Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (21): 4405-4420.doi: 10.3864/j.issn.0578-1752.2025.21.010

• GREEN CONTROL OF MAJOR COWPEA PESTS AND FUSARIUM WILT: RESEARCH AND PRACTICAL INNOVATIONS • Previous Articles     Next Articles

Effects of Different Organic Fertilizers on the Control of Cowpea Wilt by Bacillus velezensis SD13

XIE HaiPeng1(), LIN JunXu1, LIU Yong1, MAI XianJun1, LUO Feng1, WANG XueWu4, XIE Wen2, LI ShaoKa3, KONG XiangYi1,*(), WU XiaoYan1()   

  1. 1 Sanya Academy of Tropical Agricultural Sciences, Sanya 572000, Hainan
    2 Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences/State Key Laboratory of Vegetable Biobreeding, Beijing 100081
    3 Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences, Haikou 571100
    4 Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572000, Hainan
  • Received:2025-04-29 Accepted:2025-06-14 Online:2025-11-01 Published:2025-11-06
  • Contact: KONG XiangYi, WU XiaoYan

Abstract:

【Objective】The objective of this study is to investigate the biological control effect of Bacillus velezensis SD13 against cowpea wilt when combined with different organic fertilizers, and to provide a theoretical basis for the application of biological control technology of cowpea wilt. 【Method】A pot experiment was conducted to evaluate the effects of applying 10% sheep manure, 10% vermicompost, and a 5% sheep manure+5% vermicompost mixture as fertilizer carriers on the efficacy of B. velezensis SD13 in controlling cowpea wilt. The experiment included eight treatments: blank control (CK), pathogen control (F), pathogen+SD13 (FB), pathogen+10% vermicompost (FW), pathogen+SD13+10% vermicompost (FBW), pathogen+10% sheep manure (FS), pathogen+SD13+10% sheep manure (FBS), and pathogen+SD13+5% vermicompost+5% sheep manure (FBWS). Each treatment was replicated three times, with three pots per replicate. After 45 d of cultivation in a greenhouse, the incidence rate of cowpea wilt, plant biomass (above-ground and below-ground dry weight), and defense enzyme activity (catalase) were measured for each treatment. Rhizosphere soil samples were collected, and the structure, diversity, and key microbial taxa of the soil bacterial community were analyzed using 16S rRNA high-throughput sequencing. 【Result】The control effect of sheep manure, vermicompost and mixed organic fertilizer combined with B. velezensis SD13 on cowpea wilt was more than 75%. The combination of sheep manure and SD13 significantly increased soil total nitrogen by 30%, with the dominant soil bacteria being Firmicutes, which showed a negative correlation with other bacterial communities. The combination of vermicompost and SD13 significantly increased the above-ground dry weight of diseased cowpea plants by 29% and the below-ground dry weight by 30%, enhanced the activity of catalase in cowpea by 10%, and significantly increased the richness and diversity of soil bacteria, restoring the community structure to a healthy level. The combination of mixed organic fertilizers and SD13 significantly increased the below-ground dry weight of diseased cowpea plants by 155%, with the soil community structure being influenced by the microbial communities of both vermicompost and sheep manure. 【Conclusion】The type of organic fertilizer affects the biocontrol effect of B. velezensis SD13 against cowpea wilt in the soil. Vermicompost is more suitable for combination with SD13 than sheep manure. This combination not only ensures high biocontrol effect, but also further enhances cowpea biomass, catalase activity, and soil bacterial richness and diversity. It increases the abundance of beneficial bacterial communities and restores the soil bacterial community structure and composition to levels associated with healthy cowpea soil, making it a suitable organic fertilizer for the application of SD13 in controlling cowpea wilt in soil.

