Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (20): 4285-4304.doi: 10.3864/j.issn.0578-1752.2025.20.019

• ECOLOGICAL UTILIZATION OF SALINE-ALKALI LAND • Previous Articles    

Effects of Groundwater Depth and Nitrogen Application on the Distribution of Soil Water and Salt and the Nutrient Absorption and Utilization of Winter Wheat

SHE YingJun1,2(), ZHOU ZiZhe1, WU Ming1, GUO Wei2,3, SHI ChangJian1, HU Chao3, LI Ping2,4,5()   

  1. 1 College of Water Resource and Hydropower, Sichuan Agricultural University, Ya'an 625014, Sichuan
    2 Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, Henan
    3 Environmental Field Research Station of Xinxiang, Chinese Academy of Agricultural Sciences, Xinxiang 453002, Henan
    4 National Research and Observation Station of Shangqiu Agroecology System, Shangqiu 476000, Henan
    5 National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257347, Shandong
  • Received:2025-06-11 Accepted:2025-09-18 Online:2025-10-16 Published:2025-10-14
  • Contact: LI Ping

Abstract:

【Objective】This study aimed to explore the combined effects of groundwater depth (GWD) and nitrogen application on soil water and salt distribution, stratified residues of nitrogen and phosphorus, and nutrient absorption and utilization of winter wheat, and to determine the nitrogen (N) application threshold for shallow groundwater depth based on the salt balance of cultivated soil and stable crop yield. 【Method】A soil column simulation experiment was conducted with four GWD gradients (60, 90, 120, and 150 cm, labeled as G1, G2, G3, and G4) and four N application rates (0, 150, 240, and 300 kg·hm-2, labeled as NF0, NF150, NF240, and NF300), resulting in 16 treatments. The experiment was carried out during the 2020-2021 and 2021-2022 winter wheat growing seasons to monitor and analyze the distribution of soil water and salt, the nitrogen and phosphorus content in different soil layers, and the nitrogen uptake and utilization of winter wheat under different GWD and N application combinations. 【Result】 Two years of data showed that increased application of N fertilizer exacerbated soil drought in the main root zone (0-60 cm soil layer, MRZ), especially, when the GWD was greater than G3, the soil moisture in the MRZ of the NF300 treatment was significantly reduced. Under N application of NF0-NF150, the electrical conductivity of the 0-20 cm and 20-60 cm soil layers showed a decreasing trend with increasing GWD, whereas under treatment of NF240-NF300, the electrical conductivity of the 20-60 cm soil layer in 2021-2022 and two-year salt accumulation significantly enlarged with increasing GWD. The N application of NF240-NF300 significantly augmented the salt content in the 0-20 cm soil layer at the depth of G3-G4, especially in the NF300 treatment where the soil conductivity of 0-20 cm soil layer exceeded the threshold (360.19-362.89 μs·cm-1) and showed an obvious trend of alkalization. At the NF0-NF240 treatment, the average soil total nitrogen content under the MRZ of G3 and G4 treatments was the highest, while the total nitrogen and total phosphorus content were significantly reduced with increasing GWD under NF300 treatment. Among them, the average soil total nitrogen content under G1-G3 treatment was significantly higher than that under G4 treatment by 11.90% (P<0.05). Growing N fertilizer under G1-G2 depth was beneficial for increasing soil total nitrogen content, while soil total nitrogen content under NF150-NF240 treatment was the highest at the G4 depth. The soil total phosphorus content was the highest under the NF0-NF150 treatment with the G1-G4 depth. Increasing the GWD could promote the absorption of nitrogen by grains and the aboveground parts of plants under the NF0-NF240 treatment. However, with the continuous increase in N application rate and the superimposition of N application for groundwater control between years, the increase in the GWD was not conducive to the absorption of nitrogen by grains and the aboveground parts. Increased application of N fertilizer significantly promoted the N accumulation in grains and aboveground parts at the GWD of G1-G2. However, for the GWD of G3-G4, the N accumulation in grains and aboveground parts was the highest under the N application condition of NF150-NF240. Moreover, after continuous N application and groundwater control in 2021-2022, increased N fertilizer significantly reduced the nitrogen harvest index of winter wheat. 【Conclusion】 In conclusion, under the GWD of 120-150 cm, N application rate of 150-240 kg·hm-2 was conducive to maintaining soil water-salt balance in the MRZ, enhancing N accumulation in aboveground parts and grains, and achieving both reduced N fertilizer input and improved efficiency while ensuring scientific management of the main root zone salinity.

Key words: distribution of water and salt, winter wheat, nutrient utilization, vadose zone, salt threshold

Fig. 1

Meteorological data of winter wheat seasons in 2020-2021 (A) and 2021-2022 (B)"

Table 1

Physical properties of the experimental soil"

土层
Soil layer
(cm)
电导率
EC
(μs·cm-1)
碱解氮
AN
(mg·kg-1)
速效磷
AP
(mg·kg-1)
总氮
TN
(g·kg-1)
总磷
TP
(g·kg-1)
土壤机械组成 Soil mechanical composition
黏粒
Clay (%)
粉粒
Particle (%)
砂粒
Sand (%)
0-20 270.00 17.27 128.33 0.85 0.63 18.26 47.43 34.31
20-40 313.33 13.30 81.33 1.25 0.59 18.09 45.93 35.97
40-60 364.00 7.93 81.67 1.52 0.53 17.84 44.04 38.78
>60 421.67 6.18 76.33 1.47 0.48 15.88 43.87 40.00

Table 2

Irrigation date and irrigation amount of winter wheat"

灌水时期
Irrigation date
灌水量 Irrigation amount (mm) 灌水时期
Irrigation date
灌水量 Irrigation amount (mm)
2020-2021 2021-2022 2020-2021 2021-2022
播种期 Sowing stage 55.73 孕穗期 Booting stage 17.64 15.92
越冬期 Wintering period stage 17.64 31.85 开花期 Anthesis stage 17.64
返青期 Regreening stage 19.90 灌浆期 Filling stage 44.11 47.77
拔节期 Jointing stage 30.88 23.89

