Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (16): 3201-3219.doi: 10.3864/j.issn.0578-1752.2025.16.005

• SPECIAL FOCUS: NUTRIENT MANAGEMENT FOR ANNUAL RICE-RAPESEED ROTATION • Previous Articles     Next Articles

Changes in Annual Yield and Soil Fertility of Rice-Rapeseed Rotation Under Different Fertilization Modes

DONG YunQi(), HUANG Jian, CHAI YiXiao, YANG ShiChao, WANG Min, MENG XuSheng*(), GUO ShiWei   

  1. College of Resources and Environmental Sciences, Nanjing Agricultural University/Jiangsu Provincial Key Laboratory of Solid Organic Waste Utilization, Nanjing 210095
  • Received:2025-05-06 Accepted:2025-07-08 Online:2025-08-11 Published:2025-08-11
  • Contact: MENG XuSheng

Abstract:

【Objective】To explore the potential of optimizing fertilization under rice-rapeseed rotation for increasing crop yield and efficiency in medium and low yield fields, this study analyzed the effects of optimized fertilization on yield, nutrient absorption, and soil fertility in rice-rapeseed rotation, as well as the effectiveness of rice-rapeseed rotation in improving soil fertility. This study aimed to identify fertilization strategies suitable for medium and low yield fields and the potential for improving quality and efficiency in rice-rapeseed rotation, so as to provide the theoretical guidance for reducing obstacles in medium and low yield fields, promoting efficient production in rice-rapeseed rotation, and achieving sustainable development of rice-rapeseed rotation.【Method】The experiment was conducted at the Agricultural Science Research Institute in Rugao City, Jiangsu Province from 2017 to 2024, with low yield fields as the research objects. Through small-scale experiments, no fertilization treatment (CK), no nitrogen treatment (PK), no phosphorus treatment (NK), farmer's habitual fertilization treatment (FFP), and optimized fertilization treatment (OPT) were set up. By analyzing the annual yield of crops in both water and drought seasons, the nutrient absorption of aboveground parts during maturity, and soil nutrient content, the yield change rules under different fertilization systems of rice-rapeseed rotation were clarified, and the main influencing factors were explored.【Result】During the seven year rotation period, compared with FFP, the yield and yield composition of rice and rapeseed treated with OPT were more stable with increasing rotation cycles. Compared with FFP, OPT treatment significantly increased the nitrogen and phosphorus partial productivity of rice and rapeseed, with rice showing 51.5%-73.3% and 81.8%-107.9% higher nitrogen and phosphorus partial productivity, respectively; rapeseed was 137.2%-152.3% and 89.8%-101.9% higher, respectively. During the four-year rotation period, the aboveground biomass of rice and rapeseed treated with OPT was higher than that treated with FFP. Comparing the two annual rotation periods at the beginning and end of the comparative experiment, it was found that the accumulation of nitrogen, phosphorus, and potassium in the aboveground parts of rice and rapeseed treated with OPT was higher than that under FFP treatment, and OPT treatment had a better effect on improving soil organic matter, total nitrogen, and available potassium than FFP treatment. After 7 years of rice-rapeseed rotation, the soil fertility index significantly increased (63.8%-117.2%) under all treatments. Compared with FFP treatment, the average membership degree of five soil chemical indicators in the rice season treated with OPT was higher than that under FFP treatment, and its comprehensive fertility index increased by 13.4%-19.2%. In addition, the soil phosphorus activation coefficient during the three-year rotation period was monitored, and it was found that the OPT treatment had a higher soil phosphorus activation coefficient than under FFP treatment. 【Conclusion】Compared with the traditional fertilization practices of farmers, optimizing fertilization could be achieved by optimizing fertilizer management. Based on reducing nitrogen and phosphorus fertilizer application by 40% and 50% in rice and 60% and 50% in rapeseed, stabilizing their yield composition, maintaining high biomass and nutrient absorption, and achieving stable annual yield in the rice-rapeseed intercropping system; the performance of optimized fertilization treatment in improving fertilizer utilization efficiency and soil fertility was better than that of farmers' habitual treatment. Therefore, optimizing fertilization under long-term fertilizer reduction could coordinate crop nutrient needs and nutrient supply, maintain stable or increased crop yields, and improve fertilizer utilization efficiency. Rice-rapeseed rotation could improve soil fertility in medium and low yield fields, achieve obstacle reduction in medium and low yield fields, and promote sustainable development of rice-rapeseed rotation.

Key words: rice-rapeseed rotation, fertilization modes, yield, nutrient absorption, fertilizer utilization rate, soil fertility

Table 1

Rice yield and yield composition under different fertilization system"

