Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (9): 1614-1623.doi: 10.3864/j.issn.0578-1752.2019.09.012

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Lethal Effect of Meat-Borne Pseudomonas fluorescens to Acidic Electrolyzed Water

CAI LinLin1,HU HaiJing1,YI XiaoKun2,WANG HuHu1(),XU XingLian1,PENG Bin3   

  1. 1 Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095
    2 Shandong Oriental Ocean Group Co., Ltd., Yantai 264000, Shandong
    3 College of Animal Medicine, Xinjiang Agricultural University, Urumqi 830052
  • Received:2018-09-04 Accepted:2019-01-31 Online:2019-05-01 Published:2019-05-16
  • Contact: HuHu WANG E-mail:huuwang@njau.edu.cn

Abstract:

【Objective】The objective of this study was to investigate whether the acidic electrolyzed water (AEW) could effectively control meat-borne Pseudomonas fluorescens and to investigate the changes induced in bacteria, which was to provide a reference for the development of novel disinfection approaches.【Method】In this paper, the meat-borne P. fluorescens was treated by AEW with available chlorine concentrations of 20, 40, and 60 mg?L -1 for 5, 10, 15, 20, 25 and 30 minutes. The lethal effect of AEW on meat-borne P. fluorescens was determined by plate counting, and the characteristic morphology of meat-borne P. fluorescens after 5 min treatment of 20, 40, and 60 mg?L -1 AEW was observed under scanning electronic microscopy (SEM) images. In addition, multiple fluorescent probes were used to measure the effects of AEW on cell membrane integrity, intracellular pH, intracellular ATP concentration and membrane potential. The extracellular polymeric substances (EPS) was also extracted to preliminarily investigate the interaction between EPS and AEW. 【Result】 All treatments of AEW with researched concentrations of 20, 40, and 60 mg?L -1could reduce the viable cell number of meat-borne P. fluorescens by 7 log CFU/mL in 5 min, and the increasing concentration of AEW above 40 mg?L -1 played no significant role in the survival of bacterial cell (P>0.05). No viable cells were detected after 10 min treatment of AEW. SEM observations showed that meat-borne P. fluorescens cells exposed to all concentrations of AEW treatment exhibited surface indentations and cell distortions, which indicated the loss of typical structure. AEW significantly decreased the bacterial membrane integrity, membrane potential, intracellular ATP concentrations, intracellular pH and EPS content (P<0.05). Under treatments of 20, 40 and 60 mg?L -1 AEW, the membrane integrity decreased to 2.26%, 1.87% and 1.20%, respectively; the membrane potential declined by 40%, 50% and 50%, respectively; the intracellular pH dropped from 7.50 to 6.53, 5.90 and 5.83, respectively. The intracellular ATP concentration was decreased nearly under detection. The decrease significantly depended on the increasing concentration of AEW, however, when the concentration of AEW was above 40 mg?L -1, there were no significant changes in membrane potential, intracellular ATP concentrations and intracellular pH. After treatment with AEW, the contents of protein and carbohydrate in EPS were significantly decreased (P<0.05). The protein and carbohydrate of L-EPS were decreased by 71.08% and 62.23%, respectively, which those of B-EPS were decreased by 99.32% and 40.62%, respectively. When added to AEW, EPS decreased the ORP of AEW significantly (P<0.05), but played no significant role in AEW’s pH and ACC (P>0.05).【Conclusion】AEW had good bactericidal effect against meat-borne P. fluorescens and it impaired the cell membrane, destroying cell homeostasis. EPS played an important role in hindering the lethal effect of AEW on bacteria.

Key words: meat-borne Pseudomonas fluorescens, acidic electrolyzed water, disinfection, lethal effect

Table 1

Physicochemical properties of acidic electrolyzed water"

NaCl浓度
NaCl concentration (%)
电流Electricity
(A)
有效氯浓度
ACC (mg?L-1)
氧化还原电位
ORP (mV)
pH
2.0 16 20.33±0.47c 1116.00±2.45c 2.91±0.01a
3.5 18 40.33±0.47b 1152.67±1.70b 2.78±0.00b
4.6 19 61.33±0.47a 1167.67±0.94a 2.69±0.00c

Fig. 1

Bactericidal effect of acidic electrolyzed water on meat-borne P. fluorescens Dash line represents detection limit of 1.32 log (CFU/mL). Different lowercase letters indicate significant differences (P<0.05). The same as below"

Fig. 2

SEM observation of meat-borne P. fluorescens"

Fig. 3

Effect of acidic electrolyzed water on the membrane integrity of meat-borne P. fluorescens"

