Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (5): 831-839.doi: 10.3864/j.issn.0578-1752.2025.05.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

The Dilemma and Way Out of Patent Regulation for Gene-Edited Crops

XU YiHeng()   

  1. Institute for Chinese Legal Modernization Studies of Nanjing Normal University, Nanjing 210023
  • Received:2024-07-29 Accepted:2024-09-24 Online:2025-03-07 Published:2025-03-07

Abstract:

Gene-edited crops, the product of the intersection between biotechnology and agricultural science, represent a crucial direction in the development of modern agriculture. With the rapid advancement of the CRISPR-Cas9 system, the scientific research and commercial development of crop trait improvement have gradually shifted towards a “technology-driven” path, which has not only overturned traditional crop cultivation methods but also fundamentally propelled humanity’s exploration of crop research. Nevertheless, the phenomenon of patenting fundamental research tools has sparked widespread controversy within academia and profoundly impacted the sharing and utilization of crop resources. Private entities patenting CRISPR-Cas9 technology restrict other researchers and farmers’ opportunities to explore and harness genetic resources. This practice not only hinders scientific progress but also violates the fundamental consensus that genetic resources should be shared by all humanity. The sharing and openness of crop resources are crucial for the sustainable development of global agriculture and ecological balance, serving as a necessary condition for safeguarding public interests. A key issue that the governance of biotechnology patents urgently needs to address is how to reasonably allocate benefits and risks among traditional communities, researchers, research investors, and the public. This is also essential for constructing a new scientific ethics framework and regulating emerging technologies. However, China’s policy responses in this area are still insufficient. To mitigate the negative effects stemming from the exclusivity of patents, it is imperative to reassess and reconstruct the framework of relevant systems. Firstly, we should adhere to the principle of moral utility, emphasizing the public nature of scientific research and its social responsibilities, while carefully considering the “harmful” nature of inventions to social morality. Secondly, implementing a mandatory disclosure system for biological genetic resources is a crucial step towards achieving transparency and fairness, with “applicants truthfully disclosing the actual origin of crop genes based on the principle of good faith” elevated to a mandatory norm. Lastly, the open licensing of fundamental patented technologies can draw inspiration from the experience of open-source software, encouraging more researchers to participate in the exploration of crop resources through the open sharing of research tools, thereby facilitating broader scientific collaboration and the transformation of research outcomes.

Key words: gene editing, crop intellectual property, technology patents, ethics of science and technology, CRISPR