年份
Year
处理
Treatment
单位面积穗数
Panicle number per acre (×104·hm-2)
穗粒数
Grains per panicle
千粒重
1000-seed weight (g)
实际产量
Grain yield (t·hm-2)
2017 CK 241.3±0.3c 114.5±2.1c 26.87±0.31a 6.68±0.18c
PK 243.2±1.8c 115.5±2.1c 26.37±0.41a 6.90±0.22c
NK 289.5±2.8b 126.8±0.6ab 27.09±0.23a 9.46±0.17b
FFP 310.8±4.3a 122.5±1.1bc 26.16±0.22a 10.13±0.43a
OPT 299.8±3.1ab 136.0±2.5a 26.78±0.77a 9.98±0.09ab
2018 CK 222.5±7.3c 111.9±1.9a 26.63±0.40a 6.10±0.29c
PK 214.1±3.6c 110.3±4.0a 26.87±0.42a 5.94±0.32c
NK 261.1±6.7b 112.5±2.7a 26.20±0.40a 7.33±0.25b
FFP 318.3±8.9a 117.2±2.1a 25.43±0.25a 9.06±0.30a
OPT 305.2±4.5a 116.7±1.4a 25.40±0.87a 8.92±0.12a
2019 CK 188.9±2.2c 102.4±2.8c 28.85±0.22a 5.33±0.16c
PK 176.7±3.9c 121.7±4.4a 28.69±0.39a 5.90±0.23c
NK 276.9±5.8b 111.4±1.4bc 28.39±0.49a 8.56±0.22b
FFP 325.7±3.3a 113.5±1.3ab 27.79±0.25a 10.04±0.16a
OPT 308.8±6.8a 110.4±1.5bc 27.89±0.99a 9.12±0.20b
2020 CK 155.7±4.0c 95.9±2.1b 27.77±0.26ab 3.97±0.09c
PK 152.2±1.3c 96.4±5.2b 28.09±0.25a 3.94±0.06c
NK 259.5±2.7b 116.4±0.6a 27.23±0.20abc 8.03±0.11b
FFP 297.8±2.8a 112.5±2.8a 26.11±0.55c 8.62±0.06a
OPT 285.1±2.6a 117.3±1.4a 26.33±0.30bc 8.69±0.10a
2021 CK 165.7±2.5c 117.8±2.7a 29.15±0.33a 5.41±0.11c
PK 171.5±9.5c 110.6±7.7a 29.39±0.57a 5.04±0.07c
NK 283.9±8.3b 116.8±5.1a 28.40±1.15ab 8.49±0.12b
FFP 311.6±16.8a 109.7±4.3a 28.13±0.64ab 8.98±0.09ab
OPT 311.5±1.0a 111.2±1.5a 27.56±0.25b 9.33±0.11a
2022 CK 186.8±9.3b 105.3±2.0a 25.02±0.54a 4.60±0.19b
PK 185.3±1.3b 105.5±3.6a 25.36±0.50a 4.75±0.19b
NK 310.7±2.6a 105.4±4.5a 25.31±0.27a 8.00±0.10a
FFP 325.6±2.7a 102.7±1.7a 25.43±0.23a 7.97±0.09a
OPT 316.8±4.1a 102.9±2.2a 25.63±0.51a 8.27±0.10a
2023 CK 176.4±4.0c 114.5±2.4c 28.10±0.48a 5.07±0.10c
PK 190.4±3.8c 112.9±3.6c 27.29±0.31abc 5.20±0.10c
NK 274.8±1.7b 117.8±2.0bc 27.41±0.45ab 8.29±0.14b
FFP 309.6±6.5a 126.6±1.1ab 25.75±0.12c 9.85±0.13a
OPT 305.6±5.2a 128.5±2.8a 26.47±0.22bc 10.04±0.14a
2024 CK 194.9±6.0b 100.4±0.8b 26.22±0.49a 4.07±0.09b
PK 204.7±4.3b 102.7±1.6b 26.29±0.50a 4.26±0.17b
NK 309.4±9.6a 109.1±0.5ab 25.72±0.44a 6.84±0.21a
FFP 309.9±7.8a 114.3±1.2a 25.45±0.20a 7.06±0.19a
OPT 311.4±3.7a 113.8±2.5a 25.04±0.31a 7.34±0.16a
年份 Year *** *** *** ***
施肥 Fertilization *** *** *** ***
年份×施肥 Year×Fertilization *** *** *** ***

Fig. 1

Annual and average yields, SYI and YSI of rice and rapeseed under different fertilization system The different lowercase letters indicating the difference of 0.05 significant levels between fertilization treatments. The same as below"

Table 2

Rapeseed yield and yield composition under different fertilization system"