Fig. 4

Effect of acidic electrolyzed water on the membrane potential of meat-borne P. fluorescens"

Fig. 5

Effect of acidic electrolyzed water on the intracellular ATP of meat-borne P. fluorescens"

Fig. 6

Effect of acidic electrolyzed water on the intracellular pH of meat-borne P. fluorescens"

Table 2

Effect of acidic electrolyzed water on the protein and carbohydrate content of EPS from meat-borne P. fluorescens"

类型
Type
处理
Treatment
蛋白
Protein (μg?mg -1)
总糖
Carbohydrate (μg?mg -1)
蛋白/总糖
Protein/Carbohydrate ratio
松散胞外聚合物L-EPS 0 583.68±72.05a 112.33±0.73a 5.20±0.18a
40 mg?L-1 AEW 168.78±2.96b 42.36±0.14b 3.98±0.08b
紧密胞外聚合物B-EPS 0 59.23±1.28a 19.72±0.66a 3.01±0.15a
40 mg?L-1 AEW 0.40±0.28b 11.71±1.23b 0.03±0.02b

Fig. 7

Effect of EPS of meat-borne P. fluorescens on the available chlorine concentration (A), oxidation- reduction potential (B) and pH (C) of acidic electrolyzed water"

[1] QUINTO E J, MARIN J M, CARO I, MATEO J, SCHAFFNER D W . Bayesian modeling of two- and three-species bacterial competition in milk. Food Research International, 2018,105:952. doi: 10.1016/j.foodres. 2017.12.033.
doi: 10.1016/j.foodres.2017.12.033 pmid: 29433294
[2] XIE J, ZHANG Z, YANG S P, CHENG Y, QIAN Y F . Study on the spoilage potential of Pseudomonas fluorescens on salmon stored at different temperatures. Journal of Food Science and Technology, 2018,55(1):1-9. doi: 10.1007/s13197-017-2916-x.
[3] OLANYA O M, UKUKU D O, NIEMIRA B A . Effects of temperatures and storage time on resting populations of Escherichia coli O157:H7 and Pseudomonas fluorescens in vitro. Food Control, 2014,39(39):128-134. doi: 10.1016/j.foodcont.2013.11.006.
[4] 高琳, 陈万义, 任婧 . 食品中荧光假单胞菌的危害及其快速检测方法研究进展. 食品工业科技, 2015,36(16):373-377. doi: 10.13386/j.issn1002-0306.2015.16.068.
doi: 10.13386/j.issn1002-0306.2015.16.068
GAO L, CHEN W Y, REN J . Research progress of hazards and rapid methods for detection of Pseudomonas fluorescen in foods. Science and Technology of Food Industry, 2015, 36(16):373-377. doi: 10.13386/j.issn1002-0306.2015.16.068. (in Chinese)
doi: 10.13386/j.issn1002-0306.2015.16.068
[5] MANN E, WETZELS S U, PINIOR B, BARBARA U M, WAGNER M, STEPHAN S E . Psychrophile spoilers dominate the bacterial microbiome in musculature samples of slaughter pigs. Meat Science, 2016,117:36-40. doi: 10.1016/j.meatsci.2016.02.034.
doi: 10.1016/j.meatsci.2016.02.034 pmid: 26943946
[6] REID R, SEAMUS FANNING, WHYTE P, KERRY J, LINDQVIST R, YU Z Y, BOLTON D . The microbiology of beef carcasses and primals during chilling and commercial storage. Food Microbiology, 2017,61:50-57. doi: 10.1016/j.fm.2016.08.003.
doi: 10.1016/j.fm.2016.08.003
[7] WANG H H, ZHANG X X, WANG G Y, JIA K, XU X L, ZHOU G H . Bacterial community and spoilage profiles shift in response to packaging in yellow-feather broiler, a highly popular meat in Asia. Frontiers in Microbiology, 2017,8:2588-2694. doi: 10.3389/fmicb. 2017.02588.
doi: 10.3389/fmicb.2017.02588 pmid: 5743932
[8] TOYOFUKU C, ALAM M S, YAMADA M, KOMURA M, SUZUKI M, HAKIM H, SANGSRIRATANAKUL N, SHOHAM D, TAKEHARA K . Enhancement of bactericidal effects of sodium hypochlorite in chiller water with food additive grade calcium hydroxide. Journal of Veterinary Medical Science, 2017,79(6):1019-1023. doi: 10.1292/jvms.17-0089.
doi: 10.1292/jvms.17-0089 pmid: 5487776