[1]
新欧洲. 34名诺奖获得者联名求!欧洲将如何选择? (2024-01-21)[2024-07-20]. https://www.163.com/dy/article/IP0O9GOS05148KED.html.
NEW EUROPE. 34 Nobel Prize winners jointly beg! What will Europe choose? (2024-01-21)[2024-07-20]. https://www.163.com/dy/article/IP0O9GOS05148KED.html. (in Chinese)
[2]
THOMAS J. Letter to Samuel Kercheval. (1816-07-12)[2024-07-20]. https://classicliberal.tripod.com/jefferson/kercheval.html.
[3]
HOLMAN C M. A fractured international response to CRISPR- enabled gene editing of agricultural products. Biotechnology Law Report, 2019, 38(1): 3-23.
[4]
肖显静. 转基因技术的伦理分析: 基于生物完整性的视角. 中国社会科学, 2016(6): 66-86.
XIAO X J. An analysis of the ethics of transgenic technology-from the view point of biological integrity. Social Sciences in China, 2016(6): 66-86. (in Chinese)
[5]
张倩. 转基因技术安全问题的生态伦理审视及规避路径. 人民论坛, 2013(23): 168-170.
ZHANG Q. Ecological and ethical review of safety issues of genetically modified technologies and paths to avoidance. People's Tribune, 2013(23): 168-170. (in Chinese)
[6]
李聪, 曹文广. CRISPR/Cas9介导的基因编辑技术研究进展. 生物工程学报, 2015, 31(11): 1531-1542.
LI C, CAO W G. Advances in CRISPR/Cas9-mediated gene editing. Chinese Journal of Biotechnology, 2015, 31(11): 1531-1542. (in Chinese)
[7]
WANG J Y, DOUDNA J A. CRISPR technology: A decade of genome editing is only the beginning. Science, 2023, 379(6629): eadd8643.
[8]
李红杰, 贾亚男, 张彦军, 王兴荣, 陈丽梅. 国内外转基因与基因编辑作物监管现状. 中国农业大学学报, 2023, 28(9): 1-11.
LI H J, JIA Y N, ZHANG Y J, WANG X R, CHEN L M. Regulatory status of GM and gene-edited crops at domestic and abroad. Journal of China Agricultural University, 2023, 28(9): 1-11. (in Chinese)
[9]
MARC G. Gene editing in translational research. Revista de Bioética y Derecho, 2019( 2019): 5-16.
[10]
JOSEP S P. Gene editing. Time to reflection. Revista de Bioética y Derecho, 2017(40): 157-166.
[11]
NATIONAL ACADEMIES OF SCIENCES, ENGINEERING, AND MEDICINE. Preparing for future products of biotechnology. Washington, DC: The National Academies Press, 2017.
[12]
ESVELT K M, GEMMELL N J. Conservation demands safe gene drive. PLoS Biology, 2017, 15(11): e2003850.
[13]
JAI A D, CHRISTOPHER S R. Limping along and lagging behind: The law and emerging gene technologies. James Cook University Law Review, 2018(24): 61-76.
[14]
李欣, 刘旭霞, 张文斐. 全球农业基因编辑技术监管动态及发展趋势. 生命科学, 2023, 35(2): 114-122.
LI X, LIU X X, ZHANG W F. Supervision dynamic and development tendency of global agricultural gene editing technology. Chinese Bulletin of Life Sciences, 2023, 35(2): 114-122. (in Chinese)
[15]
OLUWATOBILOBA M. Addressing biopiracy through an access and benefit sharing regime-complex: In search of effective protection for traditional knowledge associated with genetic resources. Asper Review of International Business and Trade Law, 2016(16): 231-278.
[16]
邹婉侬, 贠桂玲, 宋敏. 全球基因编辑育种创新价值链现状与启示. 中国农业大学学报, 2023, 28(9): 12-23.
ZOU W N, YUN G L, SONG M. Current situation and implications of innovation value chain in global gene editing breeding. Journal of China Agricultural University, 2023, 28(9): 12-23. (in Chinese)
[17]
KOZUBEK J. Crispr-Cas 9 is impossible to stop. Georgetown Journal of International Affairs, 2017, 18(2): 112-119.
[18]
日本NHK“基因组编辑”采访组. 基因魔剪:改造生命的新技术. 谢严莉, 译. 杭州: 浙江大学出版社, 2017.
JAPANESE NHK “GENOME EDITING” INTERVIEW TEAM. Gene Magic Scissors:New Technology for Transforming Life. Translated by XIEY L. Hangzhou: Zhejiang University Press, 2017. (in Chinese)
[19]
范月蕾, 王冰, 于建荣. 国内外CRISPR-Cas基因编辑技术主要申请人专利布局分析. 生命科学, 2022, 34(10): 1305-1316.
FAN Y L, WANG B, YU J R. Analysis on the patent layout of main applicants in China and abroad for CRISPR-Cas gene editing technology. Chinese Bulletin of Life Sciences, 2022, 34(10): 1305-1316. (in Chinese)
[20]
周寄中, 张黎, 汤超颖. 知识产权与技术创新: 联动与效应分析. 研究与发展管理, 2006, 18(5): 106-112.
ZHOU J Z, ZHANG L, TANG C Y. Intellectual property rights and technology innovation: Linkage and effectiveness. R&D Management, 2006, 18(5): 106-112. (in Chinese)
[21]
DOUDNA J A, CHARPENTIER E. The new frontier of genome engineering with CRISPR-Cas9. Science, 2014, 346(6213): e1258096.
[22]
CONG L, RAN F A, COX D, LIN S L, BARRETTO R, HABIB N, HSU P D, WU X B, JIANG W Y, MARRAFFINI L A, ZHANG F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819-823.

