Scientia Agricultura Sinica ›› 2025, Vol. 58 ›› Issue (5): 1017-1031.doi: 10.3864/j.issn.0578-1752.2025.05.015

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles     Next Articles

Research Progress on Mechanisms Interpretation and Prediction Methods for Heterosis of Livestock

SUN YanYan1(), NI AiXin1,2(), YANG HanHan1, YUAN JingWei1, CHEN JiLan1()   

  1. 1 State Key Laboratory of Animal Biotech Breeding/Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
    2 Wageningen University and Research, Wageningen 6700AH, Netherlands
  • Received:2024-10-17 Accepted:2025-01-13 Online:2025-03-07 Published:2025-03-07
  • Contact: CHEN JiLan

Abstract:

Heterosis is a phenomenon where the offspring of genetically distinct populations exhibit superior vitality, reproductive capacity, and adaptability compared with the average of their parent populations, which is an important genetic resource. Heterosis plays a significant role in modern agriculture, contributing to increase yields and quality of livestock and crops, rapidly improve traits, accelerate the breeding of new varieties, and enhance genetic diversity, thereby efficiently boosting the production of animal husbandry and agriculture while reducing costs. Despite the discovery of heterosis is over a century ago, the elucidation of its genetic basis lags far behind its application in agricultural production. The study of the complex formation mechanism of heterosis is a classic and an active topic in the field of genetics and breeding, but the clear conclusions remain limited. In response to the characteristics of heterosis, scientists have successively proposed various hypotheses for its formation, such as the dominance hypothesis, overdominance hypothesis, and epistasis hypothesis, revealing that the genetic basis of heterosis was non-additive genetic effects. However, these hypotheses are based on the effects of single genes, which are overly idealized and simplistic. Explorations at different levels, such as DNA, RNA, and proteins, have successively discovered the coexistence of multiple genetic effects. Particularly in hybrid crops like rice and corn, the related researches have been continuously identified the loci of heterosis effects, enriched the understanding of the formation mechanism for heterosis in crops, and promoted the transformation of crop breeding technologies, such as precise molecular design breeding. Heterosis is also widely applied in the breeding of livestock and poultry. In developed countries with advanced animal husbandry, over 80% of commercial pork, chicken, and eggs are obtained from hybrid breeds. To efficiently apply heterosis in production for animal husbandry, it is necessary to predict heterosis in advance. New methods, such as the inter- and intra-group phenotypic variance ratio prediction, hybrid heritability prediction, and molecular marker prediction, have been developed to solve the long experimental cycle, environmental sensitivity, and high human and financial costs associated with traditional hybridization experiments for predicting heterosis. However, the accuracy of these prediction methods is limited. Heterosis involves in interaction of multiple levels, and because of the complex genetic background and long breeding cycle, it is still a big challenge for the study of the heterosis formation mechanism and accurate prediction methods. In recent years, the gradual application of sequencing technology has provided a new perspective for understanding the molecular regulatory network of heterosis in livestock and poultry. QTL mapping and genome-wide association study reveal the molecular mechanism of heterosis at the genomic level, and the identified molecular makers are applied in selection and breeding. Combined with multi-omics researches, such as transcriptomics and metabolomics, the key functional genes, variations, and metabolites affecting heterosis can be more precisely located, which facilitate hybrid improvement. This review elaborated the research progress in the formation mechanism and prediction methods for heterosis in the field of livestock and poultry. For looking forward to future, the researches will gradually clarify the complex mechanism of heterosis by integrating multi-omics sequencing data and bioinformatics analysis, in order to identify genes and molecular markers related to heterosis, and innovate new prediction methods, which will provide a more accurate direction for the utilization of heterosis.

Key words: heterosis, animal breeding, molecular mechanism, prediction method

Fig. 1

Three classic theory hypothesis of heterosis Dominance hypothesis: dominant benefit allele (A and B) can suppress or mask recessive adverse allele (a and b). Overdominance hypothesis: interaction between the alleles (A1/ A2). Epistasis hypothesis: interaction between the non-alleles (A2/ B1)"

Fig. 2

The gene expression pattern of the parents (P1 and P2) and their hybrid (F1) The red dots are P1, the green dots are P2, and the black dots are F1"

[1]
MANCINELLI A C, MENCHETTI L, BIROLO M, BITTANTE G, CHIATTELLI D, CASTELLINI C. Crossbreeding to improve local chicken breeds: Predicting growth performance of the crosses using the Gompertz model and estimated heterosis. Poultry Science, 2023, 102(8): 102783.
[2]
范婷婷, 陈燕, 张路培, 徐凌洋, 高会江, 李俊雅, 高雪. 西门塔尔牛与我国地方黄牛的杂种优势预测分析. 畜牧兽医学报, 2021, 52(3): 653-661.
FAN T T, CHEN Y, ZHANG L P, XU L Y, GAO H J, LI J Y, GAO X. Prediction of heterosis between Chinese Simmental beef cattle and Chinese local cattle. Acta Veterinaria et Zootechnica Sinica, 2021, 52(3): 653-661. (in Chinese)

doi: 10.11843/j.issn.0366-6964.2021.03.009
[3]
AMUZU-AWEH E N, BOVENHUIS H, DE KONING D J, BIJMA P. Predicting heterosis for egg production traits in crossbred offspring of individual White Leghorn sires using genome-wide SNP data. Genetics Selection Evolution, 2015, 47(1): 27.
[4]
JONES D F. Dominance of linked factors as a means of accounting for heterosis. Genetics, 1917, 2(5): 466-479.