年份
Year
处理
Treatment
每株角数
Horns per plant
每角粒数
Particles per horn
千粒重
1000-seed weight (g)
实际产量
Grain yield (t·hm-2)
2018 CK 217.1±12.1c 21.4±0.9c 3.33±0.11a 1.41±0.15c
PK 223.6±14.0c 22.0±0.8bc 3.41±0.02a 1.75±0.15c
NK 315.4±7.1b 21.9±0.4c 3.47±0.05a 2.68±0.14b
FFP 385.7±15.6a 23.7±0.6ab 3.51±0.03a 3.20±0.16a
OPT 386.3±12.2a 24.7±0.5a 3.38±0.13a 3.04±0.32ab
2019 CK 313.3±7.8c 20.5±0.7a 3.40±0.06a 2.50±0.18c
PK 316.4±13.2c 20.5±0.3a 3.51±0.02a 2.58±0.16c
NK 531.9±11.2b 20.2±0.3a 2.92±0.11b 3.40±0.12b
FFP 619.9±10.7a 19.7±0.2a 2.88±0.09b 3.92±0.16a
OPT 605.7±7.8a 20.0±0.2a 3.40±0.05a 3.72±0.06ab
2020 CK 241.5±7.0c 20.5±1.1a 4.95±0.10a 2.74±0.12c
PK 243.5±15.4c 21.0±0.8a 5.19±0.05a 2.91±0.15c
NK 351.3±8.7b 20.5±0.5a 4.98±0.07a 3.61±0.13b
FFP 408.9±5.9a 20.9±0.9a 4.94±0.13a 4.38±0.15a
OPT 408.1±6.7a 20.2±0.2a 4.99±0.08a 4.36±0.10a
2021 CK 273.0±9.5c 20.9±0.3a 3.56±0.06b 2.27±0.10c
PK 293.7±6.9c 20.7±0.2a 3.52±0.06b 2.47±0.08c
NK 374.9±6.6b 20.6±0.7a 3.84±0.07a 3.27±0.11b
FFP 423.2±6.6a 21.1±0.5a 3.88±0.10a 3.74±0.08a
OPT 407.4±9.3a 21.1±0.4a 3.97±0.04a 3.77±0.07a
2022 CK 270.1±8.3c 23.0±0.4a 3.53±0.02ab 2.41±0.67c
PK 278.5±3.7c 24.2±0.6a 3.63±0.05a 2.72±0.08c
NK 406.9±7.9b 23.8±0.8a 3.29±0.03b 3.26±0.19b
FFP 511.5±9.6a 23.2±0.7a 3.59±0.20a 4.54±0.11a
OPT 503.0±15.4a 23.0±0.2a 3.47±0.10ab 4.55±0.29a
2023 CK 264.8±6.7c 22.1±0.6b 3.70±0.01a 2.36±0.07c
PK 265.5±4.6c 24.0±0.7a 3.75±0.01a 2.48±0.06c
NK 407.4±7.3b 23.8±0.6ab 3.51±0.01a 3.71±0.07b
FFP 505.8±13.1a 22.7±0.2ab 3.69±0.16a 4.57±0.09a
OPT 495.3±8.6a 22.9±0.5ab 3.53±0.15a 4.47±0.13a
2024 CK 204.9±0.4c 24.6±0.2a 3.91±0.01a 2.44±0.07c
PK 236.7±5.6c 24.2±0.7ab 3.83±0.01a 2.53±0.05c
NK 348.8±7.8b 24.1±0.5ab 3.97±0.01a 3.76±0.08b
FFP 498.7±3.3a 22.5±0.6b 3.72±0.12a 4.71±0.06a
OPT 484.8±20.4a 23.1±0.2ab 3.89±0.05a 4.72±0.07a
年份 Year *** *** *** ***
施肥 Fertilization *** ns *** ***
年份×施肥 Year×Fertilization *** *** *** ***

Fig. 2

Correlation analysis between rice and rapeseed yield and yield composition under different fertilization system"

Table 3

Rice and rapeseed fertilizer utilization rate under different fertilization systems"

年份
Year
处理
Treatment
水稻Rice 油菜Rapeseed
氮肥偏生产力
PFPN (kg·kg-1)
磷肥偏生产力
PFPP (kg·kg-1)
氮肥偏生产力
PFPN (kg·kg-1)
磷肥偏生产力
PFPP (kg·kg-1)
2017 FFP 33.8±1.4b 84.4±3.6b / /
OPT 55.2±0.5a 166.4±1.5a / /
2018 FFP 30.2±1.0b 75.5±2.5b 10.7±0.5b 26.7±1.4b
OPT 49.6±0.7a 148.7±2.0a 25.3±2.6a 50.7±5.3a
2019 FFP 33.5±0.5b 83.6±1.3b 13.1±0.5b 32.7±1.3b
OPT 50.7±1.1a 152.1±3.1a 31.0±0.5a 62.1±1.0a
2020 FFP 28.7±0.2b 71.8±0.5b 14.6±0.5b 36.5±1.3b
OPT 48.3±0.5a 144.9±1.6a 36.3±0.8a 72.7±1.6a
2021 FFP 29.9±0.3b 74.8±0.7b 12.5±0.3b 31.1±0.7b
OPT 51.8±0.6a 155.4±1.8a 31.4±0.6a 62.9±1.2a
2022 FFP 26.6±0.3b 66.4±0.8b 15.1±0.4b 37.8±0.9b
OPT 45.4±1.3a 137.9±1.6a 37.9±2.4a 75.8±4.8a
2023 FFP 32.8±0.4b 82.1±1.0b 15.2±0.3b 38.1±0.8b
OPT 55.8±0.8a 167.3±2.4a 37.2±1.1a 74.4±2.2a
2024 FFP 23.5±0.6b 58.8±1.6b 15.7±0.2b 39.2±0.5b
OPT 40.8±0.8a 122.3±2.4a 39.4±0.6a 78.7±1.2a
年份 Year *** *** *** ***
施肥 Fertilization *** *** *** ***
年份×施肥 Year×Fertilization *** *** *** ***

Fig. 3

Rice and rapeseed biomass under different fertilization system"

Fig. 4

Rice and rapeseed nutrient accumulation under different fertilization system"

Fig. 5

Soil physical and chemical properties under different fertilization system"

Table 4

Soil physical and chemical properties under different fertilization modes in the 2018 and 2024 rice seasons"

年份 Year 处理 Treatment 有机质
Organic matter
(g·kg-1)
全氮
Total nitrogen
(g·kg-1)
有效磷
Available phosphorus (mg·kg-1)
速效钾
Available potassium (mg·kg-1)
pH
2024 CK 15.50±1.95a 1.07±0.06a 20.35±3.09a 76.33±2.31a 7.40±0.09a
2018 PK 12.29±0.46b 0.91±0.03b 26.33±3.49a 66.01±4.58b 7.23±0.23a
2024 PK 17.26±1.15a 1.13±0.06a 26.93±0.92a 90.02±7.81a 7.37±0.13a
2018 NK 12.23±0.49b 0.93±0.11b 22.25±2.88a 63.67±4.17b 7.24±0.33a
2024 NK 19.22±0.97a 1.24±0.10a 21.41±1.12a 85.01±7.94a 7.17±0.12a
2018 FFP 12.74±0.46b 0.97±0.03b 29.44±4.12a 60.67±10.21b 7.35±0.17a
2024 FFP 18.73±1.57a 1.24±0.03a 28.27±0.93a 90.33±7.09a 6.89±0.04a
2018 OPT 13.81±1.45b 0.98±0.01b 28.59±2.61a 77.67±7.57b 7.34±0.21a
2024 OPT 19.59±1.84a 1.32±0.07a 28.68±0.43a 98.33±3.51a 7.40±0.02a