Fig. 2

Distribution of soil water content in longitudinal profile of nitrogen application group SWC2020 and SWC2021 respectively represent the soil moisture content in 2020-2021 and 2021-2022, and G1, G2, G3 and G4 respectively represent the groundwater depths of 60, 90, 120 and 150 cm. NF0, NF150, NF240 and NF300 represent nitrogen application rates of 0, 150, 240 and 300 kg·hm-2, respectively. Different lowercase letters indicate significant differences among different groundwater depth treatments (P<0.05). The same as below"

Fig. 3

Soil water storage in 0-60 cm soil layer in 2020-2021 (A) and 2021-2022 (B) Different uppercase letters represent significant differences among different nitrogen application treatments (P<0.05). The same as below"

Fig. 4

Evolution law of soil EC in longitudinal profile of aeration zone with groundwater depth under nitrogen application EC2020 and EC2021 respectively represent the soil electrical conductivity in 2020-2021 and 2021-2022"

Table 3

Average soil electrical conductivity in soil layers of 0-20 cm and 20-60 cm"

处理 Treatment 2020-2021 2021-2022 年际间累积值 Interannual cumulative value (μs·cm-1)
NF GWD 0-20 cm 20-60 cm 0-20 cm 20-60 cm 0-20 cm 20-60 cm
NF0 G1 319.00a 299.88d 379.25ab 274.72h 60.25bcd -25.17e
G2 254.80c 299.13d 305.50cd 361.75fg 50.70cde 62.62d
G3 245.27c 304.47d 248.55e 595.20c 3.28de 290.73b
G4 261.97bc 343.55bcd 253.2de 726.18a -8.77e 382.63a
NF150 G1 315.71a 301.15d 406.60ab 310.45gh 90.89abc 9.30de
G2 253.27c 393.75ab 352.64bc 419.68ef 99.38abc 25.93de
G3 240.93c 384.03ab 375.81ab 666.10b 134.88a 282.07b
G4 251.43c 348.08bcd 391.70ab 491.95d 140.27a 143.87c
NF240 G1 301.49ab 304.32d 379.00ab 314.83gh 77.51abc 10.52de
G2 251.90c 361.00bc 368.65ab 397.75f 116.75abc 36.75de
G3 285.83abc 415.00a 411.13ab 662.37b 125.30ab 247.37b
G4 304.1ab 361.02bc 405.22ab 636.53bc 101.12abc 275.52b
NF300 G1 309.22a 304.10d 408.73ab 284.12h 99.51abc -19.98e
G2 306.73a 378.88ab 426.28a 400.89f 119.55abc 22.01de
G3 300.63ab 313.50cd 431.27a 462.70de 130.63ab 149.20c
G4 307.95a 323.72cd 429.90a 584.93c 121.95ab 261.21b
NF ** ** ** ** ** **
GWD ** ** ns ** ns **
NF*GWD ns ** ** ** ns **

Fig. 5

Changes of soil total nitrogen and total phosphorus content with groundwater depth in vadose zone profiles TN2020, TP2020, TN2021 and TP2021 respectively represent soil total nitrogen and total phosphorus contents in 2020-2021 and 2021-2022"

Table 4

Average soil total nitrogen and total phosphorus content in the main root layer (0-60 cm)"

处理 Treatment 2020-2021 2021-2022
NF GWD TN (g·kg-1) TP (g·kg-1) TN (g·kg-1) TP (g·kg-1)
NF0 G1 0.34f 0.51a 0.30ef 0.53cdef
G2 0.35ef 0.52a 0.31e 0.52def
G3 0.35f 0.53a 0.31e 0.51ef
G4 0.36def 0.51a 0.33cd 0.55bc
NF150 G1 0.40ab 0.54a 0.29fg 0.59a
G2 0.36ef 0.52a 0.28g 0.59a
G3 0.39abc 0.52a 0.29fg 0.57ab
G4 0.41a 0.54a 0.29fg 0.54cd
NF240 G1 0.38bcd 0.54a 0.26h 0.54cde
G2 0.39abc 0.54a 0.35ab 0.54cd
G3 0.39abc 0.56a 0.36a 0.52cdef
G4 0.40abc 0.51a 0.34bc 0.52cdef
NF300 G1 0.35ef 0.54a 0.33bc 0.54cde
G2 0.37cde 0.53a 0.33cd 0.53cdef
G3 0.36ef 0.45b 0.33bc 0.51f
G4 0.31g 0.53a 0.31de 0.48g
NF ** ns ** **
GWD ns ns ** **
NF*GWD ** ** ** **

Table 5

Nitrogen accumulation in grains and above-ground parts and nitrogen harvest index"

处理
Treatment
籽粒氮素积累量
Nitrogen accumulation in grains
(g·lys.-1)
地上部氮素积累量
The accumulation of nitrogen in the aboveground part (g·lys.-1)
氮素收获指数
Nitrogen harvest index (NHI)
(%)
2020-2021 2021-2022 2020-2021 2021-2022 2020-2021 2021-2022
NF0 G1 0.16g 0.51e 0.21f 0.58e 76.28g 87.89ab
G2 0.25g 0.57e 0.30f 0.66e 83.05bcd 86.95abcd
G3 0.50f 0.64e 0.58e 0.73e 86.05ab 87.37abc
G4 0.9de 1.15bcd 1.02cd 1.28cd 87.56a 89.48a
NF150 G1 0.76e 1.00d 0.90d 1.16d 84.63abc 85.8bcdef
G2 0.91de 1.19abcd 1.07cd 1.37bcd 85.22ab 86.74abcde
G3 1.19c 1.33abc 1.45b 1.58ab 81.93cde 83.65defg
G4 1.36ab 1.28abc 1.75a 1.55ab 77.79fg 82.39fgh
NF240 G1 0.93d 1.18abcd 1.09c 1.36bcd 85.43ab 86.36abcde
G2 1.10c 1.31abc 1.30b 1.56ab 84.57abc 84.05cdefg
G3 1.38a 1.26abc 1.72a 1.55ab 79.87ef 81.17gh
G4 1.38a 1.28abc 1.71a 1.57ab 80.49def 81.24gh
NF300 G1 1.09c 1.40ab 1.30b 1.68a 83.98bc 83.17efg
G2 1.20c 1.43a 1.43b 1.74a 84.14bc 82.33fgh
G3 1.43a 1.22abcd 1.67a 1.51abc 85.77ab 80.74gh
G4 1.36ab 1.12cd 1.64a 1.41bcd 82.81bcde 79.24h
F
F value
NF ** ** ** ** ns **
GWD ** * ** ** * **
NF*GWD ** ** ** ** ** ns