doi: 10.1093/genetics/2.5.466 pmid: 17245892
[5]
SHULL G H. The composition of a field of maize. Journal of Heredity, 1908, os-4(1): 296-301.
[6]
MINVIELLE F. Dominance is not necessary for heterosis: A two-locus model. Genetical Research, 1987, 49(3): 245-247.
[7]
XIAO Y J, JIANG S Q, CHENG Q, WANG X Q, YAN J, ZHANG R Y, QIAO F, MA C, LUO J Y, LI W Q, et al. The genetic mechanism of heterosis utilization in maize improvement. Genome Biology, 2021, 22(1): 148.

doi: 10.1186/s13059-021-02370-7 pmid: 33971930
[8]
GU Z L, GONG J Y, ZHU Z, LI Z, FENG Q, WANG C S, ZHAO Y, ZHAN Q L, ZHOU C C, WANG A H, et al. Structure and function of rice hybrid genomes reveal genetic basis and optimal performance of heterosis. Nature Genetics, 2023, 55: 1745-1756.

doi: 10.1038/s41588-023-01495-8 pmid: 37679493
[9]
VITEZICA Z G, VARONA L, LEGARRA A. On the additive and dominant variance and covariance of individuals within the genomic selection scope. Genetics, 2013, 195(4): 1223-1230.

doi: 10.1534/genetics.113.155176 pmid: 24121775
[10]
DUENK P, CALUS M P L, WIENTJES Y C J, BIJMA P. Benefits of dominance over additive models for the estimation of average effects in the presence of dominance. G3 Genes|Genomes|Genetics, 2017, 7(10): 3405-3414.
[11]
SU G S, CHRISTENSEN O F, OSTERSEN T, HENRYON M, LUND M S. Estimating additive and non-additive genetic variances and predicting genetic merits using genome-wide dense single nucleotide polymorphism markers. PLoS ONE, 2012, 7(9): e45293.
[12]
VITEZICA Z G, LEGARRA A, TORO M A, VARONA L. Orthogonal estimates of variances for additive, dominance, and epistatic effects in populations. Genetics, 2017, 206(3): 1297-1307.

doi: 10.1534/genetics.116.199406 pmid: 28522540
[13]
EBRAHIMI K, DASHAB G R, FARAJI-AROUGH H, ROKOUEI M. Estimation of additive and non-additive genetic variances of body weight in crossbreed populations of the Japanese quail. Poultry Science, 2019, 98(1): 46-55.

doi: 10.3382/ps/pey357 pmid: 30169748
[14]
ABU TALEB SADEGHI S, ROKOUEI M, VALLEH M V, ALI ABBASI M, FARAJI-AROUGH H. Estimation of additive and non-additive genetic variance component for growth traits in Adani goats. Tropical Animal Health and Production, 2020, 52(2): 733-742.

doi: 10.1007/s11250-019-02064-0 pmid: 31625012
[15]
JOSHI R, MEUWISSEN T H E, WOOLLIAMS J A, GJØEN H M. Genomic dissection of maternal, additive and non-additive genetic effects for growth and carcass traits in Nile Tilapia. Genetics Selection Evolution, 2020, 52(1): 1.
[16]
NAGAI R, KINUKAWA M, WATANABE T, OGINO A, KUROGI K, ADACHI K, SATOH M, UEMOTO Y. Genomic dissection of repeatability considering additive and no additive genetic effects for Semen production traits in beef and dairy bulls. Journal of Animal Science, 2022, 100(9): skac241.
[17]
VITEZICA Z G, REVERTER A, HERRING W, LEGARRA A. Dominance and epistatic genetic variances for litter size in pigs using genomic models. Genetics Selection Evolution, 2018, 50(1): 71.

doi: 10.1186/s12711-018-0437-3 pmid: 30577727
[18]
ALVES K, BRITO L F, BAES C F, SARGOLZAEI M, ROBINSON J A B, SCHENKEL F S. Estimation of additive and non-additive genetic effects for fertility and reproduction traits in North American Holstein cattle using genomic information. Journal of Animal Breeding and Genetics, 2020, 137(3): 316-330.

doi: 10.1111/jbg.12466 pmid: 31912573
[19]
SCHNEIDER H, HEISE J, TETENS J, THALLER G, WELLMANN R, BENNEWITZ J. Genomic dominance variance analysis of health and milk production traits in German Holstein cattle. Journal of Animal Breeding and Genetics, 2023, 140(4): 390-399.

doi: 10.1111/jbg.12765 pmid: 36872841
[20]
LIU Y, XU L, WANG Z Z, XU L, CHEN Y, ZHANG L P, XU L Y, GAO X, GAO H J, ZHU B, LI J Y. Genomic prediction and association analysis with models including dominance effects for important traits in Chinese Simmental beef cattle. Animals, 2019, 9(12): 1055.
[21]
CUI L L, YANG B, XIAO S J, GAO J, BAUD A, GRAHAM D, MCBRIDE M, DOMINICZAK A, SCHAFER S, AUMATELL R L, et al. Dominance is common in mammals and is associated with trans-acting gene expression and alternative splicing. Genome Biology, 2023, 24(1): 215.