Fig. 6

Membership scores of soil chemical indices and soil integrated chemical fertility quality index under different fertilization system The different lowercase letters indicating the difference of 0.05 significant levels between fertilization treatments"

Table 5

Soil phosphorus contents and availability under different fertilization systems"

年份 Year 作物 Crop 处理 Treatment 全磷 TP (g·kg-1) 有效磷 AP (mg·kg-1) 磷活化系数 PAC (%)
2017 水稻
Rice
CK 0.88±0.06b 22.39±3.02a 2.54±0.30a
PK 0.96±0.02ab 26.33±3.49a 2.73±0.32a
NK 0.81±0.06b 22.25±2.88a 2.73±0.18a
FFP 1.06±0.08a 29.43±4.12a 2.77±0.22a
OPT 0.97±0.02ab 28.59±2.61a 2.94±0.24a
2018 油菜Rapeseed CK 0.58±0.02b 14.77±1.53b 2.53±0.31a
PK 0.86±0.04a 24.19±0.87ab 2.81±0.16a
NK 0.69±0.02b 20.37±2.19ab 2.97±0.26a
FFP 0.99±0.05a 30.78±2.20a 3.11±0.09a
OPT 0.91±0.06a 29.21±1.55a 3.23±0.24a
2018 水稻
Rice
CK 1.01±0.04a 22.77±2.85b 2.28±0.22a
PK 1.02±0.07a 29.84±1.37ab 2.94±0.35a
NK 1.01±0.08a 22.79±3.81b 2.25±0.24a
FFP 1.07±0.09a 32.25±3.32ab 3.01±0.19a
OPT 0.98±0.03a 33.92±1.90a 3.46±0.30a
2019 油菜Rapeseed CK 0.92±0.05a 18.15±1.87a 1.99±0.18a
PK 0.91±0.04a 27.016±3.37a 2.95±0.15a
NK 0.88±0.07a 21.28±0.64a 2.42±0.25a
FFP 1.01±0.03a 28.05±1.86a 2.79±0.25a
OPT 0.95±0.07a 28.78±1.45a 3.04±0.38a
2019 水稻
Rice
CK 0.91±0.04a 24.41±4.50a 2.69±0.53a
PK 0.96±0.02a 28.42±2.87a 2.95±0.34a
NK 0.97±0.03a 24.92±4.04a 2.56±0.34a
FFP 1.01±0.01a 32.54±6.54a 3.21±0.63a
OPT 0.97±0.02a 33.36±8.09a 3.42±0.79a
2020 油菜Rapeseed CK 0.86±0.02a 24.81±2.14a 3.02±1.02a
PK 0.91±0.02a 31.23±0.58a 3.43±0.04a
NK 0.85±0.04a 30.12±1.10a 3.57±0.39a
FFP 0.93±0.03a 34.52±3.99a 3.71±0.55a
OPT 0.92±0.03a 35.43±4.40a 3.85±0.48a
年份 Year *** *** ***
施肥 Fertilization *** *** ***
年份×施肥 Year×Fertilization *** ns ns
[1]
程勇翔, 王秀珍, 郭建平, 赵艳霞, 黄敬峰. 中国水稻生产的时空动态分析. 中国农业科学, 2012, 45(17): 3473-3485. doi: 10.3864/j.issn.0578-1752.2012.17.003.
CHENG Y X, WANG X Z, GUO J P, ZHAO Y X, HUANG J F. The temporal-spatial dynamic analysis of China rice production. Scientia Agricultura Sinica, 2012, 45(17): 3473-3485. doi: 10.3864/j.issn.0578-1752.2012.17.003. (in Chinese)
[2]
严茂林, 葛玮玮, 张翔, 黄韵宁, 张志丹, 张洋. 我国油料产业形势分析与发展对策. 中国油脂, 2023, 48(6): 8-18.
YAN M L, GE W W, ZHANG X, HUANG Y N, ZHANG Z D, ZHANG Y. Situation analysis and development countermeasures of China’s oilseed industry. China Oils and Fats, 2023, 48(6): 8-18. (in Chinese)
[3]
王汉中. 我国油菜产业发展的历史回顾与展望. 中国油料作物学报, 2010, 32(2): 300-302.
WANG H Z. Review and future development of rapeseed industry in China. Chinese Journal of Oil Crop Sciences, 2010, 32(2): 300-302. (in Chinese)
[4]
金树权, 陈若霞, 汪峰, 姚红燕, 谌江华. 不同氮肥运筹模式对稻田田面水氮浓度和水稻产量的影响. 水土保持学报, 2020, 34(1): 242-248.
JIN S Q, CHEN R X, WANG F, YAO H Y, CHEN J H. Effects of different nitrogen fertilizer application modes on the variation of nitrogen concentration in paddy field surface water and the yield of rice. Journal of Soil and Water Conservation, 2020, 34(1): 242-248. (in Chinese)
[5]
ZHANG H Z, SHI L L, WEN D Z, YU K L. Soil potential labile but not occluded phosphorus forms increase with forest succession. Biology and Fertility of Soils, 2016, 52(1): 41-51.
[6]
MENEZES-BLACKBURN D, GILES C, DARCH T, GEORGE T S, BLACKWELL M, STUTTER M, SHAND C, LUMSDON D, COOPER P, WENDLER R, BROWN L, ALMEIDA D S, WEARING C, ZHANG H, HAYGARTH P M. Opportunities for mobilizing recalcitrant phosphorus from agricultural soils: A review. Plant and Soil, 2018, 427(1): 5-16.
[7]
车品高, 陈国徽, 曹国军, 高冰可, 陈艳芳, 熊文, 应治宏, 周庆友. 稻油轮作下秸秆还田对土壤养分和作物产量的影响. 作物学报, 2024, 50(12): 3118-3128.