Fig. 6

Correlation heatmap Grain-N, Total-N, NHI, SWC, TN, TP, 0-20-EC and 20-60-EC represent the N absorption of grains, the total N absorption of the above-ground part, the N harvest index, the average soil moisture content of the 0-60cm soil layer, the average total soil nitrogen of the 0-60cm soil layer, the average total soil phosphorus of the 0-60cm soil layer, respectively, and soil electrical conductivity in the 0-20 cm soil layer and that in the 20-60 cm soil layer, respectively. The same as below"

Fig. 7

Fitting analysis of 0-20 cm soil layer salinity and nitrogen absorption in the above-ground part of winter wheat at the depth of G3-G4"

Fig. 8

The evolution trend of N accumulation in the aboveground parts of each N application group with groundwater depth A: 2020-2021 year; B: 2021-2022 year"

Fig. 9

Distribution of soil total nitrogen and phosphorus in the vertical vadose zone of shallow groundwater depth In the figure, k and b respectively represent the slope and intercept of the straight line (where k1 and k2 respectively represent the slopes of the first and second sections of the segmented fitting straight line, and b1 and b2 respectively represent the interceptions of the first and second sections of the straight line), and h0 represents the soil layer depth corresponding to the turning point of the segmented straight line fitting"

[1]
KUMAR R, PAREEK N K, KUMAR U, JAVED T, AL-HUQAIL A A, RATHORE V S, NANGIA V, CHOUDHARY A, NANDA G, ALI H M, et al. Coupling effects of nitrogen and irrigation levels on growth attributes, nitrogen use efficiency, and economics of cotton. Frontiers in Plant Science, 2022, 13: 890181.
[2]
MASSOUDIFAR O, DARVISH KODJOURI F, NOOR MOHAMMADI G, MIRHADI M J. Effect of nitrogen fertilizer levels and irrigation on quality characteristics in bread wheat (Triticum aestivum L.). Archives of Agronomy and Soil Science, 2014, 60(7): 925-934.
[3]
DUAN J Z, SHAO Y H, HE L, LI X, HOU G G, LI S N, FENG W, ZHU Y J, WANG Y H, XIE Y X. Optimizing nitrogen management to achieve high yield, high nitrogen efficiency and low nitrogen emission in winter wheat. Science of the Total Environment, 2019, 697: 134088.
[4]
高雪健, 李广浩, 陆卫平, 陆大雷. 控释尿素与普通尿素配施对糯玉米产量和氮素吸收利用的影响. 植物营养与肥料学报, 2022, 28(9): 1614-1625.
GAO X J, LI G H, LU W P, LU D L. Effects of mixing controlled- release and normal urea on yield, nitrogen absorption and utilization in waxy maize. Journal of Plant Nutrition and Fertilizers, 2022, 28(9): 1614-1625. (in Chinese)
[5]
WU P, WU Q, HUANG H, XIE L, AN H Y, ZHAO X T, WANG F T, GAO Z T, ZHANG R T, BANGURA K, et al. Global meta-analysis and three-year field experiment shows that deep placement of fertilizer can enhance crop productivity and decrease gaseous nitrogen losses. Field Crops Research, 2024, 307: 109263.
[6]
YU C Q, HUANG X, CHEN H, GODFRAY H C J, WRIGHT J S, HALL J W, GONG P, NI S Q, QIAO S C, HUANG G R, et al. Managing nitrogen to restore water quality in China. Nature, 2019, 567(7749): 516-520.
[7]
严如玉, 赵希梅, 向风云, 李雅琼, 李绪勋, 司转运, 李鹏慧, 高阳, 李继福. 中国小麦优势区域生产格局及施肥现状研究. 麦类作物学报, 2024, 44(2): 230-241.
YAN R Y, ZHAO X M, XIANG F Y, LI Y Q, LI X X, SI Z Y, LI P H, GAO Y, LI J F. Research on the production pattern and fertilization status in China's dominant regions of wheat. Journal of Triticeae Crops, 2024, 44(2): 230-241. (in Chinese)
[8]
耿若鑫, 黑泽文, 油伦成, 舒昱霖, 汪洋, 李升东, 曲明山, 石颜通, 张凯烨, 毕香君, 等. 华北小麦施用脲铵氮肥实现轻简施肥的可行性及技术措施. 植物营养与肥料学报, 2024, 30(6): 1103-1117.
GENG R X, HEI Z W, YOU L C, SHU Y L, WANG Y, LI S D, QU M S, SHI Y T, ZHANG K Y, BI X J, et al. Availability and technology of using urea-ammonium fertilizer to realize nitrogen reduction and simplified fertilization in wheat production of North China Plain. Journal of Plant Nutrition and Fertilizers, 2024, 30(6): 1103-1117. (in Chinese)
[9]
刘鹏, 杨树青, 樊美蓉, 张万锋. 变化地下水埋深与灌水量对土壤水与地下水交换的影响. 灌溉排水学报, 2021, 40(7): 66-73.
LIU P, YANG S Q, FAN M R, ZHANG W F. Groundwater depth and irrigation amount affect water exchange between groundwater and soil water in Hetao irrigation district. Journal of Irrigation and Drainage, 2021, 40(7): 66-73. (in Chinese)
[10]
KREVH V, FILIPOVIĆ V, FILIPOVIĆ L, MATEKOVIĆ V, PETOŠIĆ D, MUSTAĆ I, ONDRAŠEK G, BOGUNOVIĆ I, KOVAČ Z, PEREIRA P, et al. Modeling seasonal soil moisture dynamics in gley soils in relation to groundwater table oscillations in eastern Croatia. Catena, 2022, 211: 1-13.
[11]
KIREMIT M S, ARSLAN H. Effects of different shallow and saline groundwater depths on soil salinity, evapotranspiration, grain yield and spike traits of winter wheat. Journal of Agronomy and Crop Science, 2023, 209(3): 402-421.
[12]
OSMAN H M, ARSLAN H. Response of leaf nutrients, yield, growth parameters, and evapotranspiration of sweet corn (Zea mays L. Saccharata Sturt) to shallow and saline groundwater depths. Archives of Agronomy and Soil Science, 2023, 69(11): 2138-2153.
[13]
赵西梅, 夏江宝, 陈为峰, 陈印平. 蒸发条件下潜水埋深对土壤-柽柳水盐分布的影响. 生态学报, 2017, 37(18): 6074-6080.
ZHAO X M, XIA J B, CHEN W F, CHEN Y P. Effect of groundwater depth on the distribution of water and salinity in the soil-Tamarix chinensis system under evaporation conditions. Acta Ecologica Sinica, 2017, 37(18): 6074-6080. (in Chinese)
[14]
杨军, 杜军, 马小刚, 景何仿, 孙兆军. 不同地下水埋深对龟裂碱土水盐迁移和油葵产量的影响研究. 中国农村水利水电, 2023(10): 166-173, 180.

