GITARI H, AHMAD S, BATTAGLIA M, ANSAR M, YANG F, YANG W Y. Land productivity and water use efficiency of maize-soybean strip intercropping systems in semi-arid areas: A case study in Punjab Province, Pakistan. Journal of Cleaner Production, 2021, 308: 127282.

doi: 10.1016/j.jclepro.2021.127282
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!