doi: 10.1186/s13059-023-03060-2 pmid: 37773188
[22]
吴常信. 优质鸡生产中杂种优势利用的相关问题. 中国家禽, 1999, 21(5): 4-5, 13.
WU C X. Problems related to heterosis utilization in high quality chicken production. China Poultry, 1999, 21(5): 4-5, 13. (in Chinese)
[23]
曲玉杰, 孙君灵, 耿晓丽, 王骁, Zareen Sarfraz, 贾银华, 潘兆娥, 何守朴, 龚文芳, 王立如, 庞保印, 杜雄明. 陆地棉亲本间遗传距离与杂种优势的相关性研究. 中国农业科学, 2019, 52(9): 1488-1500. doi: 10.3864/j.issn.0578-1752.2019.09.002.
QU Y J, SUN J L, GENG X L, WANG X, SARFRAZ Z, JIA Y H, PAN Z E, HE S P, GONG W F, WANG L R, PANG B Y, DU X M. Correlation between genetic distance of parents and heterosis in upland cotton. Scientia Agricultura Sinica, 2019, 52(9): 1488-1500. doi: 10.3864/j.issn.0578-1752.2019.09.002. (in Chinese)
[24]
WORKU A. A review on population structure, genetic diversity analysis, genetic distance between population and genetic singularity in livestock. Advances in Life Science and Technology, 2017, 54: 1-6.
[25]
HATTEMER H H. Genetic distance between populations. Theoretical and Applied Genetics, 1982, 62(3): 219-223.
[26]
REYNOLDS J, WEIR B S, COCKERHAM C C. Estimation of the coancestry coefficient: basis for a short-term genetic distance. Genetics, 1983, 105(3): 767-779.

doi: 10.1093/genetics/105.3.767 pmid: 17246175
[27]
DHILLON B S, BOPPENMAIER J, POLLMER W G, HERRMAN R, MELCHINGER A E. Relationship of restriction fragment length polymorphisms among European maize inbreds with ear dry matter yield of their hybrids. Agricultural and Food Sciences, 1993, 90(93): 90059-V.
[28]
FALCONER D, MACKAY T. Introduction to Quantitative Genetics (4th ed). United States: Benjamin Cummings, 1996:1231.
[29]
ATZMON G, CASSUTO D, LAVI U, CAHANER A, ZEITLIN G, HILLEL J. DNA markers and crossbreeding scheme as means to select sires for heterosis in egg production of chickens. Animal Genetics, 2002, 33(2): 132-139.

pmid: 12047226
[30]
BARBOSA A M M, GERALDI I O, BENCHIMOL L L, GARCIA A A F, SOUZA C L, SOUZA A P. Relationship of intra- and interpopulation tropical maize single cross hybrid performance and genetic distances computed from AFLP and SSR markers. Euphytica, 2003, 130(1): 87-99.
[31]
GAVORA J S, FAIRFULL R W, BENKEL B F, CANTWELL W J, CHAMBERS J R. Prediction of heterosis from DNA fingerprints in chickens. Genetics, 1996, 144(2): 777-784.

doi: 10.1093/genetics/144.2.777 pmid: 8889538
[32]
DIAS L A, PICOLI E A, ROCHA R B, ALFENAS A C. A priori choice of hybrid parents in plants. Genetics and Molecular Research, 2004, 3(3): 356-368.
[33]
AMUZU-AWEH E N, BIJMA P, KINGHORN B P, VEREIJKEN A, VISSCHER J, AM VAN ARENDONK J, BOVENHUIS H. Prediction of heterosis using genome-wide SNP-marker data: Application to egg production traits in white Leghorn crosses. Heredity, 2013, 111(6): 530-538.
[34]
YUE L X, ZHANG S J, ZHANG L K, LIU Y J, CHENG F, LI G L, ZHANG S F, ZHANG H, SUN R F, LI F. Heterotic prediction of hybrid performance based on genome-wide SNP markers and the phenotype of parental inbred lines in heading Chinese cabbage (Brassica rapa L. ssp. pekinensis). Scientia Horticulturae, 2022, 296: 110907.
[35]
MINVIELLE F, COVILLE J L, KRUPA A, MONVOISIN J L, MAEDA Y, OKAMOTO S. Genetic similarity and relationships of DNA fingerprints with performance and with heterosis in Japanese quail lines from two origins and under reciprocal recurrent or within-line selection for early egg production. Genetics Selection Evolution, 32(3): 289-302.
[36]
LV Q M, LI W G, SUN Z Z, OUYANG N, JING X, HE Q, WU J, ZHENG J K, ZHENG J T, TANG S Q, et al. Resequencing of 1, 143 indica rice accessions reveals important genetic variations and different heterosis patterns. Nature Communications, 2020, 11: 4778.
[37]
GENG X L, QU Y J, JIA Y H, HE S P, PAN Z E, WANG L R, DU X M. Assessment of heterosis based on parental genetic distance estimated with SSR and SNP markers in upland cotton (Gossypium hirsutum L.). BMC Genomics, 2021, 22(1): 123.
[38]
盛中华, 陈国宏, 潘玉春, 王起山, 张哲. 基于基因组遗传标记的上海白猪(上系)杂交优势预测分析. 上海农业学报, 2018, 34(6): 60-64.
SHENG Z H, CHEN G H, PAN Y C, WANG Q S, ZHANG Z. Prediction and analysis of heterosis in Shanghai white pigs(Shang) based on genome-wide genetic markers. Acta Agriculturae Shanghai, 2018, 34(6): 60-64. (in Chinese)
[39]
徐忠, 张哲, 孙浩, 张向喆, 徐宁迎, 陈究成, 华坚青, 钟土木, 王起山, 潘玉春. 金华猪与杜洛克、长白猪、大白猪杂交的杂种优势预测. 中国畜牧杂志, 2019, 55(1): 64-67.
XU Z, ZHANG Z, SUN H, ZHANG X Z, XU N Y, CHEN J C, HUA J Q, ZHONG T M, WANG Q S, PAN Y C. Prediction of heterosis of Jinhua pig crossing with Duroc, Landrace Yorkshire White pig. Chinese Journal of Animal Science, 2019, 55(1): 64-67. (in Chinese)
[40]
范婷婷, 王文翔, 马毅, 赵国耀, 徐凌洋, 陈燕, 张路培, 高会江, 李俊雅, 高雪. 西门塔尔牛、和牛与荷斯坦牛杂种优势预测及实际杂交效果分析. 畜牧兽医学报, 2022, 53(8): 2568-2577.