doi: 10.1126/science.1231143 pmid: 23287718
[23]
FELDMAN R. The CRISPR revolution: What editing human DNA reveals about the patent system’s DNA. UCLA Law Review Discourse, 2016(64): 392-411.
[24]
JON C. CRISPR patent ruling leaves license holders scrambling: widely anticipated decision affirms broad institute's claim to genome editing in human cells, but the battle is not over. Science, 2017, 6327(355): 786.
[25]
JACOB S S. The CRISPR patent decision didn't get the science right. That doesn't mean it was wrong. (2018-09-11)[2024-05-20]. https://www.statnews.com/2018/09/11/crispr-patent-decision-science/.
[26]
BIBIANA C. Who owns CRISPR? C&EN Global Enterprise, 2017, 8(95): 3.
[27]
HARRISON C. EPO revokes Broad’s CRISPR patent. Nature Biotechnology, 2018, 36(3): 209.
[28]
McDONNELL B H, BERGHOFF LLP, KEVIN N. Sigma-Aldrich and broad propose preliminary motions in recent CRISPR interference No.106,133, JDSUPRA. (2021-12-16)[2024-06-07]. https://www.jdsupra.com/legalnews/sigma-aldrich-and-broad-propose-6553124.
[29]
EMILY N R. The future of biotechnology: Accelerating gene-editing advancements through non-exclusive licenses and open-source access of CRISPR-Cas9. Santa Clara High Technology Law Journal, 2022, 1(38): 95-121.
[30]
LEDFORD H. Major CRISPR patent decision won’t end tangled dispute. Nature, 2022, 603(7901): 373-374.
[31]
HARRISON C. UC’s latest CRISPR patent. Nature Biotechnology, 2019, 37(1): 6.
[32]
STARLING S. CRISPR patent results. Nature Reviews Microbiology, 2017(15): 194.
[33]
纨妲娜·席瓦.生物剽窃: 自然和知识的掠夺. 李一丁, 译. 北京: 知识产权出版社, 2018.
VANDANA S. Bioprivacy: The plunder of nature and knowledge. Translated by LI Y D. Beijing: Intellectual Property Publishing House Co., Ltd. Press, 2018. (in Chinese)
[34]
周松华, 汪世平. DNA片段专利给基础研究带来的影响与对策. 科技进步与对策, 2007, 24(3): 13-15.
ZHOU S H, WANG S P. Impacts of patent protection for DNA fragment on basic research and solutions to such problem. Science & Technology Progress and Policy, 2007, 24(3): 13-15. (in Chinese)
[35]
李远华. 基因编辑食品的伦理风险与法治对策. 广西社会科学, 2023(7): 98-106.
LI Y H. Ethical risks of gene-edited foods and rule of law responses. Social Sciences in Guangxi, 2023(7): 98-106. (in Chinese)
[36]
胡波. 专利法的伦理基础——以生物技术专利问题为例证. 法制与社会发展, 2008(2): 109-122.
HU B. Ethic basis of patent law: From the perspective of patent problem of biotechnology. Law and Social Development, 2008(2): 109-122. (in Chinese)
[37]
石佳友, 刘忠炫. 基因编辑技术的风险应对: 伦理治理与法律规制. 法治研究, 2023(1): 86-98.
SHI J Y, LIU Z X. Risk response to gene editing technology: Ethical governance and legal regulation. Research on Rule of Law, 2023(1): 86-98. (in Chinese)
[38]
KEAY L A. Morality’s move within U.S. patent law: From moral utility to subject matter. AIPLA Quarterly Journal, 2012, 40(3): 409-439.
[39]
HANNAH M. Biotechnology's great divide: Strengthening the relationship between patent law and bioethics in the age of CRISPR-Cas9. Minnesota Journal of Law, Science and Technology, 2018, 2(19): 565-606.
[40]
BENJAMIN D E. Protecting society from patently offensive inventions: The risk of reviving the moral utility doctrine. Cornell Law Review, 2004, 3(89): 685-720.
[41]
杨德桥. 专利申请人之信息披露义务的价值、模式与规则重构. 科技管理研究, 2019, 39(18): 154-163.
YANG D Q. Reconstruction of the value, model and rules of patent applicant's obligation of information disclosure. Science and Technology Management Research, 2019, 39(18): 154-163. (in Chinese)
[42]
GEBRU A. Patents, disclosure, and biopiracy. Denver Law Review, 2019, 3(96): 535-584.
[43]
刘忠炫. 基因编辑伦理问题的类型化区分及其法律规制. 中国政法大学学报, 2023(3): 126-139.
LIU Z X. Typological differentiation of ethical issues in gene editing and its legal regulation. Journal of CUPL, 2023(3): 126-139. (in Chinese)
[44]
法治网. 历经25年谈判《产权组织知识产权、遗传资源和相关传统知识条约》成功缔结. (2024-05-27)[2024-06-10]. http://www.legaldaily.com.cn/index_article/content/2024-05/27/content_9001814.html.
LEGALDAILY. After 25 years of negotiations, the WIPO Treaty on Intellectual Property, Genetic Resources and Associated Traditional Knowledge has been successfully concluded. (2024-05-27)[2024-06-10]. http://www.legaldaily.com.cn/index_article/content/2024-05/27/content_9001814.html. (in Chinese)
[45]
光明网. 世界知识产权组织向“生物剽窃”行为宣战. (2024-05- 20)[2025-02-17]. https://baijiahao.baidu.com/s?id=1799539042336559753&wfr=spider&for=pc.
GUANGMING Net. WIPO declares war on “biopiracy”. (2024-05-20) [2025-02-17]. https://baijiahao.baidu.com/s?id=1799539042336559753&wfr=spider&for=pc. (in Chinese)
[46]
CONTRERAS J L, SHERKOW J S. CRISPR, surrogate licensing, and scientific discovery. Science, 2017, 355(6326): 698-700.