Key words: cowpea wilt, Bacillus velezensis, organic fertilizer, microbial diversity, biological control

Fig. 1

Effects of organic fertilizer combined with biocontrol agent SD13 on the cowpea wilt control effect, biomass, plant enzyme activity and soil mineral content"

Fig. 2

Effects of biocontrol strain SD13 combined with different types of organic fertilizers on the diversity and richness of soil microorganisms in cowpea fields"

Fig. 3

Effects of SD13 combined with different organic fertilizers on the structure of soil microbial communities"

Fig. 4

Analysis of significance test for species differences between groups"

Fig. 5

Correlation analysis of soil physical and chemical properties and microbial populations"

[1]
海南省统计局. 海南省统计年鉴. 北京: 中国统计出版社, 2024: 243.
Hainan Provincial Bureau of Statistics. Hainan Statistical Yearbook. Beijing: China Statistics Press, 2024: 243. (in Chinese)
[2]
陈燕羽, 罗劲梅, 李萍, 石旺鹏, 王树昌, 陈俊谕, 迟元铭, 陈丽丽, 王昊祺. 我国豇豆病虫害绿色防控技术研究应用进展及对策建议. 植物保护, 2025, 51(2): 1-7, 17.
CHEN Y Y, LUO J M, LI P, SHI W P, WANG S C, CHEN J Y, CHI Y M, CHEN L L, WANG H Q. Research and application progress of environmentally-friendly pest control for cowpea and countermeasures in China. Plant Protection, 2025, 51(2): 1-7, 17. (in Chinese)
[3]
陈育民, 吴颖仪, 黎昆, 郝东川. 华南地区豇豆病虫害发生及减药控残关键技术. 中国果菜, 2025, 45(2): 66-73.
CHEN Y M, WU Y Y, LI K, HAO D C. The occurrence of diseases and pests in cowpea and key technologies for reducing and controlling pesticide residues. China Fruit and Vegetable, 2025, 45(2): 66-73. (in Chinese)
[4]
谢海鹏, 林樱桃, 吴小燕, 林俊旭, 林明智, 麦贤俊, 陈子跃, 谢文, 孔祥义. 豇豆枯萎病生防细菌的筛选鉴定及抗病机理初探. 热带作物学报, 2023, 44(6): 1224-1236.

doi: 10.3969/j.issn.1000-2561.2023.06.016
XIE H P, LIN Y T, WU X Y, LIN J X, LIN M Z, MAI X J, CHEN Z Y, XIE W, KONG X Y. Screening and identification of biocontrol bacteria of cowpea Fusarium wilt and preliminary exploration of disease resistance mechanism. Chinese Journal of Tropical Crops, 2023, 44(6): 1224-1236. (in Chinese)
[5]
MILJAKOVIĆ D, MARINKOVIĆ J, BALEŠEVIĆ-TUBIĆ S. The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms, 2020, 8(7): 1037.
[6]
李晓婷, 周芳芳, 汤利. 合理配施有机肥下根际微生物防控土传病害机理研究进展. 植物营养与肥料学报, 2025, 31(2): 364-374.
LI X T, ZHOU F F, TANG L. Research progress on the mechanism of rhizosphere microorganisms controlling soil-borne diseases under rational application of organic fertilizer. Journal of Plant Nutrition and Fertilizers, 2025, 31(2): 364-374. (in Chinese)
[7]
KHAN A R, MUSTAFA A, HYDER S, VALIPOUR M, RIZVI Z F, GONDAL A S, YOUSUF Z, IQBAL R, DARAZ U. Bacillus spp. as bioagents: Uses and application for sustainable agriculture. Biology, 2022, 11(12): 1763.
[8]
宋明良, 姚继胜. 防病微生物菌肥, 绿色农业发展的下一个强力突破口? 营销界, 2019(18): 73-75.
SONG M L, YAO J S. Disease-resistant microbial fertilizers: The next powerful breakthrough for green agricultural development? Marketing Circles, 2019(18): 73-75. (in Chinese)
[9]
贾顺禄, 管青霞, 李志刚, 赵勇, 李有林, 张文辉, 牛红莉. 不同生物菌肥对黄芪土传病害及产量的影响. 农业科技与信息, 2022(11): 20-22.
JIA S L, GUAN Q X, LI Z G, ZHAO Y, LI Y L, ZHANG W H, NIU H L. Effects of different biocontrol microbial fertilizers on Astragalus membranaceus soil-borne diseases and yield. Agricultural Science-Technology and Information, 2022(11): 20-22. (in Chinese)
[10]
李禹, 段斌, 杨代云, 周艳宾, 朱宏强, 刘凯义, 褚建忠, 王戈, 王娜, 白羽祥, 杜宇, 代惠娟, 周鹏. 有机肥配施微生物菌剂对土壤理化特性及烤烟产质量的影响. 江苏农业科学, 2025, 53(2): 81-87.
LI Y, DUAN B, YANG D Y, ZHOU Y B, ZHU H Q, LIU K Y, CHU J Z, WANG G, WANG N, BAI Y X, DU Y, DAI H J, ZHOU P. Effects of organic fertilizer combined with microbial inoculants on soil physicochemical properties and quality of flue-cured tobacco. Jiangsu Agricultural Sciences, 2025, 53(2): 81-87. (in Chinese)
[11]
赵津聪, 撒晓梅, 李明, 戴仲龙, 孙霄, 王宏. 有机肥和微生物菌剂配施对‘赤霞珠’葡萄根际土壤细菌群落多样性的影响. 西北农业学报, 2024, 33(11): 2134-2145.
ZHAO J C, SA X M, LI M, DAI Z L, SUN X, WANG H. Effect of organic fertilizer and microbial agent formulation on inter-root soil bacterial community diversity in ‘Cabernet Sauvignon’ grapes. Acta Agriculturae Boreali-Occidentalis Sinica, 2024, 33(11): 2134-2145. (in Chinese)
[12]
王亚文, 史慧芳, 张鹏, 郝哲, 阎雄飞. 微生物菌肥在设施蔬菜生产中的研究进展. 农学学报, 2021, 11(11): 27-32.