doi: 10.11843/j.issn.0366-6964.2022.08.015
FAN T T, WANG W X, MA Y, ZHAO G Y, XU L Y, CHEN Y, ZHANG L P, GAO H J, LI J Y, GAO X. Prediction and effect analysis of heterosis in Simmental, wagyu and Holstein. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8): 2568-2577. (in Chinese)

doi: 10.11843/j.issn.0366-6964.2022.08.015
[41]
李棉燕, 王立贤, 赵福平. 机器学习在动物基因组选择中的研究进展. 中国农业科学, 2023, 56(18): 3682-3692. doi: 10.3864/j.issn.0578-1752.2023.18.015.
LI M Y, WANG L X, ZHAO F P. Research progress on machine learning for genomic selection in animals. Scientia Agricultura Sinica, 2023, 56(18): 3682-3692. doi: 10.3864/j.issn.0578-1752.2023.18.015. (in Chinese)
[42]
WANG Q, YAN T, LONG Z B, HUANG L Y, ZHU Y, XU Y, CHEN X Y, PAK H, LI J Q, WU D Z, XU Y, HUA S J, JIANG L X. Prediction of heterosis in the recent rapeseed (Brassica napus) polyploid by pairing parental nucleotide sequences. PLoS Genetics, 2021, 17(11): e1009879.
[43]
SHI T L, JIA K H, BAO Y T, NIE S, TIAN X C, YAN X M, CHEN Z Y, LI Z C, ZHAO S W, MA H Y, et al. High-quality genome assembly enables prediction of allele-specific gene expression in hybrid poplar. Plant Physiology, 2024, 195(1): 652-670.
[44]
IBRAR D, KHAN S, RAZA M, NAWAZ M, HASNAIN Z, KASHIF M, RAIS A, GUL S, AHMAD R, GAAFAR A Z. Application of machine learning for identification of heterotic groups in sunflower through combined approach of phenotyping, genotyping and protein profiling. Scientific Reports, 2024, 14: 7333.

doi: 10.1038/s41598-024-58049-z pmid: 38538706
[45]
SUNNY A, CHAKRABORTY N R, KUMAR A, SINGH B K, PAUL A, MAMAN S, SEBASTIAN A, DARKO D A. Understanding gene action, combining ability, and heterosis to identify superior aromatic rice hybrids using artificial neural network. Journal of Food Quality, 2022, 2022: 9282733.
[46]
商连光, 多重组学解析超级稻杂种优势遗传基础[D]. 北京: 中国农业科学院, 2019.
SHANG L G. Analysis of genetic basis of super rice heterosis by multiple recombination theory[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese)
[47]
MONIR M M, ZHU J. Dominance and epistasis interactions revealed as important variants for leaf traits of maize NAM population. Frontiers in Plant Science, 2018, 9: 627.

doi: 10.3389/fpls.2018.00627 pmid: 29967625
[48]
LOPES M S, BASTIAANSEN J W M, HARLIZIUS B, KNOL E F, BOVENHUIS H. A genome-wide association study reveals dominance effects on number of teats in pigs. PLoS ONE, 2014, 9(8): e105867.
[49]
邵怀安. 通过加性和显性模型揭示小耳花与杜洛克F1代杂种优势的遗传基础[D]. 武汉: 华中农业大学, 2023.
SHAO H A.Revealing the genetic basis of heterosis in F1 Hybrids between Small-Ear Spotted and Duroc through additive and dominance models. Wuhan: Huazhong Agricultural University, 2023. (in Chinese)
[50]
ESTRADA-REYES Z M, RAE D O, MATEESCU R G. Genome- wide scan reveals important additive and non-additive genetic effects associated with resistance to Haemonchus contortus in Florida Native sheep. International Journal for Parasitology, 2021, 51(7): 535-543.
[51]
TARSANI E, KRANIS A, MANIATIS G, AVENDANO S, HAGER-THEODORIDES A L, KOMINAKIS A. Deciphering the mode of action and position of genetic variants impacting on egg number in broiler breeders. BMC Genomics, 2020, 21(1): 512.