doi: 10.12396/znsd.222316
YANG J, DU J, MA X G, JING H F, SUN Z J. Research on the influence of different groundwater depth on water-salt migration and oil sunflower yield in takyric solonetz land. China Rural Water and Hydropower, 2023(10): 166-173, 180. (in Chinese)

doi: 10.12396/znsd.222316
[15]
张雪佳, 王金涛, 董心亮, 田柳, 娄泊远, 刘小京, 孙宏勇. 地下微咸水埋深对土壤水盐分布与冬小麦耗水特性的影响. 中国生态农业学报(中英文), 2023, 31(3): 417-427.
ZHANG X J, WANG J T, DONG X L, TIAN L, LOU B Y, LIU X J, SUN H Y. Effect of underground brackish water depth on soil water-salt distribution and water consumption of winter wheat. Chinese Journal of Eco-Agriculture, 2023, 31(3): 417-427. (in Chinese)
[16]
ZHANG H, LI Y, MENG Y L, CAO N, LI D S, ZHOU Z G, CHEN B L, DOU F G. The effects of soil moisture and salinity as functions of groundwater depth on wheat growth and yield in coastal saline soils. Journal of Integrative Agriculture, 2019, 18(11): 2472-2482.

doi: 10.1016/S2095-3119(19)62713-9
[17]
明广辉, 田富强, 胡宏昌. 地下水埋深对膜下滴灌棉田水盐动态影响及土壤盐分累积特征. 农业工程学报, 2018, 34(5): 90-97.
MING G H, TIAN F Q, HU H C. Effect of water table depth on soil water and salt dynamics and soil salt accumulation characteristics under mulched drip irrigation. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(5): 90-97. (in Chinese)
[18]
李彬, 史海滨, 闫建文, 李祯, 张建国, 周俊. 节水改造后盐渍化灌区区域地下水埋深与土壤水盐的关系. 水土保持学报, 2014, 28(1): 117-122.
LI B, SHI H B, YAN J W, LI Z, ZHANG J G, ZHOU J. Relation between groundwater depth and soil water and salt after water saving reform in salinization irrigation district. Journal of Soil and Water Conservation, 2014, 28(1): 117-122. (in Chinese)
[19]
李翔, 杨天学, 白顺果, 席北斗, 朱性宝, 袁志业, 卫毅梅, 郦威. 地下水位波动对包气带中氮素运移影响规律的研究. 农业环境科学学报, 2013, 32(12): 2443-2450.
LI X, YANG T X, BAI S G, XI B D, ZHU X B, YUAN Z Y, WEI Y M, LI W. The effects of groundwater table fluctuation on nitrogen migration in aeration zone. Journal of Agro-Environment Science, 2013, 32(12): 2443-2450. (in Chinese)
[20]
蒲芳, 黄金廷, 宋歌, 王嘉玮, 李宗泽, 田华, 张方, 孙芳强. 浅埋深黏土包气带氮迁移转化原位实验研究. 中国环境科学, 2022, 42(6): 2707-2713.
PU F, HUANG J T, SONG G, WANG J W, LI Z Z, TIAN H, ZHANG F, SUN F Q. Movement and transformation of nitrogen in clay unsaturated zone under shallow groundwater table: in situ experiment. China Environmental Science, 2022, 42(6): 2707-2713. (in Chinese)
[21]
苏天燕, 刘子涵, 丛安琪, 毛伟, 杨秋. 地下水埋深对半干旱区典型植物群落土壤酶活性的影响. 中国沙漠, 2021, 41(4): 185-194.

doi: 10.7522/j.issn.1000-694X.2021.00077
SU T Y, LIU Z H, CONG A Q, MAO W, YANG Q. Effects of groundwater depth on soil enzymatic activities of typical plant communities in semi-arid area. Journal of Desert Research, 2021, 41(4): 185-194. (in Chinese)

doi: 10.7522/j.issn.1000-694X.2021.00077
[22]
WU X Y, CAI X, LI Q Q, REN B Z, BI Y P, ZHANG J P, WANG D. Effects of nitrogen application rate on summer maize (Zea mays L.) yield and water-nitrogen use efficiency under micro-sprinkling irrigation in the Huang-Huai-Hai Plain of China. Archives of Agronomy and Soil Science, 2022, 68(14): 1915-1929.
[23]
焦晓光, 隋跃宇, 魏丹. 长期施肥对薄层黑土酶活性及土壤肥力的影响. 中国土壤与肥料, 2011(1): 6-9.
JIAO X G, SUI Y Y, WEI D. Effect of long-term fertilization on enzyme activities and soil fertility in the black thin-layer soil. Soil and Fertilizer Sciences in China, 2011(1): 6-9. (in Chinese)
[24]
郭勇, 文丽, 石丽红, 李超, 程凯凯, 罗浛方, 李海容, 周国栋, 唐海明. 长期施肥对双季稻田根际土壤氮循环酶活性及产量的影响. 华北农学报, 2025, 40(1): 113-121.