doi: 10.11923/j.issn.2095-4050.casb2021-0063
WANG Y W, SHI H F, ZHANG P, HAO Z, YAN X F. Research progress of microbial fertilizer in facility vegetable production. Journal of Agriculture, 2021, 11(11): 27-32. (in Chinese)

doi: 10.11923/j.issn.2095-4050.casb2021-0063
[13]
顾美英, 杨蓉, 徐万里, 唐光木, 张志东, 张云舒, 冯雷, 王宁, 詹发强. 棉秆炭配施生物有机肥对连作棉花根际土壤微生态和棉花生长的影响. 中国农业科技导报, 2019, 21(10): 47-57.

doi: 10.13304/j.nykjdb.2018.0755
GU M Y, YANG R, XU W L, TANG G M, ZHANG Z D, ZHANG Y S, FENG L, WANG N, ZHAN F Q. Effects of cotton stalk biochar combined with bio-organic fertilizer on rhizosphere soil micro-ecology and cotton growth of continuous cropping cotton. Journal of Agricultural Science and Technology, 2019, 21(10): 47-57. (in Chinese)

doi: 10.13304/j.nykjdb.2018.0755
[14]
郝大志, 王咏坤, 陈捷, 辛舟生, 高永东. 海藻渣复配微生物菌剂防治黄瓜苗期枯萎病的协同增效作用. 中国生物防治学报, 2022, 38(1): 97-107.

doi: 10.16409/j.cnki.2095-039x.2021.08.005
HAO D Z, WANG Y K, CHEN J, XIN Z S, GAO Y D. Synergistic effect of seaweed residue combined with microbial inoculum on cucumber Fusarium wilt control. Chinese Journal of Biological Control, 2022, 38(1): 97-107. (in Chinese)
[15]
刘苗姣, 林素坤, 刘蓉, 张俊辉, 李霖, 易婷, 徐汉虹, 曾令达. 解淀粉芽胞杆菌HN11结合烟渣有机肥对草莓根腐病的生防效应. 中国生物防治学报, 2025, 41(1): 143-155.