doi: 10.3724/SP.J.1006.2024.32045
CHE P G, CHEN G H, CAO G J, GAO B K, CHEN Y F, XIONG W, YING Z H, ZHOU Q Y. Effects of straw return on soil nutrients and crop yield in rice-rapeseed rotation. Acta Agronomica Sinica, 2024, 50(12): 3118-3128. (in Chinese)
[8]
YANG R, GENG S Y, WANG X Y. Differences of wheat yield and economic benefits between soybean-wheat and rice-wheat cropping under different nitrogen fertilization patterns in Jianghan Plain, China. The Journal of Applied Ecology, 2020, 31(2): 441-448.
[9]
HIJBEEK R, VAN ITTERSUM M K, TEN BERGE H F M, GORT G, SPIEGEL H, WHITMORE A P. Do organic inputs matter-a meta-analysis of additional yield effects for arable crops in Europe. Plant and Soil, 2017, 411(1): 293-303.
[10]
ZHANG X X, ZHANG R J, GAO J S, WANG X C, FAN F L, MA X T, YIN H Q, ZHANG C W, FENG K, DENG Y. Thirty-one years of rice-rice-green manure rotations shape the rhizosphere microbial community and enrich beneficial bacteria. Soil Biology and Biochemistry, 2017, 104: 208-217.
[11]
LUDWIG B, GEISSELER D, MICHEL K, JOERGENSEN R G, SCHULZ E, MERBACH I, RAUPP J, RAUBER R, HU K, NIU L, LIU X. Effects of fertilization and soil management on crop yields and carbon stabilization in soils. A review. Agronomy for Sustainable Development, 2011, 31(2): 361-372.
[12]
YOUSAF M, LI X K, ZHANG Z, REN T, CONG R H, ATA-UL-KARIM S T, FAHAD S, SHAH A N, LU J W. Nitrogen fertilizer management for enhancing crop productivity and nitrogen use efficiency in a rice-oilseed rape rotation system in China. Frontiers in Plant Science, 2016, 7: 1496.