[9] 徐盼盼, 王爱玲, 王韦华, 郭抗抗, 张为民, 周宏超 . 次氯酸钠对猪源大肠埃希菌和金黄色葡萄球菌的杀灭效果观察. 中国消毒学杂志, 2017,34(6):512-514. doi: 10.11726/j.issn.1001-7658.2017. 06.005.
doi: 10.11726/j.issn.1001-7658.2017.06.005
XU P P, WANG A L, WANG W H, GUO K K, ZHANG W M, ZHOU H C . Observation on killing effect of sodium hypochlorite on Escherichia coli and Staphylococcus aureus from swine. Chinese Journal of Disinfection, 2017,34(6):512-514. doi: 10.11726/j. issn.1001-7658. 2017.06.005. (in Chinese)
doi: 10.11726/j.issn.1001-7658.2017.06.005
[10] KÖHLER A T, RODLOFF A C, LABAHN M, REINHARDT M, TRUYEN U, SPECK S . Efficacy of sodium hypochlorite against multidrug-resistant gram-negative bacteria. Journal of Hospital Infection, 2018,100(3):40-46. doi: 10.1016/j.jhin.2018.07.017.
doi: 10.1093/ofid/ofx163.1817 pmid: 29330015
[11] CELEBI H, BUYUKERKMEN E B, TORLAK E . Disinfection of polyvinyl siloxane impression material by gaseous ozone. Journal of Prosthetic Dentistry, 2018,120:138-143. doi: 10.1016/j.prosdent. 2017.09.003.
doi: 10.1016/j.prosdent.2017.09.003
[12] CHOUDHURY G K, CHITUMALLA R, MANUAL L, RAJALBANDI S K, CHAUHAN M S, TALUKDAR P . Disinfectant efficacy of 0.525% sodium hypochlorite and epimax on alginate impression material. Journal of Contemporary Dental Practice, 2018,19(1):113-116. doi: 10.5005/jp-journals-10024-2222.
doi: 10.5005/jp-journals-10024
[13] MEIRELES A, FULGENCIA R, MACHADO I, MERGULHAO F, MELO L, SIMOES M . Characterization of the heterotrophic bacteria from a minimally processed vegetables plant. LWT-Food Science and Technology, 2017,85:293-300. doi: 10.1016/j.lwt.2017.01.038.
doi: 10.1016/j.lwt.2017.01.038
[14] 田盼, 史学伟, 卢士玲, 高雷, 郝玉兰 . 不同减菌剂对小型屠宰厂牛肉表面减菌效果的研究. 食品工业, 2015(11):210-214.
TIAN P, SHI X W, LU S L, GAO L, HAO Y L . Study of bactericidal ability of different antimicrobial on beef surfaces in very small meat plants.Food industry, 2015(11):210-214. (in Chinese)
[15] SIMON F X, BERDALET E, GRACIA F A, ESPANA F, LLORENS J . Seawater disinfection by chlorine dioxide and sodium hypochlorite. A comparison of biofilm formation. Water Air and Soil Pollution, 2014,225(4):1921-1926. doi: 10.1007/s11270-014-1921-1.
doi: 10.1007/s11270-014-1921-1
[16] RAHMAN S, KHAN I, OH D H . Electrolyzed water as a novel sanitizer in the food industry: current trends and future perspectives. Comprehensive Reviews in Food Science and Food Safety, 2016,15(3):471-490. doi: 10.1111/1541-4337.12200.
doi: 10.1111/1541-4337.12200
[17] HAO J X, LI H Y, WAN Y F, LIU H J . Combined effect of acidic electrolyzed water (AcEW) and alkaline electrolyzed water (AlEW) on the microbial reduction of fresh-cut cilantro. Food Control, 2015,50:699-704. doi: 10.1016/j.foodcont.2014.09.027.
doi: 10.1016/j.foodcont.2014.09.027
[18] HAO J X, QIU S, LI H Y, CHEN T P, LIU H J, LI L T . Roles of hydroxyl radicals in electrolyzed oxidizing water (EOW) for the inactivation of Escherichia coli. International Journal of Food Microbiology, 2012,155(3):99-104. doi: 10.1016/j.ijfoodmicro. 2011.12.031.
doi: 10.1016/j.ijfoodmicro.2011.12.031 pmid: 22342456
[19] GRACA A, ABADIAS M, SALAZAR M, NUNES C . The use of electrolyzed water as a disinfectant for minimally processed apples. Postharvest Biology and Technology, 2011,61(2):172-177. doi: 10.1016/j.postharvbio.2011.04.001.
doi: 10.1016/j.postharvbio.2011.04.001