doi: 10.16409/j.cnki.2095-039x.2025.02.009
LIU M J, LIN S K, LIU R, ZHANG J H, LI L, YI T, XU H H, ZENG L D. Biocontrol effects of Bacillus amyloliquefaciens HN11 in combination with tobacco waste organic fertilizers on strawberry root rot. Chinese Journal of Biological Control, 2025, 41(1): 143-155. (in Chinese)
[16]
YUAN S F, WANG L L, WU K, SHI J X, WANG M S, YANG X M, SHEN Q R, SHEN B. Evaluation of Bacillus-fortified organic fertilizer for controlling tobacco bacterial wilt in greenhouse and field experiments. Applied Soil Ecology, 2014, 75: 86-94.
[17]
POTTORFF M, WANAMAKER S, MA Y Q, EHLERS J D, ROBERTS P A, CLOSE T J. Genetic and physical mapping of candidate genes for resistance to Fusarium oxysporum f. sp. tracheiphilum race 3 in cowpea [Vigna unguiculata (L.) Walp]. PLoS ONE, 2012, 7 (7): e41600.
[18]
WU X, SHAN Y, LI Y, LI Q, WU C. The soil nutrient environment determines the strategy by which Bacillus velezensis HN03 suppresses Fusarium wilt in banana plants. Frontiers in Plant Science, 2020, 11: 599904.
[19]
杨宁, 哈米古丽·吐尔逊江, 徐兆丰, 肖明. 蚯蚓粪与贝莱斯芽孢杆菌混合改良对土壤微生物群落结构的影响. 上海师范大学学报(自然科学版), 2024, 53(3): 362-370.
YANG N, HAMIGULI·TURXUNJIANG, XU Z F, XIAO M. Effects of amendments vermicompost and Bacillus velezensis on soil microbial community structure. Journal of Shanghai Normal University (Natural Sciences), 2024, 53(3): 362-370. (in Chinese)
[20]
刘一凡, 杨丽娟, 王红, 王鑫鑫. 蚯蚓粪肥在农业生产中的应用效果及研究进展. 土壤通报, 2021, 52(2): 474-484.
LIU Y F, YANG L J, WANG H, WANG X X. Application effect and research progress of vermicompost in agricultural production. Chinese Journal of Soil Science, 2021, 52(2): 474-484. (in Chinese)
[21]
徐洪岩, 张微, 刘丽, 张明爽, 于倩倩, 姜俊凤. 蚯蚓粪对设施内外玉米土壤细菌多样性及群落结构的影响. 华北农学报, 2024, 39(S1): 228-236.

doi: 10.7668/hbnxb.20194738
XU H Y, ZHANG W, LIU L, ZHANG M S, YU Q Q, JIANG J F. Effects of vermicompost on soil bacteria diversity and community structure of maize inside and outside of facilities. Acta Agriculturae Boreali-Sinica, 2024, 39(S1): 228-236. (in Chinese)

doi: 10.7668/hbnxb.20194738
[22]
周建国, 吴彪, 周丽萍. 蚯蚓粪、猪粪和羊粪有机肥对白菜生长、产量和品质的影响. 特种经济动植物, 2024, 27(6): 3-5.
ZHOU J G, WU B, ZHOU L P. Effects of organic fertilizers from vermicompost, pig manure, and sheep manure on the growth, yield, and quality of Chinese cabbage. Special Economic Animals and Plants, 2024, 27(6): 3-5. (in Chinese)
[23]
路迎奇, 杨丽娟, 史津玮, 张玥琦, 张天实, 熊孝楠. 蚓粪用量对温室番茄生长发育与产量和品质的调节. 北方园艺, 2019(6): 77-82.
LU Y Q, YANG L J, SHI J W, ZHANG Y Q, ZHANG T S, XIONG X N. Regulation of vermicompost dosage on tomato growth, development, yield and quality in greenhouse. Northern Horticulture, 2019(6): 77-82. (in Chinese)
[24]
CHEN L, WANG X H, MA Q H, BIAN L S, LIU X, XU Y, ZHANG H H, SHAO J H, LIU Y P. Bacillus velezensis CLA178-induced systemic resistance of Rosa multiflora against crown gall disease. Frontiers in Microbiology, 2020, 11: 587667.
[25]
吕秀敏, 刘潇予, 赵彩衣, 蒲瑶瑶, 焦加国, 李辉信. 蚯蚓堆肥浸提液对幼苗生长的影响. 中国土壤与肥料, 2020(2): 220-225.
X M, LIU X Y, ZHAO C Y, PU Y Y, JIAO J G, LI H X. Effect of vermicompost extract on seedling growth. Soil and Fertilizer Sciences in China, 2020(2): 220-225. (in Chinese)
[26]
孙栋. 减施氮肥下接种根瘤菌对小豆产量和品质的影响[D]. 保定: 河北农业大学, 2022.
SUN D. Effects of rhizobium inoculation on yield and quality of adzuki bean under reduced nitrogen fertilizer application[D]. Baoding: Hebei Agricultural University, 2022. (in Chinese)
[27]
刘兆辉, 薄录吉, 李彦, 孙明, 仲子文, 张英鹏, 井永苹. 氮肥减量施用技术及其对作物产量和生态环境的影响综述. 中国土壤与肥料, 2016(4): 1-8.
LIU Z H, BO L J, LI Y, SUN M, ZHONG Z W, ZHANG Y P, JING Y P. Effect of nitrogen fertilizer reduction on crop yield and ecological environment: A review. Soil and Fertilizer Sciences in China, 2016(4): 1-8. (in Chinese)
[28]
LIU B R, JIA G M, CHEN J, WANG G. A review of methods for studying microbial diversity in soils. Pedosphere, 2006, 16(1): 18-24.
[29]
GRIFFITHS B S, PHILIPPOT L. Insights into the resistance and resilience of the soil microbial community. FEMS Microbiology Reviews, 2013, 37(2): 112-129.