doi: 10.1126/science.aal4222 pmid: 28209863
[47]
ROBERT K M. A note on science and democracy. Journal of Legal and Political Sociology, 1942, 1&2(1): 115-126.
[48]
LEDFORD H. Bitter fight over CRISPR patent heats up. Nature, 2016, 529(7586): 265.
[49]
王渊, 贾丽娜. 知识产权独占与社会公共利益的调和: 以开源运动为视角. 科技管理研究, 2015, 35(16): 160-163, 174.
WANG Y, JIA L N. The coordination between exclusive intellectual property and social public interests: in view of the open source movement. Science and Technology Management Research, 2015, 35(16): 160-163, 174. (in Chinese)
[50]
DORIAN D, RUCHIKA A, MATTHEW S, DEBORAH K M. Revisiting open source. International In-House Counsel Journal, 2018, 42(11): 1-12.
[51]
DAN B, JOSH L, MICHAEL M. Open source genomics. Boston University Journal of Science&Technology Law, 2002, 1(8): 254-271.
[52]
张炳生, 乔宜梦. 论粮农植物遗传资源开源保护困境与出路. 法治研究, 2020(3): 97-105.
ZHANG B S, QIAO Y M. The dilemma and solutions of open source protection for agricultural plant genetic resources. Research on Rule of Law, 2020(3): 97-105. (in Chinese)
[53]
MICHAEL A E. Open source and innovative copyright. IPL Newsletter, 2004, 3(22): 30-34.
[54]
刘旭霞, 沈大力. 转基因生物技术的知识产权保护. 生命科学, 2015, 27(2): 107-112.
LIU X X, SHEN D L. Analysis on the intellectual property protection of genetically modified organisms technology. Chinese Bulletin of Life Sciences, 2015, 27(2): 107-112. (in Chinese)
[1] XU Na, TANG Ying, XU ZhengJin, SUN Jian, XU Quan. Genetic Analysis and Candidate Gene Identification on Fertility and Inheritance of Hybrid Sterility of XI and GJ Cross [J]. Scientia Agricultura Sinica, 2024, 57(8): 1417-1429.
[2] WU YuHua, ZHAI ShanShan, PU HaoZhen, GAO HongFei, ZHANG Hua, LI Jun, LI YunJing, XIAO Fang, WU Gang, XU LiQun. Progress on Detection Methods for Gene-Edited Organisms [J]. Scientia Agricultura Sinica, 2024, 57(17): 3318-3334.
[3] WEN YiBo, CHEN ShuTing, XU ZhengJin, SUN Jian, XU Quan. Combination of DEP1, Gn1a, and qSW5 Regulates the Panicle Architecture in Rice [J]. Scientia Agricultura Sinica, 2023, 56(7): 1218-1227.
[4] WU YuanLong, HUI FengJiao, PAN ZhenYuan, YOU ChunYuan, LIN HaiRong, LI ZhiBo, JIN ShuangXia, NIE XinHui. Opportunities and Challenges for Developing Herbicide-Resistance Crops in the Post-Genomic Era [J]. Scientia Agricultura Sinica, 2023, 56(17): 3285-3301.