pmid: 27746809
[13]
YAN J Y, REN T, WANG K K, YE T H, SONG Y, CONG R H, LI X K, LU Z F, LU J W. Optimizing phosphate fertilizer input to reduce phosphorus loss in rice-oilseed rape rotation. Environmental Science and Pollution Research, 2023, 30(11): 31533-31545.
[14]
王寅. 直播和移栽冬油菜氮磷钾肥施用效果的差异及机理研究[D]. 武汉: 华中农业大学, 2014.
WANG Y. Study on the different responses to nitrogen, phosphorus, and potassium fertilizers and the mechanism between direct sown and transplanted winter oilseed rape[D]. Wuhan: Huazhong Agricultural University, 2014. (in Chinese)
[15]
荣湘民, 刘强, 朱红梅. 水稻的源库关系及碳、氮代谢的研究进展. 中国水稻科学, 1998, 12(S1): 63.
RONG X M, LIU Q, ZHU H M. Research progress on the source sink relationship and carbon and nitrogen metabolism of rice. Chinese Journal of Rice Science, 1998, 12 (S1): 63. (in Chinese)
[16]
JENNER C F, UGALDE T D, ASPINALL D. The physiology of starch and protein deposition in the endosperm of wheat. Functional Plant Biology, 1991, 18(3): 211.
[17]
HE H, PENG M W, LU W D, HOU Z N, LI J H. Commercial organic fertilizer substitution increases wheat yield by improving soil quality. Science of the Total Environment, 2022, 851: 158132.
[18]
SHAN L N, HE Y F, CHEN J, HUANG Q, LIAN X, WANG H C, LIU Y L. Nitrogen surface runoff losses from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin, China. Agricultural Water Management, 2015, 159: 255-263.
[19]
鲍士旦. 土壤农化分析. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and Agricultural Chemistry Analysis. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
[20]
MANNA M C, SWARUP A, WANJARI R H, RAVANKAR H N, MISHRA B, SAHA M N, SINGH Y V, SAHI D K, SARAP P A. Long-term effect of fertilizer and manure application on soil organic carbon storage, soil quality and yield sustainability under sub-humid and semi-arid tropical India. Field Crops Research, 2005, 93(2/3): 264-280.
[21]
YADAV R L, DWIVEDI B S, PANDEY P S. Rice-wheat cropping system: assessment of sustainability under green manuring and chemical fertilizer inputs. Field Crops Research, 2000, 65(1): 15-30.
[22]
XIE Z J, TU S X, SHAH F, XU C X, CHEN J R, HAN D, LIU G R, LI H L, MUHAMMAD I, CAO W D. Substitution of fertilizer-N by green manure improves the sustainability of yield in double-rice cropping system in South China. Field Crops Research, 2016, 188: 142-149.
[23]
WU W, DONG X O, CHEN G M, LIN Z X, CHI W C, TANG W J, YU J, WANG S S, JIANG X Z, LIU X L, et al. The elite haplotype OsGATA8-H coordinates nitrogen uptake and productive tiller formation in rice. Nature Genetics, 2024, 56(7): 1516-1526.
[24]
GUO J X, YANG S N, GAO L M, LU Z F, GUO J J, SUN Y M, KONG Y L, LING N, SHEN Q R, GUO S W. Nitrogen nutrient index and leaf function affect rice yield and nitrogen efficiency. Plant and Soil, 2019, 445(1): 7-21.
[25]
GUO J X, TIAN G L, ZHOU Y, WANG M, LING N, SHEN Q R, GUO S W. Evaluation of the grain yield and nitrogen nutrient status of wheat (Triticum aestivum L.) using thermal imaging. Field Crops Research, 2016, 196: 463-472.
[26]
郭九信. 养分优化管理提高水稻产量及其生理生态机制的研究[D]. 南京: 南京农业大学, 2015.
GUO J X. Studies on optimized nutrient management for rice yield and its physiological and ecological mechanisms[D]. Nanjing: Nanjing Agricultural University, 2015. (in Chinese)
[27]
钟旭华, 黄农荣, 郑海波, 彭少兵, Roland J Buresh. 不同时期施氮对华南双季杂交稻产量及氮素吸收和氮肥利用率的影响. 杂交水稻, 2007, 22(4): 62-66, 70.
ZHONG X H, HUANG N R, ZHENG H B, PENG S B, BURESH R J. Effect of nitrogen application timing on grain yield, nitrogen uptake and use efficiency of hybrid rice in South China. Hybrid Rice, 2007, 22(4): 62-66, 70. (in Chinese)
[28]
仇少君, 赵士诚, 苗建国, 徐新朋, 孙刚, 易琼, 王淳, 张文学, 何萍. 氮素运筹对两个晚稻品种产量及其主要构成因素的影响. 植物营养与肥料学报, 2012, 18(6): 1326-1335.
QIU S J, ZHAO S C, MIAO J G, XU X P, SUN G, YI Q, WANG C, ZHANG W X, HE P. Effect of different N management practices on yield and its main formed factors in two later-season rice genotypes. Plant Nutrition and Fertilizer Science, 2012, 18(6): 1326-1335. (in Chinese)
[29]
申哲, 韩天富, 黄晶, 曲潇林, 马常宝, 柳开楼, 王慧颖, 刘立生, 李冬初, 李亚贞, 王秋菊, 张会民. 中国水稻相对产量差时空变异及其对氮肥的响应. 植物营养与肥料学报, 2023, 29(5): 789-801.
SHEN Z, HAN T F, HUANG J, QU X L, MA C B, LIU K L, WANG H Y, LIU L S, LI D C, LI Y Z, WANG Q J, ZHANG H M. Spatio-temporal variation of relative yield gap of rice and its response to nitrogen fertilizer in China. Journal of Plant Nutrition and Fertilizers, 2023, 29(5): 789-801. (in Chinese)
[30]
YU X J, CHEN Q, SHI W C, GAO Z, SUN X, DONG J J, LI J, WANG H T, GAO J G, LIU Z G, ZHANG M. Interactions between phosphorus availability and microbes in a wheat-maize double cropping system: A reduced fertilization scheme. Journal of Integrative Agriculture, 2022, 21(3): 840-854.
[31]
TIAN W, WANG L, LI Y, ZHUANG K M, LI G, ZHANG J B, XIAO X J, XI Y G. Responses of microbial activity, abundance, and community in wheat soil after three years of heavy fertilization with manure-based compost and inorganic nitrogen. Agriculture, Ecosystems & Environment, 2015, 213: 219-227.
[32]
YOU L C, ROS G H, CHEN Y L, SHAO Q, YOUNG M D, ZHANG F S, DE VRIES W. Global mean nitrogen recovery efficiency in croplands can be enhanced by optimal nutrient, crop and soil management practices. Nature Communications, 2023, 14: 5747.

doi: 10.1038/s41467-023-41504-2 pmid: 37717014
[33]
ZHENG M H, XU M C, ZHANG J, LIU Z F, MO J M. Soil diazotrophs sustain nitrogen fixation under high nitrogen enrichment via adjustment of community composition. mSystems, 2024, 9(10): e0054724.
[34]
莫润秀, 江立庚, 郭立, 胡均铭, 刘开强, 周佳民, 梁天锋, 曾可, 丁成泉. 氮肥运筹对水稻植株不同形态氮素含量的影响. 中国水稻科学, 2010, 24(1): 49-54.

doi: 10.3969/j.issn.1001-7216.2010.01.09
MO R X, JIANG L G, GUO L, HU J M, LIU K Q, ZHOU J M, LIANG T F, ZENG K, DING C Q. Effects of nitrogen fertilizer management on nitrogen contents in different forms in rice plants. Chinese Journal of Rice Science, 2010, 24(1): 49-54. (in Chinese)
[35]
XIE K L, GUO J J, WARD K, LUO G W, SHEN Q R, GUO S W. The potential for improving rice yield and nitrogen use efficiency in smallholder farmers: A case study of Jiangsu, China. Agronomy, 2020, 10(3): 419.
[36]
PENG S B, BURESH R J, HUANG J L, ZHONG X H, ZOU Y B, YANG J C, WANG G H, LIU Y Y, HU R F, TANG Q Y, CUI K H, ZHANG F S, DOBERMANN A. Improving nitrogen fertilization in rice by sitespecific N management. A review. Agronomy for Sustainable Development, 2010, 30(3): 649-656.
[37]
JU X T, KOU C L, ZHANG F S, CHRISTIE P. Nitrogen balance and groundwater nitrate contamination: Comparison among three intensive cropping systems on the North China Plain. Environmental Pollution, 2006, 143(1): 117-125.