doi: 10.1111/j.1574-6976.2012.00343.x pmid: 22568555
[30]
郎立娜, 孙正骁, 陈元晖, 张春燕, 张羽, 李明堂. 蚯蚓和细菌对秸秆混粪改良苏打盐碱土碳转化及微生物群落的影响. 农业资源与环境学报, 2023, 40(2): 412-422.
LANG L N, SUN Z X, CHEN Y H, ZHANG C Y, ZHANG Y, LI M T. Effects of earthworms and bacteria on carbon transformation and microbial community of soda saline-alkali soil by improvements of straw and manure mixture. Journal of Agricultural Resources and Environment, 2023, 40(2): 412-422. (in Chinese)
[31]
林容, 张姣, 肖选雪, 马欧, 陈绍军, 赵艳蕊. 综述不同粪肥对土壤中微生物群落结构影响. 中国农业文摘-农业工程, 2025, 37(2): 56-60.
LIN R, ZHANG J, XIAO X X, MA O, CHEN S J, ZHAO Y R. A review of the effects of different manures on soil microbial community structure. Agricultural Science and Engineering in China, 2025, 37(2): 56-60. (in Chinese)
[32]
包江桥, 周伊薇, 何璐茜, 李琦, 黎华寿, 张定煌, 贺鸿志. 固氮蓝藻的农业应用研究进展. 中国生态农业学报, 2018, 26(4): 574-583.
BAO J Q, ZHOU Y W, HE L X, LI Q, LI H S, ZHANG D H, HE H Z. Research progress in the agricultural application of nitrogen-fixing cyanobacteria. Chinese Journal of Eco-Agriculture, 2018, 26(4): 574-583. (in Chinese)
[33]
EBRAHIMI-ZARANDI M, SABERI RISEH R, TARKKA M T. Actinobacteria as effective biocontrol agents against plant pathogens, an overview on their role in eliciting plant defense. Microorganisms, 2022, 10(9): 1739.
[34]
KALAM S, BASU A, AHMAD I, SAYYED R Z, EL-ENSHASY H A, DAILIN D J, SURIANI N L. Recent understanding of soil acidobacteria and their ecological significance: A critical review. Frontiers in Microbiology, 2020, 11: 580024.
[35]
SPEIRS L B M, RICE D T F, PETROVSKI S, SEVIOUR R J. The phylogeny, biodiversity, and ecology of the Chloroflexi in activated sludge. Frontiers in Microbiology, 2019, 10: 2015.
[36]
ISLAM Z F, CORDERO P R F, FENG J, CHEN Y J, BAY S K, JIRAPANJAWAT T, GLEADOW R M, CARERE C R, STOTT M B, CHIRI E, GREENING C. Two Chloroflexi classes independently evolved the ability to persist on atmospheric hydrogen and carbon monoxide. The ISME Journal, 2019, 13(7): 1801-1813.
[37]
井涛, 周登博, 王丽霞, 何应对, 陈宇丰, 王飞, 王必尊. 不同饼肥碳氮比发酵液对香蕉枯萎病及土壤微生物群落功能多样性的影响. 热带作物学报, 2016, 37(11): 2063-2070.
JING T, ZHOU D B, WANG L X, HE Y D, CHEN Y F, WANG F, WANG B Z. Effects of carbon-nitrogen ratios in fermentation broths from different organic fertilizers on banana functional diversity of soil microbial community. Chinese Journal of Tropical Crops, 2016, 37(11): 2063-2070. (in Chinese)
[38]
LEE S M, KONG H G, SONG G C, RYU C M. Disruption of Firmicutes and Actinobacteria abundance in tomato rhizosphere causes the incidence of bacterial wilt disease. The ISME Journal, 2021, 15(1): 330-347.
[39]
BOLHUIS H, SEVERIN I, CONFURIUS-GUNS V, WOLLENZIEN U I A, STAL L J. Horizontal transfer of the nitrogen fixation gene cluster in the cyanobacterium Microcoleus chthonoplastes. The ISME Journal, 2010, 4(1): 121-130.
[40]
FAHEEM M, RAZA W, ZHONG W, NAN Z, SHEN Q R, XU Y C. Evaluation of the biocontrol potential of Streptomyces goshikiensis YCXU against Fusarium oxysporum f. sp. niveum. Biological Control, 2015, 81: 101-110.
[41]
DELPIN M W, GOODMAN A E. Nitrogen regulates chitinase gene expression in a marine bacterium. The ISME Journal, 2009, 3(9): 1064-1069.
[42]
BIBB M J. Regulation of secondary metabolism in streptomycetes. Current Opinion in Microbiology, 2005, 8(2): 208-215.