doi: 10.1186/s12864-020-06915-1 pmid: 32709222
[52]
CUI L L, YANG B, PONTIKOS N, MOTT R, HUANG L S. ADDO: a comprehensive toolkit to detect, classify and visualize additive and non-additive quantitative trait loci. Bioinformatics, 2020, 36(5): 1517-1521.

doi: 10.1093/bioinformatics/btz786 pmid: 31764991
[53]
SUN D, WANG D, ZHANG Y, YU Y, XU G, LI J. Differential gene expression in liver of inbred chickens and their hybrid offspring. Animal Genetics, 2005, 36(3): 210-215.

pmid: 15932399
[54]
YAO Y Y, NI Z F, ZHANG Y H, CHEN Y, DING Y H, HAN Z F, LIU Z Y, SUN Q X. Identification of differentially expressed genes in leaf and root between wheat hybrid and its parental inbreds using PCR-based cDNA subtraction. Plant Molecular Biology, 2005, 58(3): 367-384.

pmid: 16021401
[55]
SWANSON-WAGNER R A, JIA Y, DECOOK R, BORSUK L A, NETTLETON D, SCHNABLE P S. All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbred parents. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(18): 6805-6810.
[56]
WU X W, LI R N, LI Q Q, BAO H G, WU C X. Comparative transcriptome analysis among parental inbred and crosses reveals the role of dominance gene expression in heterosis in Drosophila melanogaster. Scientific Reports, 2016, 6: 21124.
[57]
孙新宇, 王珏, 凌遥, 鲍海港, 吴常信. 模式动物(果蝇)体重高低杂种优势组合的转录组差异表达分析. 中国畜牧杂志, 2022, 58(1): 91-97.
SUN X Y, WANG J, LING Y, BAO H G, WU C X. Heterosis of body weight in line crossing of Drosophila melanogaster. Chinese Journal of Animal Science, 2022, 58(1): 91-97. (in Chinese)
[58]
GU H C, QI X, JIA Y X, ZHANG Z B, NIE C S, LI X H, LI J Y, JIANG Z H, WANG Q, QU L J. Inheritance patterns of the transcriptome in hybrid chickens and their parents revealed by expression analysis. Scientific Reports, 2019, 9: 5750.

doi: 10.1038/s41598-019-42019-x pmid: 30962479
[59]
ZHUO Z, LAMONT S J, ABASHT B. RNA-seq analyses identify additivity as the predominant gene expression pattern in F1 chicken embryonic brain and liver. Genes, 2019, 10(1): 27.
[60]
MAI C N, WEN C L, XU Z Y, XU G Y, CHEN S R, ZHENG J X, SUN C J, YANG N. Genetic basis of negative heterosis for growth traits in chickens revealed by genome-wide gene expression pattern analysis. Journal of Animal Science and Biotechnology, 2021, 12(1): 52.

doi: 10.1186/s40104-021-00574-2 pmid: 33865443
[61]
MAI C N, WEN C L, SUN C J, XU Z Y, CHEN S R, YANG N. Implications of gene inheritance patterns on the heterosis of abdominal fat deposition in chickens. Genes, 2019, 10(10): 824.
[62]
WANG Y M, SUN Y Y, NI A X, LI Y L, YUAN J W, MA H, WANG P L, SHI L, ZONG Y H, ZHAO J M, BIAN S X, CHEN J L. Research Note: Heterosis for egg production and oviposition pattern in reciprocal crossbreeds of indigenous and elite laying chickens. Poultry Science, 2022, 101(12): 102201.
[63]
ZHAO J M, YUAN J W, WANG Y M, NI A X, SUN Y Y, LI Y L, MA H, WANG P L, SHI L, GE P Z, BIAN S X, ZONG Y H, CHEN J L. Assessment of feed efficiency and its relationship with egg quality in two purebred chicken lines and their reciprocal crosses. Agriculture, 2022, 12(12): 2171.
[64]
NI A X, CALUS M P L, BOVENHUIS H, YUAN J W, WANG Y M, SUN Y Y, CHEN J L. Genetic parameters, reciprocal cross differences, and age-related heterosis of egg-laying performance in chickens. Genetics Selection Evolution, 2023, 55(1): 87.

doi: 10.1186/s12711-023-00862-7 pmid: 38062365
[65]
WANG Y M, YUAN J W, SUN Y Y, LI Y L, WANG P L, SHI L, NI A X, ZONG Y H, ZHAO J M, BIAN S X, MA H, CHEN J L. Genetic basis of sexual maturation heterosis: insights from ovary lncRNA and mRNA repertoire in chicken. Frontiers in Endocrinology, 2022, 13: 951534.
[66]
WANG Y M, YUAN J W, SUN Y Y, NI A X, ZHAO J M, LI Y L, WANG P L, SHI L, ZONG Y H, GE P Z, BIAN S X, MA H, CHEN J L. Genome-wide circular RNAs signatures involved in sexual maturation and its heterosis in chicken. Journal of Integrative Agriculture, 2023, doi: 10.1016/j.jia.2023.05.026.
[67]
YUAN J W, LI Q, SUN Y Y, WANG Y M, LI Y L, YOU Z J, NI A X, ZONG Y H, MA H, CHEN J L. Multi-tissue transcriptome profiling linked the association between tissue-specific circRNAs and the heterosis for feed intake and efficiency in chicken. Poultry Science, 2024, 103(7): 103783.
[68]
YUAN J W, ZHAO J M, SUN Y Y, WANG Y M, LI Y L, NI A X, ZONG Y H, MA H, WANG P L, SHI L, CHEN J L. The mRNA-lncRNA landscape of multiple tissues uncovers key regulators and molecular pathways that underlie heterosis for feed intake and efficiency in laying chickens. Genetics Selection Evolution, 2023, 55(1): 69.