[5] YANG Min,XU HuaWei,WANG CuiLing,YANG Hu,WEI YueRong. Using CRISPR/Cas9-mediated Targeted Mutagenesis of ZmFKF1 Delayed Flowering Time in Maize [J]. Scientia Agricultura Sinica, 2021, 54(4): 696-707.
[6] LI SongMei,QIU YuGe,CHEN ShengNan,WANG XiaoMeng,WANG ChunSheng. CRISPR/Cas9 Mediated Exogenous Gene Knock-in at ROSA26 Locus in Sheep Umbilical Cord Mesenchymal Stem Cells [J]. Scientia Agricultura Sinica, 2021, 54(2): 400-411.
[7] WU ShiYang,YANG XiaoYi,ZHANG YanWen,HOU DianYun,XU HuaWei. Generation of ospin9 Mutants in Rice by CRISPR/Cas9 Genome Editing Technology [J]. Scientia Agricultura Sinica, 2021, 54(18): 3805-3817.
[8] ZHANG YaWen, BAO ShuHui, TANG ZhenJia, WANG XiaoWen, YANG Fang, ZHANG DeChun, HU YiBing. Function of Sucrose Transporter OsSUT5 in Rice Pollen Development and Seed Setting [J]. Scientia Agricultura Sinica, 2021, 54(16): 3369-3380.
[9] XU ZiYi,CHENG Xing,SHEN Qi,ZHAO YaNan,TANG JiaYu,LIU Xi. Identification and Gene Functional Analysis of Yellow Green Leaf Mutant ygl3 in Rice [J]. Scientia Agricultura Sinica, 2021, 54(15): 3149-3157.
[10] LI ZhaoWei,LING DongLan,SUN CongYing,ZENG HuiLing,LIU KaiJi,LAN YingShan,FAN Kai,LIN WenXiong. CRISPR/Cas9 Targeted Editing of OsIAA11 in Rice [J]. Scientia Agricultura Sinica, 2021, 54(13): 2699-2709.
[11] ZHANG Xiang,SHI YaXing,LU BaiShan,WU Ying,LIU Ya,WANG YuanDong,YANG JinXiao,ZHAO JiuRan. Creation of New Maize Variety with Fragrant Rice Like Flavor by Editing BADH2-1 and BADH2-2 Using CRISPR/Cas9 [J]. Scientia Agricultura Sinica, 2021, 54(10): 2064-2072.
[12] QI YongBin,ZHANG LiXia,WANG LinYou,SONG Jian,WANG JianJun. CRISPR/Cas9 Targeted Editing for the Fragrant Gene Badh2 in Rice [J]. Scientia Agricultura Sinica, 2020, 53(8): 1501-1509.
[13] ZHANG Cheng,HE MingLiang,WANG Wei,XU FangSen. Development of an Efficient Editing System in Arabidopsis by CRISPR-Cas9 [J]. Scientia Agricultura Sinica, 2020, 53(12): 2340-2348.
[14] YANG Lan,YANG Yang,LI WeiXun,OBAROAKPO JOY,PANG XiaoYang,LÜ JiaPing. CRISPR Locus Analysis of Lactobacillus casei [J]. Scientia Agricultura Sinica, 2019, 52(3): 521-529.
[15] YANG Qiang, XU Pan, JIANG Kai, QIAO ChuanMin, REN Jun, HUANG LuSheng, XING YuYun. Targeted Editing of BMPR-IB Gene in Porcine Fetal Fibroblasts via Lentivirus Mediated CRISPR/Cas9 Technology and Its Effects on Expression of Genes in the BMPs Signaling Pathway [J]. Scientia Agricultura Sinica, 2018, 51(7): 1378-1389.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!