doi: 10.1016/j.envpol.2005.11.005 pmid: 16364521
[38]
CHEN X H, YAN X J, WANG M K, CAI Y Y, WENG X F, SU D, GUO J X, WANG W Q, HOU Y, YE D L, et al. Long-term excessive phosphorus fertilization alters soil phosphorus fractions in the acidic soil of pomelo orchards. Soil and Tillage Research, 2022, 215: 105214.
[39]
PURWANTO B H, ALAM S. Impact of intensive agricultural management on carbon and nitrogen dynamics in the humid tropics. Soil Science and Plant Nutrition, 2020, 66(1): 50-59.
[40]
SHCHERBAK I, MILLAR N, ROBERTSON G P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(25): 9199-9204.
[41]
WANG C, SHEN Y, FANG X T, XIAO S Q, LIU G Y, WANG L G, GU B J, ZHOU F, CHEN D L, TIAN H Q, CIAIS P, ZOU J W, LIU S W. Reducing soil nitrogen losses from fertilizer use in global maize and wheat production. Nature Geoscience, 2024, 17(10): 1008-1015.
[42]
陈安磊, 谢小立, 陈惟财, 王凯荣, 高超. 长期施肥对红壤稻田耕层土壤碳储量的影响. 环境科学, 2009, 30(5): 1267-1272.
CHEN A L, XIE X L, CHEN W C, WANG K R, GAO C. Effect of long-term fertilization on soil plough layer carbon storage in a reddish paddy soil. Environmental Science, 2009, 30(5): 1267-1272. (in Chinese)
[43]
YU Q G, HU X, MA J W, YE J, SUN W C, WANG Q, LIN H. Effects of long-term organic material applications on soil carbon and nitrogen fractions in paddy fields. Soil and Tillage Research, 2020, 196: 104483.
[44]
葛晓光, 王晓雪, 付亚文, 刘秀茹. 长期定位施用氮肥对菜田土壤肥力变化的影响. 中国蔬菜, 1997(5): 1-6.
GE X G, WANG X X, FU Y W, LIU X R. Effect of long-term fixed application of nitrogen fertilizer on soil fertility in vegetable fields. China Vegetables, 1997(5): 1-6. (in Chinese)
[45]
SHANG Q Y, GAO C M, YANG X X, WU P P, LING N, SHEN Q R, GUO S W. Ammonia volatilization in Chinese double rice-cropping systems: A 3-year field measurement in long-term fertilizer experiments. Biology and Fertility of Soils, 2014, 50(5): 715-725.
[46]
ZHANG J, BAO X, WANG T. Effect of green manure utilization and reduced N fertilizer on wheat yield and soil fertility. Journal of Nuclear Agricultural Sciences, 2011, 25: 998-1003.