doi: 10.1186/s12711-023-00834-x pmid: 37803296
[69]
ISA A M, SUN Y Y, LI Y L, WANG Y M, NI A X, YUAN J W, MA H, SHI L, TESFAY H H, FAN J, et al. microRNAs with non-additive expression in the ovary of hybrid hens target genes enriched in key reproductive pathways that may influence heterosis for egg laying traits. Frontiers in Genetics, 2022, 13: 974619.
[70]
ISA A M, SUN Y Y, SHI L, JIANG L L, LI Y L, FAN J, WANG P L, NI A X, HUANG Z Y, MA H, et al. Hybrids generated by crossing elite laying chickens exhibited heterosis for clutch and egg quality traits. Poultry Science, 2020, 99(12): 6332-6340.

doi: 10.1016/j.psj.2020.08.056 pmid: 33248549
[71]
ISA A M, SUN Y Y, WANG Y M, LI Y L, YUAN J W, NI A X, MA H, SHI L, TESFAY H H, ZONG Y H, et al. Transcriptome analysis of ovarian tissues highlights genes controlling energy homeostasis and oxidative stress as potential drivers of heterosis for egg number and clutch size in crossbred laying hens. Poultry Science, 2024, 103(1): 103163.
[72]
HUANG Q, WEN C L, GU S, JIE Y C, LI G Q, YAN Y Y, TIAN C Y, WU G Q, YANG N. Synergy of gut microbiota and host genome in driving heterosis expression of chickens. Journal of Genetics and Genomics, 2024, 51(10): 1121-1134.
[73]
LI D Y, HUANG Z Y, SONG S H, XIN Y Y, MAO D H, LV Q M, ZHOU M, TIAN D M, TANG M F, WU Q, et al. Integrated analysis of phenome, genome, and transcriptome of hybrid rice uncovered multiple heterosis-related loci for yield increase. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(41): E6026-E6035.
[74]
YE J, LIANG H B, ZHAO X Y, LI N, SONG D J, ZHAN J P, LIU J, WANG X F, TU J X, VARSHNEY R K, SHI J Q, WANG H Z. A systematic dissection in oilseed rape provides insights into the genetic architecture and molecular mechanism of yield heterosis. Plant Biotechnology Journal, 2023, 21(7): 1479-1495.
[75]
GAUR U, LI K, MEI S Q, LIU G S. Research progress in allele-specific expression and its regulatory mechanisms. Journal of Applied Genetics, 2013, 54(3): 271-283.

doi: 10.1007/s13353-013-0148-y pmid: 23609142
[76]
BOTET R, KEURENTJES J J B. The role of transcriptional regulation in hybrid vigor. Frontiers in Plant Science, 2020, 11: 410.

doi: 10.3389/fpls.2020.00410 pmid: 32351526
[77]
SHAO L, XING F, XU C H, ZHANG Q H, CHE J, WANG X M, SONG J M, LI X H, XIAO J H, CHEN L L, et al. Patterns of genome-wide allele-specific expression in hybrid rice and the implications on the genetic basis of heterosis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(12): 5653-5658.
[78]
QUAN J P, YANG M, WANG X W, CAI G Y, DING R R, ZHUANG Z W, ZHOU S P, TAN S X, RUAN D L, WU J J, et al. Multi-omic characterization of allele-specific regulatory variation in hybrid pigs. Nature Communications, 2024, 15: 5587.

doi: 10.1038/s41467-024-49923-5 pmid: 38961076
[79]
MEUWISSEN T E, HAYES B J, GODDARD M E. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 2001, 157(4): 1819-1829.

doi: 10.1093/genetics/157.4.1819 pmid: 11290733
[80]
MEUWISSEN T, HAYES B, GODDARD M. Accelerating improvement of livestock with genomic selection. Annual Review of Animal Biosciences, 2013, 1: 221-237.

doi: 10.1146/annurev-animal-031412-103705 pmid: 25387018
[81]
HEIDARITABAR M, WOLC A, ARANGO J, ZENG J, SETTAR P, FULTON J E, O’SULLIVAN N P, BASTIAANSEN J W M, FERNANDO R L, GARRICK D J, DEKKERS J C M. Impact of fitting dominance and additive effects on accuracy of genomic prediction of breeding values in layers. Journal of Animal Breeding and Genetics, 2016, 133(5): 334-346.