doi: 10.7668/hbnxb.20195028
GUO Y, WEN L, SHI L H, LI C, CHENG K K, LUO H F, LI H R, ZHOU G D, TANG H M. Effects of long-term application of fertilizers on rhizosphere soil nitrogen cycling enzyme activity and yield in double cropping rice field. Acta Agriculturae Boreali-Sinica, 2025, 40(1): 113-121. (in Chinese)

doi: 10.7668/hbnxb.20195028
[25]
崔振坤, 于振文, 石玉, 张永丽, 张振. 水氮运筹对土壤氮代谢酶活性和小麦氮素利用的影响. 水土保持学报, 2025, 39(1): 160-169.
CUI Z K, YU Z W, SHI Y, ZHANG Y L, ZHANG Z. Effects of water and nitrogen management on soil nitrogen metabolism enzyme activity and wheat nitrogen utilization. Journal of Soil and Water Conservation, 2025, 39(1): 160-169. (in Chinese)
[26]
TAN Y, CHAI Q, LI G, ZHAO C, YU A Z, FAN Z L, YIN W, HU F L, FAN H, WANG Q M, GUO Y, TIAN X M. Improving wheat grain yield via promotion of water and nitrogen utilization in arid areas. Scientific Reports, 2021, 11: 13821.
[27]
吕广德, 王超, 靳雪梅, 徐加利, 王瑞霞, 孙宪印, 钱兆国, 吴科. 水氮组合对冬小麦干物质及氮素积累和产量的影响. 应用生态学报, 2020, 31(8): 2593-2603.

doi: 10.13287/j.1001-9332.202008.029
G D, WANG C, JIN X M, XU J L, WANG R X, SUN X Y, QIAN Z G, WU K. Effects of water-nitrogen combination on dry matter, nitrogen accumulation and yield of winter wheat. Chinese Journal of Applied Ecology, 2020, 31(8): 2593-2603. (in Chinese)
[28]
郭曾辉, 刘朋召, 雒文鹤, 王瑞, 李军. 限水减氮对关中平原冬小麦氮素利用和氮素表观平衡的影响. 应用生态学报, 2021, 32(12): 4359-4369.

doi: 10.13287/j.1001-9332.202112.022
GUO Z H, LIU P Z, LUO W H, WANG R, LI J. Effects of water limiting and nitrogen reduction on nitrogen use and apparent balance of winter wheat in the Guanzhong Plain, Northwest China. Chinese Journal of Applied Ecology, 2021, 32(12): 4359-4369. (in Chinese)
[29]
SHE Y J, LI P, QI X B, GUO W, RAHMAN S U, LU H F, MA C C, DU Z J, CUI J X, LIANG Z J. Effects of shallow groundwater depth and nitrogen application level on soil water and nitrate content, growth and yield of winter wheat. Agriculture, 2022, 12(2): 311.
[30]
XIN J, LIU Y, CHEN F, DUAN Y J, WEI G L, ZHENG X L, LI M. The missing nitrogen pieces: A critical review on the distribution, transformation, and budget of nitrogen in the vadose zone- groundwater system. Water Research, 2019, 165: 114977.
[31]
LIU T G, LAI J B, LUO Y, LIU L. Study on extinction depth and steady water storage in root zone based on lysimeter experiment and HYDRUS-1D simulation. Hydrology Research, 2015, 46(6): 871-879.
[32]
LIU T G, LUO Y B. Effects of shallow water tables on the water use and yield of winter wheat (Triticum aestivum L.) under rain-fed condition. Australian Journal of Crop Science, 2011, 5: 1692-1697.
[33]
张亦涛, 王洪媛, 雷秋良, 张继宗, 翟丽梅, 任天志, 刘宏斌. 农田合理施氮量的推荐方法. 中国农业科学, 2018, 51(15): 2937-2947. doi: 10.3864/j.issn.0578-1752.2018.15.009.
ZHANG Y T, WANG H Y, LEI Q L, ZHANG J Z, ZHAI L M, REN T Z, LIU H B. Recommended methods for optimal nitrogen application rate. Scientia Agricultura Sinica, 2018, 51(15): 2937-2947. doi: 10.3864/j.issn.0578-1752.2018.15.009. (in Chinese)
[34]
CUI Z L, ZHANG H Y, CHEN X P, ZHANG C C, MA W Q, HUANG C D, ZHANG W F, MI G H, MIAO Y X, LI X L, et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature, 2018, 555(7696): 363-366.
[35]
ZHOU J Y, GU B J, SCHLESINGER W H, JU X T. Significant accumulation of nitrate in Chinese semi-humid croplands. Scientific Reports, 2016, 6: 25088.