[20] AL-HOLY M A, RASCO B A . The bactericidal activity of acidic electrolyzed oxidizing water against Escherichia coli O157: H7, Salmonella Typhimurium, and Listeria monocytogenes on raw fish, chicken and beef surfaces. Food Control, 2015,54:317-321. doi: 10.1016/j.foodcont.2015.02.017.
[21] 石文琪, 刘建辉, 胡树样 . 电解水对金黄色葡萄球菌生物被膜的影响. 河北农业大学学报, 2017,40(4):84-89. doi: 10.13320/j. cnki. jauh.2017.0085.
SHI W Q, LIU J H, HU S X . Influence of electrolyzed water on Staphylococcus aureus biofilm. Journal of Agricultural University of Hebei, 2017,40(4):84-89. doi: 10.13320/j.cnki.jauh.2017.0085. (in Chinese)
[22] 余铭, 张全凯, 罗小军, 陈海强, 杨公明 . 酸性氧化电解水对金黄色葡萄球菌生物被膜清除效果的研究. 食品与机械, 2016(1):6-10.
YU M, ZHANG Q K, LUO X J, CHEN H Q, YANG G M . Study on removal ofStaphylococcus aureus biofilm by acidic electrolytic oxidation water. Food and Machinery, 2016(1):6-10. (in Chinese)
[23] XIE J, SUN X H, PAN Y J, ZHAO Y . Physicochemical properties and bactericidal activities of acidic electrolyzed water used or stored at different temperatures on shrimp. Food Research International, 2012,47:331-336. doi: 10.1016/j.foodres.2011.07.041.
doi: 10.1016/j.foodres.2011.07.041
[24] 付丽, 陈有亮 . 强酸性电解水用于冷鲜鸡减菌化处理的试验. 肉类工业, 2016(5):36-39.
FU L, CHEN Y L . Experiment of strongly acidic electrolyzed water used for cold fresh chicken to reduce bacteria.Meat Industry, 2016(5):36-39. (in Chinese)
[25] 李秀丽, 吴冬梅, 罗红宇 . 酸性电解水对熟制虾仁抑菌作用的研究. 食品工业, 2013(9):108-110.
LI X L, WU D M, LUO H Y . Study on bacteria-inhibiting effect of acidic electrolyzed water on cooked shrimp.Food Industry, 2013(9):108-110. (in Chinese)
[26] WANG H H, CAI L L, LI Y, HXU X L, ZHOU G H . Biofilm formation by meat-borne Pseudomonas fluorescens on stainless steel and its resistance to disinfectants. Food Control, 2018,91:397-403. doi: 10.1016/j.foodcont.2018.04.035.
[27] MIKULA P, ZEZULKA S, JANCULA D, MARSALEK B . Metabolic activity and membrane integrity changes in new findings on hydrogen peroxide toxicity in cyanobacteria. European Journal of Phycology, 2012,47(3):195-206. doi: 10.1080/09670262.2012.687144.
doi: 10.1080/09670262.2012.687144
[28] ZENG X, TANG W, YE G, OUYANG T, TIAN L, NI Y M, LI P . Studies on disinfection mechanism of electrolyzed oxidizing water on E. coli and Staphylococcus aureus. Journal of Food Science, 2010,75(5):253-260. doi: 10.1111/j.1750-3841.2010.01649.x.
[29] ZHAO S, HAN J, BIE X, LU Z, ZHANG C, LV F . Purification and characterization of plantaricin JLA-9: a novel bacteriocin against Bacillus spp. produced by Lactobacillus plantarum JLA-9 from Suan-Tsai, a traditional Chinese fermented cabbage. Journal of Agricultural and Food Chemistry, 2016,64(13):2754-2764. doi: 10.1021/acs.jafc.5b05717.
[30] 于瑞凤, 朱建军 . 大麦根木质部细胞质膜上H +泵与阴离子通道电导性的关系分析 . 鲁东大学学报(自然科学版), 2017,33(3):211-217.
YU R F, ZHU J J . H + pump activity in relation to anion conductance in plasma membrane of xylem parenchyma protoplasts from barley roots . Journal of Ludong University (Natural Science Edition), 2017,33(3):211-217. (in Chinese)
[31] LI G H, XU Y F, WANG X, ZHANG B G, SHI C, ZHANG W S, XIA X D . Tannin-rich fraction from pomegranate rind damages membrane of Listeria monocytogenes. Foodborne Pathogens and Disease, 2014,11(4):313-319. doi: 10.1089/fpd.2013.1675.