doi: 10.1111/jbg.12225 pmid: 27357473
[82]
ALILOO H, PRYCE J E, GONZÁLEZ-RECIO O, COCKS B G, HAYES B J. Accounting for dominance to improve genomic evaluations of dairy cows for fertility and milk production traits. Genetics Selection Evolution, 2016, 48(1): 8.
[83]
ESFANDYARI H, BIJMA P, HENRYON M, CHRISTENSEN O F, SØRENSEN A C. Genomic prediction of crossbred performance based on purebred Landrace and Yorkshire data using a dominance model. Genetics Selection Evolution, 2016, 48(1): 40.

doi: 10.1186/s12711-016-0220-2 pmid: 27276993
[84]
TAN C, WU Z F, REN J L, HUANG Z L, LIU D W, HE X Y, PRAKAPENKA D, ZHANG R, LI N, DA Y, HU X X. Genome-wide association study and accuracy of genomic prediction for teat number in Duroc pigs using genotyping-by-sequencing. Genetics, Selection, Evolution, 2017, 49(1): 35.

doi: 10.1186/s12711-017-0311-8 pmid: 28356075
[85]
AKANNO E C, ABO-ISMAIL M K, CHEN L H, CROWLEY J J, WANG Z Q, LI C X, BASARAB J A, MACNEIL M D, PLASTOW G S. Modeling heterotic effects in beef cattle using genome-wide SNP-marker genotypes. Journal of Animal Science, 2018, 96(3): 830-845.

doi: 10.1093/jas/skx002 pmid: 29373745
[86]
VARONA L, LEGARRA A, TORO M A, VITEZICA Z G. Non-additive effects in genomic selection. Frontiers in Genetics, 2018, 9: 78.

doi: 10.3389/fgene.2018.00078 pmid: 29559995
[87]
GONZÁLEZ-DIÉGUEZ D, TUSELL L, BOUQUET A, LEGARRA A, VITEZICA Z G. Purebred and crossbred genomic evaluation and mate allocation strategies to exploit dominance in pig crossbreeding schemes. G3 Genes|Genomes|Genetics, 2020, 10(8): 2829-2841.
[88]
FERNÁNDEZ J, VILLANUEVA B, TORO M A. Optimum mating designs for exploiting dominance in genomic selection schemes for aquaculture species. Genetics Selection Evolution, 2021, 53(1): 14.

doi: 10.1186/s12711-021-00610-9 pmid: 33568069
[89]
GONZÁLEZ-DIÉGUEZ D, TUSELL L, CARILLIER-JACQUIN C, BOUQUET A, VITEZICA Z G. SNP-based mate allocation strategies to maximize total genetic value in pigs. Genetics Selection Evolution, 2019, 51(1): 55.
[90]
DUENK P, BIJMA P, CALUS M P L, WIENTJES Y C J, VAN DER WERF J H J. The impact of non-additive effects on the genetic correlation between populations. G3 Genes|Genomes|Genetics, 2020, 10(2): 783-795.
[91]
CALUS M P L, WIENTJES Y C J, BOS J, DUENK P. Animal board invited review: The purebred-crossbred genetic correlation in poultry. Animal, 2023, 17(11): 100997.
[92]
WIENTJES Y C J, CALUS M P L. BOARD INVITED REVIEW: the purebred-crossbred correlation in pigs: A review of theory, estimates, and implications. Journal of Animal Science, 2017, 95(8): 3467-3478.

doi: 10.2527/jas.2017.1669 pmid: 28805893
[93]
DUENK P, BIJMA P, WIENTJES Y C J, CALUS M P L. Predicting the purebred-crossbred genetic correlation from the genetic variance components in the parental lines. Genetics Selection Evolution, 2021, 53(1): 10.