doi: 10.1038/srep25088 pmid: 27114032
[36]
KROES J, SUPIT I, VAN DAM J, VAN WALSUM P, MULDER M. Impact of capillary rise and recirculation on simulated crop yields. Hydrology and Earth System Sciences, 2018, 22(5): 2937-2952.
[37]
薛歆, 蔡甲冰, 于颖多, 张宝忠, 韩延安. 冬小麦生育期地下水补给量表征及水位阈值试验研究. 农业工程学报, 2024, 40(20): 101-111.
XUE X, CAI J B, YU Y D, ZHANG B Z, HAN Y A. Quantifying groundwater contributions and threshold in the growth stages for winter wheat. Transactions of the Chinese Society of Agricultural Engineering, 2024, 40(20): 101-111. (in Chinese)
[38]
刘鑫, 左锐, 孟利, 李鹏, 李志萍, 何柱锟, 李桥, 王金生. 地下水位上升过程硝态氮(硝酸盐)污染变化规律研究. 中国环境科学, 2021, 41(1): 232-238.
LIU X, ZUO R, MENG L, LI P, LI Z P, HE Z K, LI Q, WANG J S. Study on the variation law of nitrate pollution during the rise of groundwater level. China Environmental Science, 2021, 41(1): 232-238. (in Chinese)
[39]
KUUSEMETS L, MANDER Ü, ESCUER-GATIUS J, ASTOVER A, KAUER K, SOOSAAR K, ESPENBERG M. Interactions of fertilisation and crop productivity in soil nitrogen cycle microbiome and gas emissions. Soil, 2025, 11(1): 1-15.
[40]
王西娜, 王朝辉, 李华, 王荣辉, 谭军利, 李生秀. 旱地土壤中残留肥料氮的动向及作物有效性. 土壤学报, 2016, 53(5): 1202-1212.
WANG X N, WANG Z H, LI H, WANG R H, TAN J L, LI S X. Dynamics and availability to crops of residual fertilizer nitrogen in upland soil. Acta Pedologica Sinica, 2016, 53(5): 1202-1212. (in Chinese)
[41]
孔繁瑞, 屈忠义, 刘雅君, 马月霞. 不同地下水埋深对土壤水、盐及作物生长影响的试验研究. 中国农村水利水电, 2009(5): 44-48.
KONG F R, QU Z Y, LIU Y J, MA Y X. Experimental research on the effect of different kinds of groundwater buried depth on soil water, salinity and crop growth. China Rural Water and Hydropower, 2009(5): 44-48. (in Chinese)
[42]
王平顺, 臧旭超, 燕亚平, 韩学敏, 李璐, 厚富来, 杨学东, 季亚新, 董少刚. 干旱-半干旱煤矿区地下水位变化对土壤特征的影响及植被响应. 生态学报, 2025, 45(2): 802-812.
WANG P S, ZANG X C, YAN Y P, HAN X M, LI L, HOU F L, YANG X D, JI Y X, DONG S G. Effects of groundwater level changes on soil characteristics and vegetation response in arid-semi-arid coal mining areas. Acta Ecologica Sinica, 2025, 45(2): 802-812. (in Chinese)
[43]
李绪润, 李兆, 张秋英, 李发东, 付伟章. 华北平原禹城地区地下水埋深对地下水及土壤水分和盐分分布的试验研究. 灌溉排水学报, 2024, 43(S1): 108-119.
LI X R, LI Z, ZHANG Q Y, LI F D, FU W Z. Experimental study on the effects of groundwater depth on groundwater and soil moisture and salinity distribution in agricultural fields in Yucheng Area, North China Plain. Journal of Irrigation and Drainage, 2024, 43(S1): 108-119. (in Chinese)
[44]
曹和平, 蒋静, 翟登攀, 张超波. 施氮量对土壤水氮盐分布和玉米生长及产量的影响. 灌溉排水学报, 2022, 41(6): 47-54.
CAO H P, JIANG J, ZHAI D P, ZHANG C B. Nitrogen fertilization modulates spatial distribution of water, nitrogen and salt in soil, and growth and yield of maize. Journal of Irrigation and Drainage, 2022, 41(6): 47-54. (in Chinese)
[45]
SHE Y J, LI P, QI X B, RAHMAN S U, GUO W. Effects of nitrogen application on winter wheat growth, water use, and yield under different shallow groundwater depths. Frontiers in Plant Science, 2023, 14: 1114611.
[46]
张丽霞, 杨永辉, 尹钧, 武继承, 潘晓莹. 水肥一体化对小麦干物质和氮素积累转运及产量的影响. 农业机械学报, 2021, 52(2): 275-282, 319.
ZHANG L X, YANG Y H, YIN J, WU J C, PAN X Y. Effects of drip fertigation on accumulation and translocation of dry matter and nitrogen together with yield in wheat. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(2): 275-282, 319. (in Chinese)
[47]
梁伟琴, 贾莉, 郭黎明, 李应兰, 胡亚峰, 陈小花, 马旭凤, 李静. 水氮耦合对春小麦干物质累积与植株氮素转运的影响. 作物杂志, 2022(4): 242-248.
LIANG W Q, JIA L, GUO L M, LI Y L, HU Y F, CHEN X H, MA X F, LI J. Effects of irrigation and nitrogen application on dry matter accumulation and nitrogen transport of spring wheat. Crops, 2022(4): 242-248. (in Chinese)
[48]
郭丙玉, 高慧, 唐诚, 刘涛, 褚贵新. 水肥互作对滴灌玉米氮素吸收、水氮利用效率及产量的影响. 应用生态学报, 2015, 26(12): 3679-3686.
GUO B Y, GAO H, TANG C, LIU T, CHU G X. Response of water coupling with N supply on maize nitrogen uptake, water and N use efficiency, and yield in drip irrigation condition. Chinese Journal of Applied Ecology, 2015, 26(12): 3679-3686. (in Chinese)
[49]
胡梦芸, 门福圆, 张颖君, 孙丽静, 刘茜, 李倩影, 刘富爽, 李辉. 水氮互作对作物生理特性和氮素利用影响的研究进展. 麦类作物学报, 2016, 36(3): 332-340.
HU M Y, MEN F Y, ZHANG Y J, SUN L J, LIU Q, LI Q Y, LIU F S, LI H. Research progress on water-nitrogen interaction and its effects on crop growth and utilization of nitrogen. Journal of Triticeae Crops, 2016, 36(3): 332-340. (in Chinese)
[50]
刘恩科, 梅旭荣, 龚道枝, 严昌荣, 庄严. 不同生育时期干旱对冬小麦氮素吸收与利用的影响. 植物生态学报, 2010, 34(5): 555-562.