doi: 10.1016/j.mib.2005.02.016 pmid: 15802254
[43]
程举, 张孝龙, 赵江源, 文孟良, 丁章贵, 李铭刚. 近年链霉菌次生代谢产物研究进展. 中国抗生素杂志, 2015, 40(10): 791-800.
CHENG J, ZHANG X L, ZHAO J Y, WEN M L, DING Z G, LI M G. The recent progress of study on secondary metabolites of Streptomyces. Chinese Journal of Antibiotics, 2015, 40(10): 791-800. (in Chinese)
[44]
DA SILVA G O A, SOUTHAM G, GAGEN E J. Accelerating soil aggregate formation: A review on microbial processes as the critical step in a post-mining rehabilitation context. Soil Research, 2023, 61(3): 209-223.
[45]
KUMAR A, SINGH S, GAURAV A K, SRIVASTAVA S, VERMA J P. Plant growth-promoting bacteria: Biological tools for the mitigation of salinity stress in plants. Frontiers in Microbiology, 2020, 11: 1216.

doi: 10.3389/fmicb.2020.01216 pmid: 32733391
[1] SHI Fan, LI WenGuang, YI ShuSheng, YANG Na, CHEN YuMeng, ZHENG Wei, ZHANG XueChen, LI ZiYan, ZHAI BingNian. The Variation Characteristics of Soil Organic Carbon Fractions Under the Combined Application of Organic and Inorganic Fertilizers [J]. Scientia Agricultura Sinica, 2025, 58(4): 719-732.
[2] CONG QiQi, ZHANG JingYi, MENG XiangLong, DAI PengBo, LI Bo, HU TongLe, WANG ShuTong, CAO KeQiang, WANG YaNan. Identification of Hypovirus in Apple Ring Rot Fungus Botryosphaeria dothidea and Detection of Virus-Carrying Status in China [J]. Scientia Agricultura Sinica, 2025, 58(3): 478-492.
[3] LI YueQi, MA ZhongHua, SU Ming, LIU Hao, MA FengLan, MA XiaoYing, LI Tao, LI QingYun, ZHANG Dan, LIU JiLi, WU Na. Response of Maize Photosynthetic Production Capacity in Saline- Alkaline Soil to Organic Fertilizer Application Rates Under Differential Tillage Practices [J]. Scientia Agricultura Sinica, 2025, 58(19): 3872-3889.
[4] HU JiaYan, SHEN ZhiHan, WEN LiHui, YU JiaHao, ZHANG YuJun, JIANG DongHua. Identification and Evaluation of Biocontrol Actinomycetes Against Xanthomonas oryzae pv. oryzicola for Disease Suppression and Growth Promotion in Rice [J]. Scientia Agricultura Sinica, 2025, 58(17): 3434-3450.
[5] FANG YaTing, ZHAO Jian, SHENG QianNan, LI KaiXu, WANG XiangHua, ZHANG YangYang, ZHU Jun, CONG RiHuan, LU ZhiFeng, LI XiaoKun, REN Tao, LU JianWei. Effects of Long-Term Chemical Fertilizer and Organic Material Application on Crop Yield and Nutrient Utilization in Rice-Rapeseed Rotation System [J]. Scientia Agricultura Sinica, 2025, 58(16): 3164-3177.