doi: 10.1186/s12711-021-00601-w pmid: 33541267
[94]
DUENK P, BIJMA P, WIENTJES Y C J, CALUS M P L. Review: Optimizing genomic selection for crossbred performance by model improvement and data collection. Journal of Animal Science, 2021, 99(8): skab205.
[95]
朱家华, 沈俊男, 伊旭东, 李睿, 喻赫, 丁荣荣, 庞卫军. 杂种优势形成机制和预测方法及其在猪生产中的应用与展望. 遗传, 2024, 46(8): 627-639.
ZHU J H, SHEN J N, YI X D, LI R, YU H, DING R R, PANG W J. Heterosis formation mechanism, prediction methods, and their application and prospect in pig production. Hereditas(Beijing), 2024, 46(8): 627-639. (in Chinese)
[96]
刘志国, 王冰源, 牟玉莲, 魏泓, 陈俊海, 李奎. 分子编写育种: 动物育种的发展方向. 中国农业科学, 2018, 51(12): 2398-2409. doi: 10.3864/j.issn.0578-1752.2018.04.016.
LIU Z G, WANG B Y, MU Y L, WEI H, CHEN J H, LI K. Breeding by molecular writing (BMW): the future development of animal breeding. Scientia Agricultura Sinica, 2018, 51(12): 2398-2409. doi: 10.3864/j.issn.0578-1752.2018.04.016. (in Chinese)
[97]
贾冠清, 刁现民. 中国谷子种业创新现状与未来展望. 中国农业科学, 2022, 55(4): 653-665. doi: 10.3864/j.issn.0578-1752.2022.04.003.
JIA G Q, DIAO X M. Current status and perspectives of innovation studies related to foxtail millet seed industry in China. Scientia Agricultura Sinica, 2022, 55(4): 653-665. doi: 10.3864/j.issn.0578-1752.2022.04.003. (in Chinese)
[1] SUN WeiHao, LIU Ting, SANG YiNan, YANG ZhengWei, ZHANG GaiSheng, SONG YuLong, ZHANG ShuangXi. Analysis of Heterosis and Combining Ability of Lodging Resistance Traits of Spring Wheat Varieties (Lines) in the Ningxia Yellow River Irrigation Area [J]. Scientia Agricultura Sinica, 2024, 57(13): 2497-2508.
[2] LI MianYan, WANG LiXian, ZHAO FuPing. Research Progress on Machine Learning for Genomic Selection in Animals [J]. Scientia Agricultura Sinica, 2023, 56(18): 3682-3692.
[3] XIE LingLi,WEI DingYi,ZHANG ZiShuang,XU JinSong,ZHANG XueKun,XU BenBo. Dynamic Changes of Gibberellin Content During the Development and Its Relationship with Yield of Brassica napus L. [J]. Scientia Agricultura Sinica, 2022, 55(24): 4793-4807.
[4] LI JiangLing,YANG Lan,RUAN RenWu,LI ZhongAn. Analysis of Photosynthetic Characteristics of Hybrid Wheat at Seedling Stage and Its Use for Early Prediction of Strong Heterosis Combinations [J]. Scientia Agricultura Sinica, 2021, 54(23): 4996-5007.
[5] ZHAO JiuRan, LI ChunHui, SONG Wei, LIU XinXiang, WANG YuanDong, ZHANG RuYang, WANG JiDong, SUN Xuan, WANG XiaQing. Heterosis and Genetic Recombination Dissection of Maize Key Inbred Line Jing2416 [J]. Scientia Agricultura Sinica, 2020, 53(22): 4527-4536.
[6] LI YongXiang,LI ChunHui,YANG JunPin,YANG Hua,CHENG WeiDong,WANG LiMing,LI FengYan,LI HuiYong,WANG YanBo,LI ShuHua,HU GuangHui,LIU Cheng,LI Yu,WANG TianYu. Genetic Dissection of Heterosis for Huangzaosi, a Foundation Parental Inbred Line of Maize in China [J]. Scientia Agricultura Sinica, 2020, 53(20): 4113-4126.
[7] WANG LiMing,YAN HongDong,JIAO ShaoJie,JIANG YanXi,SU DeFeng,SUN GuangQuan. Heterosis Prediction of Sweet Sorghum Based on Combining Ability and Genetic Distance [J]. Scientia Agricultura Sinica, 2020, 53(14): 2786-2794.
[8] QU YuJie, SUN JunLing, GENG XiaoLi, WANG Xiao, Zareen Sarfraz, JIA YinHua, PAN ZhaoE, HE ShouPu, GONG WenFang, WANG LiRu, PANG BaoYin, DU XiongMing. Correlation Between Genetic Distance of Parents and Heterosis in Upland Cotton [J]. Scientia Agricultura Sinica, 2019, 52(9): 1488-1501.
[9] WANG XueDe. Overview of the Study and Application of Cytoplasmic Male Sterility in Cotton [J]. Scientia Agricultura Sinica, 2019, 52(8): 1341-1354.
[10] PAN JiaoWen, LI Zhen, WANG QingGuo, GUAN YanAn, LI XiaoBo, DAI ShaoJun, DING GuoHua, LIU Wei. Transcriptomics Analysis of NaCl Response in Foxtail Millet (Setaria italica L.) Seeds at Germination Stage [J]. Scientia Agricultura Sinica, 2019, 52(22): 3964-3975.
[11] ZHAO QianRu, ZHONG XingHua, ZHANG Fei, FANG WeiMin, CHEN FaDi, TENG NianJun. Heterosis and Mixed Genetic Analysis of Green-Center Trait of Spray Cut Chrysanthemum [J]. Scientia Agricultura Sinica, 2018, 51(5): 964-976.
[12] LI HuiMin, LI WeiHua, GUO HaiPing, LIU Kun, ZHANG XiangGe, ZHANG XiaoXiang, XIE HuiLing, TANG JiHua, DING Dong. Heterosis Analysis of Internode Length Under Ear in Maize [J]. Scientia Agricultura Sinica, 2017, 50(6): 978-989.
[13] XIN MingMing, PENG HuiRu, NI ZhongFu, YAO YingYin, SUN QiXin. Progresses in Research of Physiological and Genetic Mechanisms of Wheat Heat Tolerance [J]. Scientia Agricultura Sinica, 2017, 50(5): 783-791.
[14] LI JiaJia, ZHENG ShuangYu, SUN GenLou, ZHANG WenMing, WANG XiaoBo, QIU LiJuan. Advances and Perspectives in Research of Physiological and Molecular Mechanism of Soybean Response to High Temperature Stress [J]. Scientia Agricultura Sinica, 2017, 50(14): 2670-2682.
[15] WANG Li-min, ZHANG Jian-ping, DANG Zhao, PEI Xin-wu, DANG Zhan-hai. The Analysis of the Parental Combining Ability and Heterosis on Two-Line Hybrid Flax [J]. Scientia Agricultura Sinica, 2016, 49(6): 1047-1059.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!