doi: 10.3773/j.issn.1005-264x.2010.05.009
LIU E K, MEI X R, GONG D Z, YAN C R, ZHUANG Y. Effects of drought on N absorption and utilization in winter wheat at different developmental stages. Chinese Journal of Plant Ecology, 2010, 34(5): 555-562. (in Chinese)
[51]
臧贺藏, 刘云鹏, 曹莲, 张英华, 王志敏. 水氮限量供给下两个高产小麦品种氮素吸收与利用特征. 麦类作物学报, 2012, 32(3): 503-509.
ZANG H C, LIU Y P, CAO L, ZHANG Y H, WANG Z M. Nitrogen absorption and utilization characteristics of two high-yield winter wheat cultivars under limited irrigation and nitrogen supply. Journal of Triticeae Crops, 2012, 32(3): 503-509. (in Chinese)
[52]
孙文涛, 孙占祥, 王聪翔, 宫亮, 张玉龙. 滴灌施肥条件下玉米水肥耦合效应的研究. 中国农业科学, 2006, 39(3): 563-568.
SUN W T, SUN Z X, WANG C X, GONG L, ZHANG Y L. Coupling effect of water and fertilizer on corn yield under drip fertigation. Scientia Agricultura Sinica, 2006, 39(3): 563-568. (in Chinese)
[53]
车子强, 涂洪铭, 蔡静怡, 尹豪杰, 马熠琳, 蒋桂英. 亏缺灌溉对新疆不同品种春小麦产量和氮素利用的影响. 植物营养与肥料学报, 2024, 30(5): 886-898.
CHE Z Q, TU H M, CAI J Y, YIN H J, MA Y L, JIANG G Y. The effects of deficit irrigation on the yield and nitrogen utilization of different spring wheat cultivars under drip irrigation in Xinjiang. Journal of Plant Nutrition and Fertilizers, 2024, 30(5): 886-898. (in Chinese)
[54]
董二伟, 王媛, 王劲松, 刘秋霞, 黄晓磊, 焦晓燕. 施氮量对谷子产量、氮素利用及小米品质的影响. 中国农业科学, 2024, 57(2): 306-318. doi: 10.3864/j.issn.0578-1752.2024.02.007.
DONG E W, WANG Y, WANG J S, LIU Q X, HUANG X L, JIAO X Y. Effects of nitrogen fertilization levels on grain yield, plant nitrogen utilization characteristics and grain quality of foxtail millet. Scientia Agricultura Sinica, 2024, 57(2): 306-318. doi: 10.3864/j.issn.0578-1752.2024.02.007. (in Chinese)
[55]
张娟, 李广, 袁建钰, 闫丽娟, 魏星星, 刘帅楠. 水氮调控对旱作春小麦土壤、叶片养分含量的影响. 干旱区研究, 2021, 38(6): 1750-1759.

doi: 10.13866/j.azr.2021.06.27
ZHANG J, LI G, YUAN J Y, YAN L J, WEI X X, LIU S N. Effects of water and nitrogen regulation on soil and leaf stoichiometric characteristics of spring wheat in dry farming. Arid Zone Research, 2021, 38(6): 1750-1759. (in Chinese)

doi: 10.13866/j.azr.2021.06.27
[56]
徐荣艳, 戴丽纳, 傅国圣, 江鹏, 丁钰童, 张美娜, 王婉婉, 王振龙. 不同土质条件下小麦生长期潜水蒸发量影响因素研究. 灌溉排水学报, 2023, 42(11): 19-23, 30.
XU R Y, DAI L N, FU G S, JIANG P, DING Y T, ZHANG M N, WANG W W, WANG Z L. Study of factors affecting wheat growth-stage evapotranspiration under various edaphic conditions. Journal of Irrigation and Drainage, 2023, 42(11): 19-23, 30. (in Chinese)
[57]
TAN S C, JIANG X W, ZHANG Z Y, HAN P F, WANG X S, WAN L, ZENG Y J. Revisiting the quantitative relationship between groundwater evapotranspiration and water table depth: A numerical study. Journal of Hydrology, 2025, 658: 133100.
[58]
孙仕军, 隋文华, 陈伟, 苏通宇, 邰恩博, 张岐, 孟维忠. 地下水埋深对辽宁中部地区玉米根系和干物质积累的影响. 生态学杂志, 2020, 39(2): 497-506.
SUN S J, SUI W H, CHEN W, SU T Y, TAI E B, ZHANG Q, MENG W Z. Effects of groundwater depth on root system and dry matter accumulation of maize in central Liaoning Province. Chinese Journal of Ecology, 2020, 39(2): 497-506. (in Chinese)
[59]
LIU W X, WANG J R, WANG C Y, MA G, WEI Q R, LU H F, XIE Y X, MA D Y, KANG G Z. Root growth, water and nitrogen use efficiencies in winter wheat under different irrigation and nitrogen regimes in North China Plain. Frontiers in Plant Science, 2018, 9: 1798.