[32] LAMSA A, LIU W T, DORRESTEIN P C, POGLIANO K . The Bacillus subtilis cannibalism toxin SDP collapses the proton motive force and induces autolysis. Molecular Microbiology, 2012,84(3):486-500. doi: 10.1111/j.1365-2958.2012.08038.x.
doi: 10.1111/j.1365-2958.2012.08038.x pmid: 3839633
[33] SHI C, GUO D, ZHANG W T, LIU Z Y, GUO X, HAO X S, YANG Y F, SUN Y, XIA X D . Antibacterial activity of protocatechualdehyde against Cronobacter sakazakii and its possible mechanism of action. Modern Food Science and Technology, 2017,33(7):105-111. doi: 10.13982/j.mfst.1673-9078.2017.7.016.
[34] CHEN M, HUANG S L, ZHANG X Q, ZHANG B, ZHU H, YANG V W, ZOU X P . Reversal effects of pantoprazole on multidrug resistance in human gastric adenocarcinoma cells by down-regulating the V-ATPases/mTOR/HIF-1α/P-gp and MRP1 signaling pathway in vitro and in vivo. Journal of Cellular Biochemistry, 2012,113(7):2474-2487. doi: 10.1002/jcb.24122.
doi: 10.1002/jcb.24122 pmid: 22396185
[35] SHEN Y, HUANG C, MONROY G L, JANJAROEN D, DERION N, LIN J, ROSA M E, EBERHARD M, STEPHEN A B, NICHOLAS J A, LIU W T, THANH H N . Response of simulated drinking water biofilm mechanical and structural properties to long-term disinfectant exposure. Environmental Science and Technology, 2016,50(4):1779-1787. doi: 10.1021/acs.est.5b04653.
doi: 10.1021/acs.est.5b04653 pmid: 5135099
[36] BAUTISTA B E T, WIKIEL A J, DATSENKO L, VERA M, SAND W, SEYEUX A, ZANNA S, FRATEUR I, MARCUS P . Influence of extracellular polymeric substances (EPS) from Pseudomonas NCIMB 2021 on the corrosion behaviour of 70Cu-30Ni alloy in seawater. Journal of Electroanalytical Chemistry, 2015,737:184-197. doi: 10.1016/j.jelechem.2014.09.024.
doi: 10.1016/j.jelechem.2014.09.024
[37] YANG Y, WIKIEL A J, DALL'AGNOL L T, ELOY P, GENET M J, MOURA J G, SAND W, DUPONT-GILLAIN C C, ROUXHET P G . Proteins dominate in the surface layers formed on materials exposed to extracellular polymeric substances from bacterial cultures. Biofouling, 2016,32(1):95-108. doi: 10.1080/08927014. 2015.1114609.
doi: 10.1080/08927014.2015.1114609 pmid: 26769222
[38] HUANG Y R, HUNG Y C, HSU S Y, HUANG Y W, HWANG D F . Application of electrolyzed water in the food industry. Food Control, 2008,19(4):340-345. doi: 10.1016/j.foodcont.2007.08.012.
doi: 10.1016/j.foodcont.2007.08.012
[1] LU YanHui, GAO GuangChun, ZHENG XuSong, Lü ZhongXian. The Lethal Mechanism of Trap Plant Vetiveria zizanioides Against the Larvae of Chilo suppressalis [J]. Scientia Agricultura Sinica, 2017, 50(3): 486-495.
[2] AO YiQianYun, SHEN GuangMao, WANG MengYao, LIU JiaLu, PAN Yu, HE Lin. Identification of β-COP and Sro of Tetranychus cinnabarinus and Their Lethal Effects After Silencing [J]. Scientia Agricultura Sinica, 2017, 50(18): 3529-3539.
[3] WANG Deng-jie, ZANG Lian-sheng, ZHANG Ye, WANG Hai-hong, LEI Zhong-ren. Sublethal Effects of Beauveria bassiana Balsamo on Life Table Parameters of Subsequent Generations of Bemisia tabaci Gennadius [J]. Scientia Agricultura Sinica, 2014, 47(18): 3588-3595.
[4] LIU Na, CHENG Dong-Mei, XU Han-Hong, ZHANG Zhi-Xiang. Behavioral and Lethal Effects of α-terthienyl on the Red Imported Fire Ant (RIFA) [J]. Scientia Agricultura Sinica, 2011, 44(23): 4815-4822.
[5] . Lethal and Sub-Lethal Effects of Transgenic Rice Containing cry1Ac and CpTI Genes on the Pink Stem Borer
[J]. Scientia Agricultura Sinica, 2009, 42(2): 523-531 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!