[6] BU RongYan, CHENG WenLong, WU Ji, TANG Shan, LI Min, LU JianWei, JI GenXue, WANG Hui, ZHU Rui, JIANG FaHui, TANG MengMeng, HAN Shang. Organic-Inorganic Fertilization Application and Deep Tillage Enhance Productivity and Nutrient Use Efficiency in Rice-Rapeseed Rotations [J]. Scientia Agricultura Sinica, 2025, 58(16): 3178-3189.
[7] ZHAO LinLin, HE YuXi, PENG JieLi, WANG Xu, MA Jia, ZHANG XiuMin, HU Dong. Streptomyces TOR3209 and Its Volatile Organic Compounds Enhance Tobacco Resistance to Fusarium equiseti [J]. Scientia Agricultura Sinica, 2025, 58(11): 2162-2175.
[8] DU JiaQi, ZHANG ZiWei, WANG RuoFei, LI Xing, GUO HongYan, YANG Shuo, FENG Cheng, HE TangQing, Giri Bhoopander, ZHANG XueLin. The Interactive Effects of Organic Fertilizer Substituting Chemical Fertilizers and Arbuscular Mycorrhizal Fungi on Soil Nitrous Oxide Emission in Shajiang Black Soil and Fluvo-Aquic Soil [J]. Scientia Agricultura Sinica, 2025, 58(1): 101-116.
[9] LIAO XinLin, GUO Xin, YANG JiXue, SHAO JiaZhu, YUAN XinYu, HU JiaYan, CHEN XiaoXiao, JIANG DongHua. Screening of Actinomycetes Against Ralstonia solanacearum and Its Disease Prevention Function [J]. Scientia Agricultura Sinica, 2024, 57(7): 1319-1334.
[10] MA RongHui, YANG WuJie, YU Lei, YANG ZeLong, WANG Jian, GUO YueSheng. Investigation on Potential of Replacing Chemical Fertilizer for Crop Straw and Livestock Manure Organic Fertilizer in Shandong Province [J]. Scientia Agricultura Sinica, 2024, 57(4): 721-739.
[11] GAO HuiShan, LI GenMing, ZHANG JinCai, JI GuangXing, LI QingSong. Supply and Demand Balance Analysis of Livestock and Poultry Manure Equivalent Substitution of Chemical Fertilizer in Henan Province [J]. Scientia Agricultura Sinica, 2024, 57(23): 4746-4760.
[12] SHI Na, LU Yang, SUI Li, WANG JiaJiang, ZHAO Yu, LI QiYun, ZHANG ZhengKun. Study on the Synergistic Control Effect of Metarhizium rileyi and Harmonia axyridis Toward Aphids [J]. Scientia Agricultura Sinica, 2024, 57(17): 3398-3407.
[13] ZHANG XiaoQin, YIN Chang, LI Zheng, TANG Xu, LI Yan, WU ChunYan. Influences of Long-Term Appling Different Fertilizers on the Activities and Abundances of Canocial Ammonia Oxidizers and Comammox in Paddy Soil [J]. Scientia Agricultura Sinica, 2024, 57(14): 2803-2814.
[14] WANG Fei, LI QingHua, HE ChunMei, YOU YanLing, HUANG YiBin. Effects of Long-Term Fertilization on Nitrogen Accumulations and Organic Nitrogen Components in Soil Aggregates in Yellow-Mud Paddy Soil [J]. Scientia Agricultura Sinica, 2023, 56(9): 1718-1728.
[15] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!