doi: 10.3389/fpls.2018.01798 pmid: 30568670
[60]
RASMUSSEN I S, DRESBØLL D B, THORUP-KRISTENSEN K. Winter wheat cultivars and nitrogen (N) fertilization: Effects on root growth, N uptake efficiency and N use efficiency. European Journal of Agronomy, 2015, 68: 38-49.
[61]
WANG C Y, LIU W X, LI Q X, MA D Y, LU H F, FENG W, XIE Y X, ZHU Y J, GUO T C. Effects of different irrigation and nitrogen regimes on root growth and its correlation with above-ground plant parts in high-yielding wheat under field conditions. Field Crops Research, 2014, 165: 138-149.
[62]
陈智勇, 谢迎新, 张阳阳, 缑培欣, 马冬云, 康国章, 王晨阳, 郭天财. 小麦根长密度和根干重密度对氮肥的响应及其与产量的关系. 麦类作物学报, 2020, 40(10): 1223-1231.
CHEN Z Y, XIE Y X, ZHANG Y Y, GOU P X, MA D Y, KANG G Z, WANG C Y, GUO T C. Responses of root length density and root dry weight density to nitrogen fertilizer and their relationship with yield in wheat. Journal of Triticeae Crops, 2020, 40(10): 1223-1231. (in Chinese)
[1] PU LiXia, ZHANG JiaRui, YE JianPing, HUANG XiuLan, FAN GaoQiong, YANG HongKun. The Combined Effects of 16, 17-Dihydro Gibberellin A5 and Straw Mulching on Tillering and Grain Yield of Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(9): 1735-1748.
[2] SHI Fan, LI WenGuang, YI ShuSheng, YANG Na, CHEN YuMeng, ZHENG Wei, ZHANG XueChen, LI ZiYan, ZHAI BingNian. The Variation Characteristics of Soil Organic Carbon Fractions Under the Combined Application of Organic and Inorganic Fertilizers [J]. Scientia Agricultura Sinica, 2025, 58(4): 719-732.
[3] MENG ZiZhen, REN Tao, LIU Chen, WANG KunKun, LIAO ShiPeng, LI XiaoKun, CONG RiHuan, LU ZhiFeng, FANG YaTing, LU JianWei. Balanced Application of Nitrogen, Phosphorus and Potassium Fertilizer in Rice-Rapeseed Rotation System Improves Crop Yield and Nutrient Utilization [J]. Scientia Agricultura Sinica, 2025, 58(16): 3190-3200.
[4] WANG RongRong, XU NingLu, HUANG XiuLi, ZHAO KaiNan, HUANG Ming, WANG HeZheng, FU GuoZhan, WU JinZhi, LI YouJun. Effects of One-Off Irrigation and Nitrogen Fertilizer Management on Grain Yield and Quality in Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(1): 43-57.
[5] GAO XingXiang, KONG Yuan, ZHANG YaoZhong, LI Mei, LI Jian, JIN Yan, ZHANG GuoFu, LIU ShuaiShuai, LIU MingPing, ZENG Yan, BAI LianYang. Analysis on Distribution and Change of Weed Community in Winter Wheat Field in Henan Province [J]. Scientia Agricultura Sinica, 2025, 58(1): 91-100.
[6] ZANG ShaoLong, LIU LinRu, GAO YueZhi, WU Ke, HE Li, DUAN JianZhao, SONG Xiao, FENG Wei. Classification and Identification of Nitrogen Efficiency of Wheat Varieties Based on UAV Multi-Temporal Images [J]. Scientia Agricultura Sinica, 2024, 57(9): 1687-1708.
[7] GAO ChenKai, LIU ShuiMiao, LI YuMing, ZHAO ZhiHeng, SHAO Jing, YU HaoLin, WU PengNian, WANG YanLi, GUAN XiaoKang, WANG TongChao, WEN PengFei. The Related Driving Factors of Water Use Efficiency and Its Prediction Model Construction in Winter Wheat [J]. Scientia Agricultura Sinica, 2024, 57(7): 1281-1294.
[8] GAO ShangJie, LIU XingRen, LI YingChun, LIU XiaoWan. Effects of Biochar and Straw Return on Greenhouse Gas Emissions and Global Warming Potential in the Farmland [J]. Scientia Agricultura Sinica, 2024, 57(5): 935-949.
[9] ZHU RuiMing, ZHAO RongQin, JIAO ShiXing, LI XiaoJian, XIAO LianGang, XIE ZhiXiang, YANG QingLin, WANG Shuai, ZHANG HuiFang. Spatial Distribution and Driving Factors of Winter Wheat Irrigation Carbon Emission Intensity at Township Level in Henan Province [J]. Scientia Agricultura Sinica, 2024, 57(5): 950-964.
[10] ZHANG Rong, LIU LinRu, FU KaiXia, WU ZiJun, SONG YiFan, WANG LuYuan, HOU GeGe, HE Li, FENG Wei, DUAN JianZhao, WANG YongHua, GUO TianCai. Regulatory of Exogenous Melatonin on Floret Development and Carbon Nutrient Metabolism in Winter Wheat Under Drought Stress [J]. Scientia Agricultura Sinica, 2024, 57(23): 4644-4657.
[11] DONG KuiJun, ZHANG YiTao, LIU HanWen, ZHANG JiZong, WANG WeiJun, WEN YanChen, LEI QiuLiang, WEN HongDa. Effects of Nitrogen Reduction Application of Summer Maize- Soybean Intercropping on Agronomic Traits and Economic Benefits as well as Its Yield of Subsequent Wheat [J]. Scientia Agricultura Sinica, 2024, 57(22): 4495-4506.
[12] MAI ChunYan, LIU YiKe, LIU HongWei, LI HongJie, YANG Li, WU PeiPei, ZHOU Yang, ZHANG HongJun. Breeding of the Fusarium Head Blight (FHB)-Resistant Wheat Cultivar Lunxuan 20 Using the Dwarf-Male Sterile Wheat Molecular Strategy in the Yellow and Huai River Valley Winter Wheat Region [J]. Scientia Agricultura Sinica, 2024, 57(19): 3719-3729.
[13] SHANG Hang, CHENG YuKun, REN Yi, GENG HongWei. Genome-Wide Association Analysis of Starch Gelatinization Traits in Winter Wheat [J]. Scientia Agricultura Sinica, 2024, 57(18): 3507-3521.
[14] CHEN Shi, HUANG YinLan, JIN YunXiang, XU ChengLin, ZOU JinQiu. Agricultural Climatic Factors and Their Thresholds for Winter Wheat Cultivation in Northern China [J]. Scientia Agricultura Sinica, 2024, 57(16): 3142-3153.
[15] ZHAO HuaRong, ZHOU GuangSheng, QI Yue, GENG JinJian, TIAN XiaoLi. Effects of Sowing Date Adjustment on Yield and Quality of Winter Wheat and Summer Maize in Northern Area of North China [J]. Scientia Agricultura Sinica, 2024, 57(15): 2964-2985.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!