doi: 10.11869/hnxb.2011.05.0998
[47]
SÁNCHEZ-NAVARRO V, ZORNOZA R, FAZ Á, FERNÁNDEZ J A. Comparing legumes for use in multiple cropping to enhance soil organic carbon, soil fertility, aggregates stability and vegetables yields under semi-arid conditions. Scientia Horticulturae, 2019, 246: 835-841.
[48]
蔡常被. 水田油菜用地养地初步调查研究. 湖北农业科学, 1978, 17(8): 12-13.
CAI C B. Preliminary investigation and study on the cultivation of rape land in paddy field. Hubei Agricultural Sciences, 1978, 17(8): 12-13. (in Chinese)
[49]
BAI Z H, LI H G, YANG X Y, ZHOU B K, SHI X J, WANG B R, LI D C, SHEN J B, CHEN Q, QIN W, OENEMA O, ZHANG F S. The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types. Plant and Soil, 2013, 372(1): 27-37.
[50]
黄晶, 张杨珠, 徐明岗, 高菊生. 长期施肥下红壤性水稻土有效磷的演变特征及对磷平衡的响应. 中国农业科学, 2016, 49(6): 1132-1141. doi: 10.3864/j.issn.0578-1752.2016.06.009.
HUANG J, ZHANG Y Z, XU M G, GAO J S. Evolution characteristics of soil available phosphorus and its response to soil phosphorus balance in paddy soil derived from red earth under long-term fertilization. Scientia Agricultura Sinica, 2016, 49(6): 1132-1141. doi: 10.3864/j.issn.0578-1752.2016.06.009. (in Chinese)
[51]
都江雪, 柳开楼, 黄晶. 中国稻田土壤有效磷时空演变特征及其对磷平衡的响应. 土壤学报, 2021, 58(2): 476-486.
DU J X, LIU K L, HUANG J. Temporal and spatial evolution characteristics of available phosphorus in paddy soils in China and it response to phosphorus balance. Acta Pedologica Sinica, 2021, 58(2): 476-486. (in Chinese)
[1] PU LiXia, ZHANG JiaRui, YE JianPing, HUANG XiuLan, FAN GaoQiong, YANG HongKun. The Combined Effects of 16, 17-Dihydro Gibberellin A5 and Straw Mulching on Tillering and Grain Yield of Dryland Wheat [J]. Scientia Agricultura Sinica, 2025, 58(9): 1735-1748.
[2] GUO ChenLi, LIU Yang, CHEN Yan, HU Wei, WANG YouHua, ZHOU ZhiGuo, ZHAO WenQing. Effects of Phosphorus Fertilizer Postpone Under Nitrogen Reduction Condition on Yield, Phosphorus Fertilizer Utilization Efficiency of Drip-Irrigated Cotton [J]. Scientia Agricultura Sinica, 2025, 58(9): 1749-1766.
[3] LIU JinSong, WU LongMei, BAO XiaoZhe, LIU ZhiXia, ZHANG Bin, YANG TaoTao. Effects of a Short-Term Reduction in Nitrogen Fertilizer Application Rates on the Grain Yield and Rice Quality of Early and Late-Season Dual-Use Rice in South China [J]. Scientia Agricultura Sinica, 2025, 58(8): 1508-1520.
[4] WEI WenHua, LI Pan, SHAO GuanGui, FAN ZhiLong, HU FaLong, FAN Hong, HE Wei, CHAI Qiang, YIN Wen, ZHAO LianHao. Response of Silage Maize Yield and Quality to Reduced Irrigation and Combined Organic-Inorganic Fertilizer in Northwest Irrigation Areas [J]. Scientia Agricultura Sinica, 2025, 58(8): 1521-1534.
[5] XUE YuQi, ZHAO JiYu, SUN WangSheng, REN BaiZhao, ZHAO Bin, LIU Peng, ZHANG JiWang. Effects of Different Nitrogen Forms on Yield and Quality of Summer Maize [J]. Scientia Agricultura Sinica, 2025, 58(8): 1535-1549.
[6] LI ShaoXing, SONG WenFeng, WEI ZeYu, ZHOU YuLing, SONG LiXia, REN Ke, MA Qun, WANG LongChang. Effects of Straw and Milk Vetch Mulching on Soil Fertility and Sweet Potato Yield [J]. Scientia Agricultura Sinica, 2025, 58(8): 1591-1603.
[7] YIN Bo, YU AiZhong, WANG PengFei, YANG XueHui, WANG YuLong, SHANG YongPan, ZHANG DongLing, LIU YaLong, LI Yue, WANG Feng. Effects of Green Manure Returning Combined with Nitrogen Fertilizer Reduction on Hydrothermal Characteristics of Wheat Field and Grain Yield in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2025, 58(7): 1366-1380.
[8] CHEN GuiPing, LI Pan, SHAO GuanGui, WU XiaYu, YIN Wen, ZHAO LianHao, FAN ZhiLong, HU FaLong. The Regulatory Effect of Reduced Irrigation and Combined Organic- Inorganic Fertilizer Application on Stay-Green Characteristics in Silage Maize Leaves After Tasseling Stage [J]. Scientia Agricultura Sinica, 2025, 58(7): 1381-1396.
[9] TIAN LiWen, LOU ShanWei, ZHANG PengZhong, DU MingWei, LUO HongHai, LI Jie, PAHATI MaiMaiTi, MA TengFei, ZHANG LiZhen. Analysis of Problems and Pathways for Increasing Cotton Yield per Unit Area in Xinjiang Under Green and Efficient Production Mode [J]. Scientia Agricultura Sinica, 2025, 58(6): 1102-1115.
[10] ZHANG HongCheng, XING ZhiPeng, ZHANG RuiHong, SHAN Xiang, XI XiaoBo, CHENG Shuang, WENG WenAn, HU Qun, CUI PeiYuan, WEI HaiYan. Characteristics and Technical Approaches of Integrated Unmanned High-Yield Cultivation of Wheat [J]. Scientia Agricultura Sinica, 2025, 58(5): 864-876.
[11] ZHANG Han, ZHANG YuQi, LI JingLai, XU Hong, LI WeiHuan, LI Tao. Effects of LED Supplementary Lighting on Production and Leaf Physiological Properties of Substrate-Cultivated Strawberry in Chinese Solar Greenhouse [J]. Scientia Agricultura Sinica, 2025, 58(5): 975-990.
[12] CHEN Ge, GU Yu, WEN Jiong, FU YueFeng, HE Xi, LI Wei, ZHOU JunYu, LIU QiongFeng, WU HaiYong. Effects of Fallow Weeds Returning to the Field on Photosynthetic Matter Production and Yield of Rice [J]. Scientia Agricultura Sinica, 2025, 58(4): 647-659.
[13] SU Ming, LI FanGuo, HONG ZiQiang, ZHOU Tian, LIU QiangJuan, BAN WenHui, WU HongLiang, KANG JianHong. Antioxidant Characterization of Nitrogen Application for Mitigating Potato Senescence Post-Flowering Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2025, 58(4): 660-675.
[14] SHI Fan, LI WenGuang, YI ShuSheng, YANG Na, CHEN YuMeng, ZHENG Wei, ZHANG XueChen, LI ZiYan, ZHAI BingNian. The Variation Characteristics of Soil Organic Carbon Fractions Under the Combined Application of Organic and Inorganic Fertilizers [J]. Scientia Agricultura Sinica, 2025, 58(4): 719-732.
[15] LUO YiNuo, LI YanFei, LI WenHu, ZHANG SiQi, MU WenYan, HUANG Ning, SUN RuiQing, DING YuLan, SHE WenTing, SONG WenBin, LI XiaoHan, SHI Mei, WANG ZhaoHui. Iron Concentrations in Grain and Its Different Parts of Newly Developed Wheat Varieties (Lines) in China and Influencing Factors [J]. Scientia Agricultura Sinica, 2025, 58(3): 416-430.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!